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) are explored in this field. These techniques require improvements to deal with patient-to-patient

variability in organ size, location, and shape. Despite the transformative potential of deep
learning techniques, research studies often inadequately address low contrast and overlapping
structures within CT scans. This paper proposes a novel two phase methodology to integrate
deep learning models and image enhancement strategies.

Methods: Our framework contributes in two stages named (a) Optimized Contrast Limited
Adaptive Histogram Equalization-Weighted Grey Wolf Optimization (optiCLAHE-Weighted
GWO), where the organs contrast is enhanced by employing weighted GWO for CLAHE clip
limit selection (b) X-DenseNet architecture, where segmented regions of interest are produced
with X-DenseNet model from the enhanced CT.

Results: For validation of proposed multi organ segmentation (PMOS) technique,
experimentation and comparative analysis with existing models has been conducted on FLARE
22 challenge dataset. The Dice Score (DSC) of liver, aorta and spleen for proposed Multi organ
segmentation (PMOS) approach is 90.4%, 99.38% and 98.33% respectively. The mean of
Precision (Pre), Accuracy (Acc), F-score and DSC of the proposed approach are 95.05%,
95.55%, 95.29% and 96.06% respectively.

Keywords: Multiorgan Segmentation (MOS), Optimized Contrast Limited Adaptive Histogram
Equalization (optiCLAHE), Grey Wolf Optimization (GWQ), X-DenseNet

1. Introduction

Accurate organ segmentation in medical imaging plays a pivotal role in computer aided diagnostic
(CAD) systems, clinical practices and treatment planning [1]. This enables radiologists to extract
information such as area, size, shape, location and spatial relationships of organs. The detailed
anatomical structure data produced from segmented images facilitates personalized treatments based
on patient's anatomy. However, the labor-intensive and impractical manual segmentation necessitates
the exploration of automated techniques. This not only significantly increases efficiency but also
minimizes the susceptibility to errors, paving the way for more accurate and reliable organ
segmentation.

The automated methods in this field has witnessed significant evolution, transitioning from
traditional techniques like atlas-based methods, statistical shape models, and graph cut [2] to the
dominance of deep learning models. Fully convolutional neural networks (FCNNSs) like U-Net and
V-Net have played a crucial role, with their encoder-decoder architecture effectively capturing global
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context and high-level features [3], [4]. Furthermore, transformer architectures highlight the ongoing
efforts to enhance model generalization and context understanding. Despite significant advancement
in deep learning models, it has been analyzed that two major challenges persists in this field. Firstly,
low contrast, poor image quality, overlapping objects of CT scans makes it problematic to segment
organs and surrounding tissues, impacting their ability to capture intricate details. Secondly, it is
difficult to detect small organs which lead to degradation in accuracy of deep learning models.

This study addresses these limitations by proposing a novel two-phased methodology. Each phase
tackles a distinct aspect of the problem statement. The first phase is inspired from the review study
[5], where a variation of CLAHE [6] gave optimum results. This stage incorporates an optimized
Contrast Limited Adaptive Histogram Equalization (optiCLAHE) technique implemented with a
novel weighted Grey Wolf Optimization (GWO) algorithm, collectively referred to as optiCLAHE-
weighted GWO [7]. The proposed optiCLAHE-weighted GWO algorithm dynamically selects an
optimal clip limit for CLAHE by utilizing weighted GWO, with the objective of maximizing entropy
and enhancing CT scans. The second phase utilized dense blocks in X-net architecture hence, named
X-DenseNet to segment liver, aorta and spleen from abdomen CT scan. By focusing on efficient
feature extraction, feature reuse, facilitated information propagation and mitigating training
challenges, dense blocks enhance the overall capability of the architecture to accurately segment
organs. The distinctive structure of dense blocks improves segmentation performance not only for
large organs like liver and spleen but also for smaller one e.g. aorta in this study.

