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Abstract:  

Concurrent programming has long been a challenge due to the complex interactions 

between processors and shared memory. The intuition of programmers often diverges from 

the actual behavior of concurrent programs due to factors such as modern processor 

technologies, compiler optimizations, and performance-driven data store implementations. 

To address this discrepancy, memory models were introduced to formally define the 

permissible and prohibited behaviors in concurrent program execution. Memory models 

can be broadly categorized into strong and weak models. Sequential Consistency (SC) is a 

strong model that preserves the order of events in each thread or process, aligning with 

programmers' expectations. In contrast, weak models, such as Total Store Order (TSO) and 

ARM, allow for relaxed ordering, potentially leading to unexpected behaviors. This paper 

presents a practical comparison of SC, TSO, and ARM memory models. A suite of six 

litmus tests were executed on architectures implementing each model to highlight their 

differences. The results were analyzed using the axiomatic models of each architecture to 

understand why certain behaviors were accepted or rejected. The herd tool was employed 

to simulate memory model behavior. The findings revealed a significant disparity in the 

acceptance of behaviors across the three models. SC emerged as the most restrictive, 

followed by TSO, while ARM demonstrated the least stringent acceptance criteria. These 

results underscore the importance of understanding memory model nuances when 

developing concurrent programs to ensure correct and predictable behavior. 

Keywords: Concurrent Programming, Memory Models, Sequential Consistency (SC), 

Total Store Order (TSO), ARM, Litmus Test. 

1. Introduction 

Concurrency, the interleaving of logical control flows in multithreaded or multi-process programs, has 

become an integral part of modern software development[1]. Concurrent programs involve multiple 

processes or threads working concurrently with shared objects, such as shared memory[2], [3]. The 

foundational concepts of concurrency were introduced by Edsger Dijkstra in the mid-1960s to 

construct reliable operating system kernels[4], [5]. Since then, concurrency has found applications in 

various domains, including I/O devices, human interaction, computer networks, servers, parallel or 

multi-core computing, robotics, database management systems, and industrial systems[1], [6], [7], [8], 

[9]. 

The benefits of concurrency are multifaceted. It improves system responsiveness by executing tasks 

asynchronously rather than synchronously. It is essential for leveraging modern multi-core CPUs, 

which offer superior performance over single-core processors while consuming less power[6]. From a 

program modularity perspective, concurrency logically separates independent control flows[10], [11]. 

However, the execution of concurrent programs on modern CPUs is not guaranteed to follow the order 

of events as assumed by programmers. This is due to techniques like cache hierarchies and store 

buffers, which are employed to optimize performance. Programmers often assume a Sequential 
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Consistency (SC) memory model[12], which preserves the order of event execution within each 

process. However, this assumption does not hold in non-SC models prevalent in modern CPUs[13]. 

Consequently, running concurrent programs on multi-core CPUs may deviate from programmer 

expectations, necessitating careful consideration of these architectures over SC[12]. 

Unlike sequential programs, concurrent programs exhibit a range of behaviors due to the interleaving 

and reordering of read and write operations across threads. These behaviors can be categorized into 

permitted behaviors, which align with a specified memory model, and prohibited behaviors, which are 

unattainable[14]. Understanding these behaviors on a specific architecture is crucial for 

programmers[15]. To address this challenge, Memory Consistency Models (MCMs) were introduced 

to depict execution on a given architecture and enable programmers to write concurrent programs that 

avoid undesired behaviors. MCMs define the order in which shared variables are accessed, governing 

permissible concurrent program behavior[16]. 

MCMs are categorized into strong and weak models. Sequential Consistency (SC) is a strong model 

that ensures the write operation is executed as an atomic operation and the order of operations within 

each thread or process is preserved[13]. In contrast, relaxed memory models, provided by modern 

multiprocessors and high-level programming languages, reorder memory access operations. This 

reordering can improve performance but also introduces challenges in understanding and predicting 

program behavior[17], [18], [19]. 

1.1 Simulation of MCMs 

Numerous simulation and verification tools have been proposed for MCMs[20]. One such tool is herd 

tools[21], which enables users to define their own memory models using the cat language[22], a 

domain-specific language commonly employed to describe parallel program consistency 

properties[23]. Litmus tests, concise programs featuring multiple threads with shared variables, can 

then be executed on these custom models. Each litmus test includes an assertion that validates the final 

values of local variables, illustrating the test's behavior. Upon completion of a litmus test's execution, 

the assertion is evaluated to determine whether a specified behavior, as defined by a predefined MCM, 

is permissible or not[20], [21], [22]. 