The major objective of our research is to design an approach based on encoder-decoder architecture
for better dice score and automatic segmentation of multiple organs. The contributions of the study
are as given below:

i. A novel approach to optimize and automate the clip selection limit of CLAHE algorithm by
utilizing proposed weighted GWO algorithm. This will enhance the contrast by preserving
organ shape and boundaries.

ii. A dynamic weighting factors module is added to GWO in order to balance the dominant
behavior of alpha, beta and delta wolves on other search agents. This will help the search
agents to explore the more diverse search space.

iii. The second phase of the proposed approach will incorporate three layer dense blocks to
capture the more intrinsic features of the organs in order to improve the dice score. The
optiCLAHE-weighted GWO is integrated with X-DenseNet architecture.

iv. Our proposed approach shows superior performance for spleen and aorta when compared to
the existing state-of-the-art methods. The mean dice score achieved for liver, aorta and spleen
with the proposed approach is approx. 96%.

v. This study also sheds light on limitation of trained model along with future directions in this
field.

The remainder of the study is organized as follows: Section 2 provides the related work in the paper.
Section 3 introduces the proposed methodology where in Section 3.1 details the first phase named
optiCLAHE — Weighted GWO, Section 3.2 introduces the X-DenseNet architecture. Section 4
presents dataset, experimental setup, implementation details and comparison with state-of- the-art
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methods. Section 5 demonstrated the ablation studies. Our study ends with detailed discussion along
with findings, limitations and future directions in Section 6.

2. Related Work

The recent advancements in deep learning methods have overshadowed traditional medical image
segmentation techniques such as atlas based methods [8], [9], [10], statistical shape models [11],
[12], [13], [14], [15], [16], [17], graph cut [2], CRFs [18] etc. This shift shows the effectiveness and
adaptability of deep learning methods in this field. While conventional techniques directly segment
CT images with hand crafted features, whereas end-to-end data-driven learning models prove more
suitable by facilitating automatic feature extraction for segmentation. Deep learning models such as
CNNs, FCNs [19] excel in capturing detailed spatial features with their prior knowledge, crucial for
delineating complex organs. However, the considerable diversity in anatomical structures across
different patients and low intensity contrast of CT scans, poses a significant challenge in multi-organ
segmentation [20].

FCNNSs, including U-Net [21] and V-Net [22], have dominated medical segmentation, with encoders
capturing global context through downsampling, and decoders upscaling for precise predictions via
skip connections. The FCN majority voting method [23], a variant of FCN, leverages redundant
segmentations to glean both high and low-level features like shape, size, and contour of organs. But
the redundant segmentation require significant computational resources lead to new technique based
on time implicit levels [24]. Another variation, FCN-DecNet [23] integrates FCN with multi scale
weighted Probabilistic atlas (PA) and utilized convolution and deconvolution layer to achieve
optimized results. But this study is semi-automated. A fully automated approach is developed [25]
utilizing multi-atlas techniques for organ localization and employing a two-stage CNN for
segmentation. There are other 3D variations such as 3D FCN [26], cascaded 3D FCN [27], 3D- U-
JAPA-net [28] and Federated 3D [29] showcasing the versatility in this domain.

Dense V Net [13] performed extremely well on both small and large abdomen organs particularly
emphasizing organs linked to the gastrointestinal tract, a critical aspect for navigation during
endoscopic procedures. The contribution involved upsampling and downsampling with skip
connections and batch wise spatial drop out. In a related study, deep multi-planar co-training stands
out as it harnesses the full potential of unlabeled data to segment overlapped organs and delineate
boundaries of organs [30].Shape-Guided Ultralight Network (SGU-Net), a novel approach designed
for extremely efficient computational performance. SGU-Net is an ultra light convolution method
that aims to strike a balance between computational efficiency and segmentation accuracy, making it
particularly well-suited for deployment in resource-constrained hardware environments [31]. Self-
supervised learning, eliminating manual annotations, led to the self-supervised attention UNet for
OAR segmentation [32], [33]. There are another U-Net based networks proposed named Residual U-
net[34], nnUnet[35] etc. Further, deep learning based region growing technique is presented by [36].