In the subsequent sections, six litmus tests are presented to demonstrate the functioning of memory 

models and analyze their behavioral variations. These litmus tests are described in detail, accompanied 

by pseudocode of each one of them. 

1.2 Litmus Tests Used in The Comparison 

In the subsequent sections, six litmus tests are presented to demonstrate the functioning of memory 

models and analyze their behavioral variations. These litmus tests are described in detail, accompanied 

by pseudocode of each one of them. 

1.2.1 Message Passing (MP) Litmus Test: 

In the MP litmus test, two threads (T0 and T1) run simultaneously, with two shared memory locations 

(x and y) initialized to a value of 0 for inter-thread communication. Thread T0 executes two store 

operations: first, it stores the value 1 in location x, followed by storing the value 1 in location y 

according to the program order. In contrast, T1 loads the content of location y into register r1 and then 

loads the contents of location x into register r2. It is crucial to note that memory locations x and y are 

shared between both threads, whereas registers r1 and r2 are private to thread T1. The message-passing 

pattern between threads is illustrated in Figure 1a, where T0 updates the value of x, subsequently 

activating the flag y. T1, in turn, waits for flag y to be enabled before reading the value of x. For 
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simplicity, the waiting mechanism of T1 was omitted. The objective of the MP litmus test is to ascertain 

whether T1 can read the value 1 from the shared location y while x remains at a value of 0 [24]. 

1.2.2 S Litmus Test: 

It is an adaptation of the MP litmus test; it differs from the MP litmus test by writing value 2 to the 

shared location x by the first event in T0 in addition to writing the value 1 to the shared location x 

instead of the second read event in T1. Its’ constraint involves checking whether the second event in 

T1 is committed after the first write of T0 or not. It aimed to check the validity of the control dependency 

between read-to-write events. The S litmus test’s psuedo-code is shown in Figure 1b [24]. 

1.2.3 Store Buffer (SB) Litmus Test: 

This litmus test involves two threads (T0 and T1) running concurrently. It has two shared variables (x 

and y) between the two threads. Variable a is a private variable for T0, whereas variable b is a private 

variable for T1. Initially, all shared and private variables are set to 0. T0 writes the value 1 to the shared 

variable x; after that, the value of y is read into private variable a. Meanwhile, T1 writes the value 1 to 

the shared variable y, followed by loading the value of x into the private variable b. The constraint of 

this litmus test assesses whether the two read events retrieve values from the initial state or from the 

write events within T0 and T1. Figure 1c shows the SB litmus test’s pseudo-code [24]. 

1.2.4 Load Buffer (LB) Litmus Test: 

In contrast to the SB litmus test, the two threads (T0 and T1) in the LB litmus test first perform read 

operations from the shared locations x and y, followed by writing the value 1 to the same shared 

locations y and x, respectively. It seeks to determine whether read events read from subsequent write 

events or from the initial values of x and y. The LB litmus test’s pseudo-code is shown in Figure 1d 

[24]. 

 
(a) MP litmus test 

 
(b) S litmus test 

 
(c) SB litmus test 

 
(d) LB litmus test 

 
(e) 2+2W litmus test 

 
(f) Coherence litmus test 

Figure 1: Pseudo-code of 6 litmus tests which used in the comparison. 
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1.2.5 2+2W Litmus Test: 

It is a variation of the LB litmus test, where the read event of T0 is substituted by writing value 2 to the 

shared location x, and similarly, replaces the read event in T1 with writing the value 2 to the shared 

location y. Its purpose is to scrutinize the executing order of events in threads; in other words, 

determining if the final values of both x and y are 1 or 2. Figure 1e illustrates the pseudo-code of the 

2+2W litmus test [24]. 

1.2.6 Coherence Litmus Test: 

One shared variable, x, is the focal point of this litmus test. There are four threads; T0 changes the value 

of x with 1, and T1 updates it by 2. The value of x will be loaded into the private registers of T2 and T3 

twice. This litmus test is intended to determine whether or not T3 reads the value of x in the reverse 

order of T2 while reading the data. The constraint of this litmus test is to determine whether it is feasible 

for T2 to read value 1 of the first read before reading value 2 of the second read and T3 to read value 2 

of x before reading value 1 of the second read. In other words, this litmus test focuses on the 

consistency of data. The coherence litmus test’s pseudo-code is shown in Figure 1f [24]. 

2. Axiomatic model in depth 

Axiomatic memory model refers to precise definition of a memory model. It is language independent 

as it mathematically describes multi-threaded programs in terms of events and their relationships. 

Distinguishing between allowed and disallowed behaviors is achieved by applying a set of rules or 

constraints to these relationships which considered as relations. The ability to implement its concepts 

in tools for verifying concurrent programs sets this memory model apart. However, it’s worth noting 

that understanding memory models specified in this way can sometimes be challenging. [25]. Using 

an axiomatic model to classify behaviors of concurrent programs into allowed and disallowed 

behaviors involves three essential steps [21]. To demonstrate, these steps have been applied to the MP 

litmus test, illustrated in Figure 1a. The required steps are: 

a. Control-flow semantics: in this step, instructions in a concurrent programs will be translated 

into events, for example the instruction x  1 contained in T0 will be translated into a write event as: 

Wx = 1, while the instruction r1  y in T1 will be Ry = ?. A write event is abbreviated by the letter (W) 

and a read event by the letter (R), followed by the variable name that was written to or read from. The 

question mark in the event Ry = ? refers to an undetermined read value that is because it depends on 

the interleaving between events from multiple threads. Branching decisions events and fences will be 

determined in this step. The output of creating the control-flow semantic of the MP litmus test is 

depicted in Figure 2. 

 

Figure 2: Control flow semantics of MP litmus test. 

In this litmus test, there are two implicit write events representing the initiation of locations x and y 

with value 0. In this stage, the program order (po) relation will be determined as well. It is represented 

as arrow with po title in Figure 2. The program order shows the order of events within a thread with 

respect to decision branching and address, data and control dependencies. In other words, po represent 

the order of events which is corresponds to instructions in which a program was written. For example 
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in Figure 2, T0 has two write events related by a po arrow, that is means that at the code level the Wx 

= 1 written before Wy = 1. 

b. Data flow semantics: a set of data flow semantics will be derived for each control flow in this 

stage. All possible interleaving between events from different threads will be taken into account. 

Readfrom (rf) and coherence order (co) relations will be extracted in this level. The rf relation describes 

the sources of values to be read by a read event. Referring to Figure 3b, the Ry = 1 event in T1 of the 

MP litmus test will read the value 1 from the Wy = 1 event of T0. In other words, the read event Ry = 

1 of T1 will be executed after the Wy = 1 event of T0. The rf relation could be illustrated as arrows 

with rf captions, beginning with the write events, which are the source of reading values, and ending 

with the read events. The rf arrow with no source like the Ry = 0 event of T1 in the Figure 3a means 

that the read event will take its’ value from the implicit initial write of location y. The co relation 

describes the order of writes events that hits the same memory location. In the current example, the 

initial write of x (not showed in the figure) took the effect before the Wx=1 of T0, so the two write 

events are ordered in coherence. The co relation could be explained as arrows titled by co caption. 

Shortly, Figure 3 illustrates all possible executions (candidate executions) of the program showed in 

Figure 1. 

 

(a) MP (data flow 1) 

 

(b) MP (data flow 3) 

 

(c) MP (data flow 2) 

 

(d) MP (data flow 4) 

Figure 3: Data-flow semantics for the control-flow semantics given in Figure 2. 

c. Constraints specification: for a given memory model, a set of constraints should be determined 

in a form of empty or acyclicity or irreflexivity of various combinations of the (po, rf and co) relations 

over events given by the candidate execution. Checking these constraints will tell if a given candidate 

execution is valid or not. 

Up to this point, three relations (po, rf, and co) have been derived from the previous steps. Concurrent 

programs verification tools, such as herdtools [21] extract these relations alongside some other 

relations outlined in Table 1. Table 1 describes all relations provided by herd tools, extracted from a 

given concurrent program. 

Table 1: Provided relations from herdtools [21]. 

Relation 

Name 

Description 

loc The association between events accessing the same memory location. 

int Contains all pairs of events that belong to the same thread. 
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lxsx Load exclusive store exclusive relation, contains pairs of read of the load exclusive 

and write of the successful store exclusive. 

amo A relation that contains pairs of atomic read and atomic write operations. 

rmw Read modify write operations relation 

Further relations can be derived from the (po, rf, and co) relations, these relations which are listed in 

Table 2 could be derived by applying some mathematical operations on previously described relations. 

The necessary mathematical operations include: (union, intersection, difference, complement, inverse, 

reflexive closure, transitive closure, and reflexive transitive closure)[23]. Table 2 explains some of 

required relations for the (SC, TSO and ARM) MCMs and how to derive these relations [21]. 