FCNNs excel in medical image segmentation but struggle with long-range spatial context. Inspired
by transformer success in NLP, numerous studies has been conducted in research such as Axial
Fusion Transformer UNet [37], UNet TRansformers (UNETR), retaining the "U-shaped" architecture
[38]. A study proposed the Cross-Convolutional Transformer Network (C2Former) as a solution for
image segmentation challenges. A central innovation is the redesign of a cross-convolutional self-
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attention mechanism that effectively integrates both local and global context information while
modeling dependencies, thus enhancing the model's ability to understand the semantic features
within images [39].

Inspired from the success of the U-Net encoder-decoder architecture, X-Net is utilized as baseline in
the proposed work. X-net was never explored for this task and this study is the first to apply X-Net to
abdominal organ segmentation. The accurate segmentation of small organs remains a significant
challenge, which leads to performance degradation of the model. In PMOS model, additional feature
extraction stage is provided and it avoids over fitting using L2 regularization. X-net excels in
capturing spatial relationships within images, which is of paramount importance in multi-organ
segmentation for accurately outlining organ boundaries. Secondly, its deep architecture enables the
learning of hierarchical features from medical images [40]. Our study has incorporated three layer
dense blocks to the X-Net hence named as X-DenseNet. The more detailed architecture is discussed
in section 3.2. The comparison of different network variants of the proposed study is presented in
ablation study section 5 where in dense blocks came out as critical part of the architecture.

3. Methods

This section proposes a two phased approach for multiorgan segmentation for abdomen CT images.
Fig 1 shows the schematic diagram of the two phases of the proposed methodology. The two phases
are (a) optiCLAHE — Weighted GWO (b) X-DenseNet. The more detailed methodology of two
phases is explained in section 3.1 and section 3.2.

3.1 Optimized Contrast Limited Adaptive Histogram Equalization-Weighted Grey Wolf

Optimization (optiCLAHE-Weighted GWO)

The low contrast in medical images poses a challenge for accurate multi-organ segmentation [4].
While various methods exist to address this issue, histogram-based techniques, particularly Contrast
Limited Adaptive Histogram Equalization (CLAHE), have proven to be notably effective in
enhancing contrast across diverse medical image anatomies [41]. CLAHE distinguishes itself from
its predecessor, Adaptive Histogram Equalization (AHE), by thwarting excessive contrast
amplification and noise in the image. This is accomplished by locally partitioning the image into tiles
or sections (tn) and imposing a clip limit (CL) on each of them. The efficacy of CLAHE is
influenced by several parameters, including the number of tiles, clip limit, and the redistribution of
intensity range. A low clip value results in gradual slope of the equalized histogram, resulting in a
modest enhancement of contrast. Conversely, a high clip limit sidesteps the redistribution of
histogram bins but becomes more prone to noise [6]. Thus, it is crucial to make a careful selection of
the clip limit.

This study focuses on automatic selection of the optimized clip limit. The search space, which
refers to the range of possible solutions for clip limit, is vast and intricate, with numerous potential
optimal points. This is where meta-heuristics, versatile problem-solving strategies, come into play.
These methods begin with a diverse initial set of potential solutions. As the process unfolds through
iterations, these solutions are refined and improved. Population-based algorithms, such as Swarm
Intelligence (SI) algorithms, are particularly adept at this. They retain and utilize crucial information
about the search space throughout the iterative process [7]. In this research study, Sl algorithm
named Grey Wolf is improved by focusing more on better search space, information preservation
and convergence speed. Fig 2g 2 depicts the schematic diagram of first phase of the methodology.
The steps in the optiCLAHE-Weighted GWO algorithm are given below:
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Step 1-Initialization. The fundamental parameter configurations in this experiment for weighted-
GWO are as given below: Maximum number of iterations (T,,,,) IS set to 100, No of wolves or
search agent is designated as 50 and the dimensionality is established as 1. The lower bound (Ib) is
defined as 0; while the upper bound (ub) is stipulated as 100. In each dimension, stochastic values
within the range of 0 to 1 are generated for all search agents. This yields search agents with random
initial positions situated within the specified bounds, thereby setting the stage for the optimization

process. Hence initialize the search agents or grey wolfs say X; =1 ...... n and coefficients a, A and
C.