Table 2: Derived relations that are required for the specification of SC, TSO and ARM model 

specification [21]. 

Relation 

Name 

Derived 

by 

Description 

po-loc po & loc po relation restricted to the same location. 

fr rf−1;co from-read relation makes one step of reads-from backward, then one 

step of coherence. 

ext ∼ int Contains all pairs of events that belong to different threads. 

rfe rf & ext External read from. 

coe co & ext External coherence. 

fre fr & ext External from-read. 

3. Compared Memory Models 

In the following subparagraphs is the description of the compared memory models (SC, TSO, and 

ARM). 

3.1 Sequential Consistency (SC) Model 

Sequential consistency, as defined by Lamport [13] which it gives what a programmer expects from 

running concurrent programs. It places significant emphasis on the order of memory requests, 

mirroring their appearance in the code. In other words, SC avoids reordering memory access 

operations. As a result, it stands out as an intuitive and robust memory model compared to others. Two 

specific requirements must be met for a system to be considered sequentially consistent: 

Requirement 1: ”Each processor issues memory requests in the order specified by its program.” 

Requirement 2: ”Memory requests from all processors issued to an individual memory module are 

serviced from a single FIFO queue.” 

While the requirement 1 emphasizes the order of operations in individual processor, the second 

requirement ensures the preservation of the order of operations from different processors [13].  

SC model could be defined as an axiomatic model as the following [24]: 

1 empty rmw & (fre;coe) as atom 

2 acyclic po | fr | rf | co as sc 

The first statement emphasizes that the atomicity of memory access operations by checking the 

intersection between rmw relation and both fre and coe relations which should be an empty set, 

meaning that memory access operations should take effect on memory immediately, which is a basic 

principle in SC model. The second statement focuses on the forbidden reordering of events in SC 
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model, which defined as a combination between all the three relations (fr, rf and co), the resulted 

relation from the combination should be acyclic. 

3.2 Total Store Order (TSO) 

In order to achieve improved efficiency and performance, modern microprocessors have departed from 

the SC approach. To prevent a thread from stalling while waiting for a write operation on shared 

memory to take effect, current designs employ sophisticated technologies such as cache hierarchies 

and store buffers. One such MCM is Total Store Ordering (TSO). TSO serves as a formalization of 

SPARC and Intel x86 architectures [12]. 

TSO allows event reordering in one case: when there is a store then load operations for different 

variables or memory addresses, it could be executed as load then store due to the store operation latency 

in the FIFO store buffer. As a result, TSO allows some non-SC executions [15]. The axiomatic 

formalization of TSO in cat language is depicted bellow [24], [26]. 

1 (* Uniproc check specialized for TSO *) 

2 irreflexive po-loc & (R*W); rfi as uniprocRW 

3 irreflexive po-loc & (W*R); fri as uniprocWR 

4 (* Communication relations that order events*) 

5 let com-tso = rfe | co | fr 

6 (* Program order that orders events *) 

7 let mfence = po & ( * MFENCE) ; po 

8 let po-tso = po & (W*W | R*M) | mfence 

9 (* TSP global-happens-before *) 

10 let ghb = po-tso | com-tso 

11 acyclic ghb as tso 

From the axiomatic model perspective, the difference between the semantics of SC and TSO lies in 

the acyclicity constraint verification. In TSO, this verification does not encompass the checks for write-

to-read pairs, whereas in SC, it does. The explanation of the TSO axiomatic model is listed below: 

− lines (2-3): in this part the program order for the same memory location is maintained for two 

cartesian products (Read * Write, and Write * Read). This program order should not be reflexive. 

− line 5: in this declaration the communication relation com-tso will be created by the union of 

(rfe, co, and fr) relations. If the rfi included in the communication relation then the model will be 

stronger which means it will forbid some allowed behaviors in the x86 architecture, for that reason 

only the rfe relation which is a sub-relation of rf realtion is included in the communication relation. 

− line 7: for taking the memory barriers commands into account. 

− line 8: for creating the (po-tso) relation which is resulted from the union of (write to write pairs 

and read to read or write pairs with the exclusion of write to read pairs) plus the mfences which is 

created in line 7. The creation of the cartesian pairs depending on predefined sets which are (W: write 

events, R: read events, and M: memory events (read and write)). 

− line 10: creating the global-happens-before (ghb) relation by combining the po-tso and com-

tso relations. 

− line 11: for checking the acyclicity constraint of the ghb relation. 
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3.3 ARM Model 

ARM MCM was generally formalized by the use of cat language [27]. In the original formalization of 

ARM, checking three criterion is required to categorize the candidate executions into allowed and 

disallowed executions. These criterions are (the internal visibility, the atomicity, and the external 

visibility). The ARM axiomatic model requires a special function called intervening-write and a set of 

basic relations to be used in checking the previously mentioned criteria. Following is the description 

and the code in the cat language of the intervening-write function.  

intervening-write(r) function: this function will specify write event w which interleaving between two 

read events. it could be declared as: 

let intervening-write(r) = r; [W]; r 

In addition, specification of the axiomatic model of the ARM MCM requires some derived relations, 

following are the descriptions of them: 

− Local read successor (lrs) relation: which contains the next read event r of the direct previous 

write event w. Events r and w should be two events accessing the same memory location. This relation 

could be derived as follow: 

let lrs = [W]; (po-loc \ intervening-write(po-loc)); [R] 

− Local write successor (lws) relation: which contains all writes events that are follow the write 

event w. All these writes events should write to the same memory location. It could be generated as: 

let lws = po-loc; [W] 

− Coherence after (ca) relation: which is the union of rf and co relations, a write event w is 

coherence after an event e (read or write) if event w changes the value that event e deals with. It could 

be expressed in the cat language as: 

let ca = fr | co 

− Observed by (obs) relation: which gathers the external read-from (rfe), external from-read (fre) 

relations, and the external coherence order (coe). It is clear that this relation maintains events from 

different threads over shared memory. Its’ code is: 

let obs = rfe | fre | coe 

Following paragraphs describing the three criterions required to check if a candidate execution is 

allowed or forbidden in the ARM model: 

a. The internal visibility: it could be simplified as the checking of the correctness of the 

interactions between threads and inside each thread to prevent undesirable behaviors like (lack of 

coherence, reading from future write event, and ignoring some write events). This constraint could be 

achieved by ignoring any candidate execution that contains a cycle in the union of (po-loc and ca and 

rf relations). Figure 4 depicts the five forbidden patterns of behaviors according to the internal visibility 

constraint. All patterns showed in Figure 4 contain forbidden cycles for that they are forbidden 

executions in the ARM model. This constraint could be expressed in the cat language by the following 

expression: 

(* Internal visibility requirement *) 

acyclic po-loc | ca | rf as internal 
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(a) Pattern 1 

 

(b) Pattern 2 

 

(c) Pattern 3 

 

(d) Pattern 4 

 

(e) Pattern 5 

Figure 4: The five forbidden behaviors in the ARM model based on the internal visible constraint. 

Referring to Figure 4, the pattern 1 imposes that when there are two write events to the same location 

in the program order they should have the same order in the ca relation as in po-loc. In pattern 2, 

reading event b is denied from reading from an overridden event (like writing the initial value) when 

there is a write event like event a followed immediately by a read event like event b. Pattern 3 forbids 

a read event like event a to read from a future write in the program order such as event b. Pattern 4 

forbids a read event such as event a to read from a write event such as event c which is coherence after 

a write event b where event b is after event a in the program order, in other words this pattern is another 

form of reading from a future write. Finally pattern 5 illustrates when a reading event like event a read 

from a write event c, then all successor reads after the event a should read from event c or other 

subsequent write events after event c. It is unrealistic that read event b reads from the initial value 

which is overwritten by event c and it have been read by event a which is before event b in the program 

order. 

b. The atomicity: in this constraint the ARM model focuses on the load exclusive (LDXR) and 

store exclusive (STXR) instructions which are special instructions provided by ARM and POWER 

architectures. These two instructions are paired together to provide concurrent programs with atomic 

access to the shared locations. Successful (LDXR) and (STXR) should not be interrupted or interleaved 

by any other write access to the same location from another thread. Figure 5 illustrates a failed (STXR) 

caused by interleaving write access to the location x from thread T1 between the (LDXR) and (STXR) 

of thread T0. The * mark in the events a and b means that this read-write pair is an atomic operation. 