PHASE 1: optiCLAHE - Weighted GWO

optiCLAHE-Welghted GWO

512X 512XN

64 X64 X3 l

Training of
X-Dense Net

I X-DQHSONQT Model I N Lver [ Aorta W Spleen

PHASE 2: Organ Segmentation with X-Dense Net Model

Fig. 1 Schematic diagram of proposed approach for multiorgan segmentation of Liver, Aorta and Spleen

Step 2- Objective Function. The objective function of this experiment is to maximize the fitness
value, aiming to identify a set of parameters that yield the highest amalgamation of contrast and
information content (entropy) in the equalized image. In essence, it seeks to achieve equilibrium
between contrast enhancement and information preservation, as quantified by entropy. This
algorithm leads to the maximization of contrast improvement, all while mitigating the potential
hazard of excessive amplification of noise in the equalized image.

= 1
L P e— @)
(contrast+entropy)

For each wolf or search agent, the fitness of the current position is evaluated using the objective
function. Subsequently, the position of alpha (Xj), beta (XT;) and delta wolf )Tg, is decided based on
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the calculated fitness among all the wolfs. Fa) fg F(; will store the fitness values of alpha, beta and
delta wolves.

Step 3- Update Positions. The positions 7(_1) 5(;7(; are calculated based on the coefficients and
positions of the alpha, beta, and delta wolves which are the leaders in the wolf pack hierarchy
according to their fitness values.

X=X A0 @
X3 = X5 —A5.(Ds) 4)

Where X,,, Xz, X5 variables will hold the positions of the alpha, beta, and delta wolves, respectively.

D_a’, D_B’D_({ are the vectors representing the absolute differences between the current position
(parameter set) and the positions of the alpha, beta, and delta wolves respectively. These vectors
indicate the direction and magnitude of the update and calculated as follows:

b G- ©
D, =16 %, X ©
26=|CS-X6_X| (7)
C=27; (®)

where C,, C, and C; are coefficients calculated based on random variable 7.

Proposed modified equations to update wolf position: The coefficient ‘A’ influences the hunting
behavior of the pack. The wolf positions X_{ Xj and X_3’ are computed based on A_OZ A_B) AT; instead of
only A unlike GWO. The coefficient A will be calculated as follows:

A, =2a,7-a, 9)
Ap = 2a;.7 —ag (10)
4, =2a,. 7 -a, (11)

The coefficients a,, ag, and as control the rate at which the alpha, beta, and delta wolves
respectively influence the search agents. By modifying these parameters based on the current
iteration T and the maximum number of iterations T,,,,, the algorithm dynamically adjusts the
exploration and exploitation phases. This helps in achieving a better balance between exploration
(utilizing information from other wolves) and exploitation (utilizing information from the best
wolves) of the search space. Early in the optimization process, there is more emphasis on
exploration, while in later stages; there is more focus on exploitation. This adaptability can lead to
faster convergence towards an optimal solution. Also, exponential region (maximum curvature) is
the potential candidate for clip limit value [39]. The sinusoidal function “sin(1/T_max)" in the
equation for ag introduces a non-linear component that can enhance the robustness of the algorithm.

a,=2 (1 - Tr:ax) (12)
ag=2(1- ﬁ) (13)
as =2 (1 — sin (ﬁ)) (14)

Dynamic weights are calculated based on fitness value. Each calculated position is then combined

with weights Wl Wz W3 and the positions. The current position of the search agent is updated using
the weighted combination. The equations calculate weighting factors based on the fitness values of
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the alpha, beta, and delta wolves relative to the best fitness value in the population. This allows the
algorithm to favor the positions of wolves that have performed well, potentially guiding the search

towards promising areas of the solution space. The weights W{ T/I7£ T/I7§ ensure that the influence of
the alpha, beta, and delta wolves is balanced. This helps to avoid situations where one wolf
dominates the influence on the search agents, promoting a more diverse exploration of the solution
space. The utilization of dynamic weighting factors reduces the sensitivity of the algorithm to hyper-
parameter tuning.