This constraint does not cover just the (LDXR) and (STXR) instructions but the swap (SWP) and 

compare-and-swap (CAS) atomic operations as well, which are already contained in the (amo) relation 

while (LDXR) and (STXR) pairs are already contained in the lxsx relation. Both (amo) and (lxsx) 

relations are described in Table 1. In the definition of the ARM model both (amo) and (lxsx) relations 

merged in one relation called read-modify-write (rmw). The rmw relation could be defined in cat 

language as: 

let rmw = lxsx | amo 

Failed atomic operations contained in the (rmw) relations happens if there is write event from another 

thread between the atomic read-write pair. For that, the atomicity constraint could be verified by 

checking if there is an external write event which is coherence-after the read of the atomic operation 

and coherence-before the write of the same atomic operation. By using the cat syntax, it could be 
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checked by checking if the intersection between the (rmw) relation and both the fre and coe relations 

is empty. Defining this constraint in the cat language is as follows: 

(* Atomic: Basic LDXR/STXR constraint to forbid intervening writes. *) 

empty rmw & (fre; coe) as atomic 

 
Figure 5: Failed (STXR) instruction according to the atomicity constraint in the ARM model. 

c. External visibility: which filters candidate executions in a way that excludes undesirable 

executions that their synchronization of events in a thread eventually gives forbidden results and affects 

other threads. In this constraint, ARM model contains two building blocks: locally-ordered-before 

(lob) relation and observed-by (ob) relation. Following are the details of each relation: 

1. lob relation: it is a recursive relation that contains all possible ways to synchronize two events 

within one thread. In cat language it could be generated as follows: 

(* Locally-ordered-before *) 

let rec lob = lws | dob | aob | bob | lob; lob 

As explained previously, lob relation should be derived from the union of other relations, these 

relations will be described in the following: 

− Dependency order before (dob) relation which gathers all possible chains of dependencies 

provided by the ARM architecture. It could be generated in cat language as follows: 

let dob = addr | data | ctrl; [W] | (ctrl | (addr; po)); [ISB]; po; [R] | addr; po; [W] | (addr | data); lrs 

− Atomic order before (aob) relation which states how to make use of exclusive pairs 

(LDXR/STXR) and atomic operations to provide order. Following is the syntax of aob relation in cat 

language: 

let aob = Rmw | [W & range(rmw)]; lrs; [A | Q] 

− Barrier order before (bob) relation which gathers all possible ways to use fences to provide 

order. In cat language it could be derived as following: 

let bob = po; [dmb.full]; po | po; ([A];amo;[L]); po | [L]; po; [A] | [R]; po; [dmb.ld]; po | [A | Q]; 

po | [W]; po; [dmb.st]; po; [W] | po; [L] 

2. ob relation: is an irreflexive relation that contains all ways of the interaction between two 

threads. It could be defined in cat language by the following: 

(* Ordered-before *) 

let rec ob = obs | lob | ob; ob 

following snippet of code is to check the external visibility, it is obvious, the ob relation should be 

irreflexive. 

(* External visibility requirement *) 

irreflexive ob as external 
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Finally, each candidate execution that passes the three constraints will be considered as allowed 

execution whereas failing in one of the previous criterion will be considered as forbidden execution 

[27]. 

4. Comparison between the SC, TSO, and ARM Memory Models 

In this section, we will compare the (SC, TSO, and ARM) memory models by distinguishing the 

behaviors obtained from executing the previously mentioned litmus tests and discussing why we can 

get such behaviors while it is impossible to obtain other behaviors. A note should be made that the 

experiments presented in this section were conducted using the Herd Tools 7 tool. The following 

paragraphs are the explanation of the experiments conducted in the three architectures described 

previously: 

4.1 MP litmus test:  

Returning to the MP litmus test depicted in the Figure 1, the result column of the Table 3 shows all 

potential values of r1 and r2 arising from the overlapping execution of the events. The permissible 

behaviors when running this litmus test under the SC or TSO architecture are a, b, and c, whereas the 

outcome d is prohibited. While doing this litmus test with the ARM architecture, all results can be 

obtained. As was already explained, this litmus test determines whether or not the register r1 contains 

the value 1 while the value 0 may be retrieved to register r2. When examining the cause of not getting 

the result d in the SC architecture and making reference to the SC axiomatic model, we will notice that 

getting such behavior as shown in the Figure 6a leads to a forbidden cycle which is depicted in Figure 

6b. This goes against the SC’s semantics that there be no cycle in the union of relations po | (fr | rf | 

co). As for the talk about not accepting the result d in the TSO architecture, the reason is due to the 

presence of a cycle in the relation ghb, shown in Figure 7b which denies accepting such behavior 

according to the TSO axiomatic model. The flow semantics of this litmus test running under the TSO 

architecture is shown in Figure 7a. However, since all the requirements for permissible behavior in the 

ARM axiomatic model are met, behavior d is acceptable in the ARM architecture. 

Table 3: MP behaviors in SC, TSO, and ARM architectures. 

Behavior Result SC TSO ARM 

a r1=0,r2=0 Allowed Allowed Allowed 

b r1=0,r2=1 Allowed Allowed Allowed 

c r1=1,r2=1 Allowed Allowed Allowed 

d r1=1,r2=0 Disallowed Disallowed Allowed 

 

 

(a) MP flow semantics in SC. 

 

(b) MP forbidden cycle in SC. 

Figure 6: MP litmus test under SC. 
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(a) MP flow semantics in TSO. 

 

(b) MP forbidden cycle in TSO. 

Figure 7: MP litmus test under TSO. 

4.2 S litmus test:  

Table 4 displays the results of running the S litmus test under the SC, TSO, and ARM architectures. It 

should be observed that the result d indicates that the first event of T0 is committed after all other events 

of both T0 and T1. Both the SC and TSO designs restrict this sort of behavior. According to the 

axiomatic models of both SC and TSO, the absence of this behavior in the two architectures indicated 

is caused by the occurrence of forbidden cycles. Figure 8 depicts the forbidden cycle found in behavior 

d in the SC, while Figure 9 depicts the forbidden cycle found in the TSO. In contrast, all behaviors are 

permitted by the ARM architecture since all flow semantics for all behaviors do not go against the 

axiomatic model of ARM’s behavior acceptance requirements. 

Table 4: S behaviors in SC, TSO, and ARM architectures. 

Behavior Result SC TSO ARM 

a x=1,r1=0 Allowed Allowed Allowed 

b x=2,r1=0 Allowed Allowed Allowed 

c x=1,r1=1 Allowed Allowed Allowed 

d x=2,r1=1 Disallowed Disallowed Allowed 

 

 

(a) S flow semantics in SC. 

 

(b) S forbidden cycle in SC. 

Figure 8: S litmus test under SC. 

 

 

(a) S flow semantics in TSO. 

 

(b) S forbidden cycle in TSO. 

Figure 9: S litmus test under TSO. 
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4.3 SB litmus test:  

Going back to the SB litmus test, it aims to determine whether it is possible to read each of T0 and T1 

of the shared variables x and y from initial values through events e2 and e4 while ignoring writing 

operations on the variables x and y that occur before the reading process through events e1 and e3. The 

outcomes that can be attained by running this litmus test on SC architecture are represented in Table 5 

as a, b, and c. While both TSO and ARM architectures can be used to achieve all results. Due to the 

existence of a banned loop, as indicated in Figure 10b, the behavior of result d is prohibited in the SC 

design. The absence of a forbidden loop in the semantic flow for each of the TSO and ARM 

architectures from the perspective of the axiomatic model is a justification for accepting the outcome 

d. When this test is run, the semantic flow of the TSO architecture is depicted in Figure 11. It is obvious 

that there is no forbidden cycle in the ghb relation. 

Table 5: SB behaviors in SC, TSO, and ARM architectures. 

Behavior Result SC TSO ARM 

a a=0,b=1 Allowed Allowed Allowed 

b a=1,b=0 Allowed Allowed Allowed 

c a=1,b=1 Allowed Allowed Allowed 

d a=0,b=0 Disallowed Allowed Allowed 

 

 

(a) SB flow semantics in SC. 

 

(b) SB forbidden cycle in SC. 

Figure 10: SB litmus test under SC. 

 

Figure 11: SB flow semantics in TSO. 

4.4 LB litmus test:  

The outcomes of conducting the LB litmus test in the SC architecture are identical to those achieved 

when running it in the TSO architecture. Due to the existence of a prohibited cycles in the flow 

semantics, which are depicted in Figure 12 and 13 for both SC and TSO structures, respectively. Both 

architectures disallow result d, while behaviors a, b, and c which are shown in Table 6 are allowed in 

the both SC and TSO models. The ARM architecture, on the other hand, may implement this litmus 

test and receive all results since the flow semantics does not contain any violations of the requirements 

for acceptable behaviors in the ARM architecture. 

Table 6: LB behaviors in SC, TSO, and ARM architectures. 

Behavior Result SC TSO ARM 
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a 0:r1=0,1:r1=0 Allowed Allowed Allowed 

b 0:r1=0,1:r1=1 Allowed Allowed Allowed 

c 0:r1=1,1:r1=0 Allowed Allowed Allowed 

d 0:r1=1,1:r1=1 Disallowed Disallowed Allowed 

 

 

(a) LB flow semantics in SC. 

 

(b) LB forbidden cycle in SC. 

Figure 12: LB litmus test under SC. 

 

(a) LB flow semantics in TSO. 

 

(b) LB forbidden cycle in TSO. 

Figure 13: LB litmus test under TSO. 

4.5 2+2W litmus test:  

While this litmus test seeks to check whether the order of writing events execution in the threads is 

maintained or not, we observe that the results that can be obtained from running it in both SC and TSO 

architectures are the same results, which are results a, b, and c which are shown in the Table 7, while 

result d is not allowed. The requirement of accepting the behavior of both structures is not met in either 

of the two designs given. When this test is applied to the SC design, Figure 14 depicts a violation of 

the acceptance requirement. However, the prohibited cycle depicted in Figure 14b violates the SC 

model’s behavior acceptance requirement. On the other hand, Figure 15 depicts a behavior that is 

prohibited by the TSO architecture because of the cycle that is depicted in Figure 15b. Regarding the 

ARM architecture, all outcomes are possible and acceptable. 

Table 7: 2+2W behaviors in SC, TSO, and ARM architectures. 

Behavior Result SC TSO ARM 

a x=1,y=1 Allowed Allowed Allowed 

b x=1,y=2 Allowed Allowed Allowed 

c x=2,y=1 Allowed Allowed Allowed 

d x=2,y=2 Disallowed Disallowed Allowed 
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(a) 2+2W flow semantics in SC. 

 

(b) 2+2W forbidden cycle in SC. 

Figure 14: 2+2W litmus test under SC. 

 

(a) 2+2W flow semantics in TSO. 

 

(b) 2+2W forbidden cycle in TSO. 

Figure 15: 2+2W litmus test under TSO. 

4.6 CO litmus test:  

All comparable MCMs in this litmus test ensured data consistency by forbidding the production of any 

result that would violate data consistency. Table 8 demonstrates that in the aforementioned designs, it 

is not possible to obtain different readings. The SC model’s flow semantics for this litmus test is shown 

in Figure 16a, while Figure 16b explains why the SC model would reject such behavior because it 

contains a banned cycle. Figure 17 demonstrates that the TSO design makes it impossible to achieve 

this result. According to the axiomatic model of the ARM architecture the second and third conditions 

are acceptable when verifying this litmus test. Acceptance of such behavior is hampered by the first 

condition where the relation po-loc | ca | rf which is denoted as IV in Figure 18 contains a forbidden 

cycle. Figure 18a illustrates the flow semantics of this litmus test when run on the ARM architecture, 

whereas Figure 18b illustrates the banned cycle on the same architecture. 

Table 8: CO behaviors in SC, TSO, and ARM architectures. 

Behavior Result SC TSO ARM 

a 2:r1=1,2:r2=2,3:r1=2,3:r2 =1 Disallowed Disallowed Disallowed 

 

 

(a) CO flow semantics in SC. 
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(b) CO forbidden cycle in SC. 

Figure 16: CO litmus test under SC. 

 

(a) CO flow semantics in TSO. 

 

(b) CO forbidden cycle in TSO. 

Figure 17: CO litmus test under TSO. 

 

 

(a) CO flow semantics in ARM. 

 

(b) CO forbidden cycle in ARM. 

Figure 18: CO litmus test under ARM. 
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5. Conclusion 

The comparative analysis conducted in this study revealed significant disparities among the SC, TSO, 

and ARM memory models regarding their acceptance of program behaviors. It was determined that 

SC, as the strongest model, imposes the most stringent constraints on program execution, accepting 

only a limited set of behaviors. TSO, while less restrictive than SC, was found to maintain a degree of 

order, particularly with respect to data consistency. ARM, the weakest model, was observed to offer 

the greatest flexibility, allowing for a wider range of program behaviors. Despite these variations, data 

consistency was ensured by all three models, a fundamental requirement for concurrent programming. 

However, their adherence to program order was found to vary significantly. SC was observed to strictly 

preserve program order, while TSO was noted to relax this requirement to some extent. ARM, on the 

other hand, was determined to deviate the most from program order, potentially leading to unexpected 

behaviors if not carefully managed. The results of these experiments underscore the importance of 

understanding memory model nuances when designing and implementing concurrent programs. By 

carefully selecting the appropriate memory model and considering its implications, developers can 

mitigate the risks associated with non-deterministic behavior and ensure the correctness and reliability 

of their applications. Furthermore, the herd tools were found to be a valuable asset in this research. 

Their flexibility and ease of use make them an ideal choice for modeling and analyzing memory 

models, facilitating a deeper understanding of their characteristics and limitations. As the field of 

concurrent programming continues to evolve, tools like herd will likely play a crucial role in supporting 

the development of more efficient and reliable concurrent applications. 
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