W, = (15)
FBEt
W, = =L (16)
Fpest
W= (17)
_ Fpest
X(t+1) = X1W1+X2W2 +X3W3 (18)

Step 4 — Repeat: The algorithm rigorously assesses whether the current search agent surpasses the
fitness levels of the alpha, beta, and delta wolves. In the event of superiority, the respective wolf's
position and fitness records are updated. This iterative loop persists for the designated number of
iterations, during which it systematically refines the positions of the search agents predicated on their
individual fitness values and the coordinates of the alpha, beta, and delta wolves. The fitness metric

of the alpha wolf (F?) at the present iteration is meticulously logged in the Convergence Curve.
Ultimately, the conclusive alpha position ()TO;), its corresponding fitness reading (F;), and the
progression pathway (*Convergence_curve’) collectively constitute the algorithm's output. As a
result, the derived ()70;) value stands poised to serve as the optimal clip limit for the subsequent
image enhancement phase.

Input Image

T

Initialiaze GWO
parameters and

a,AandC
Decide Xa,XB, X3 Update Position X(t+1
Com g
basggt:nﬂ:nes(sl Y Fa,FB,F8 |- based on weighted Update a, A and C
q. based on fitness sum in eq. (18)
Update Fa, FB , F3 Compare New Calculate New
and Xa,XB, X3 based—| Fitness F with }— fitness value F
on comparison Fa, FB, F§ for new position
Returned Xa will
be used as
Clip Limit
optiCLAHE Enhanced Image

Fig. 2 Flow Diagram of first phase of i.e. optiCLAHE - Weighted GWO
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3.2 X-Dense Net Architecture

This phase aims to segment multiple organs from abdomen CT scans. In this phase, the 2D CT
enhanced axial slices generated in the previous phase are taken as input and 2D segmented axial
slices are produced as outputs. This includes two steps: (i) Encoder Stage (ii) Decoder Stage.
Initially, CT slices are enhanced with optiCLAHE - weighted GWO and the generated input is
passed to the X-DenseNet architecture. The enhanced images have better entropy information. The
detailed encoder and decoder stage of the model is given below:

Q) Encoder Stage

The primary goal of encoder stage is to extract fundamental features such as edges and gradients. It
takes input images with dimensions of 64x64x3 and processes them via a series of convolutional
layer. There are 15 convolutional layer in both encoder and decoder network with kernel size of 3 x
3. We have designated the combination of downsampling layers as block D, where Batch
Normalization is employed after each convolutional operation to stabilize and accelerate the training
process. This ensures that the model's parameters remain well-conditioned throughout training. Then,
activation function, specifically ReLU (Rectified Linear Unit), is utilized to introduce non-linearity,
aiding the model in learning complex relationships within the data. Following, Max Pooling layer
with pool size of 2 x 2 is strategically placed to down-sample the feature maps, reducing spatial
dimensions while retaining essential information. This allows the model to capture higher-level
features in subsequent layers efficiently [42].

Inspired from [13] and [43], Dense Convolutional Network, or DenseNet layer is added to the
architecture after max-pool layer. In dense block structure, one convolution layer is intricately
connected to every subsequent convolution layer passing feature maps in a feed-forward manner,
creating a highly interlinked network structure in dense block. The three-layer dense block is utilized
and the schematic diagram for the same is shown in Fig 4. They effectively address the vanishing-
gradient problem that has plagued deep neural networks, facilitating the unhindered flow of gradients
during training. Additionally, they promote robust feature propagation, encouraging the seamless
transfer of information across layers. This design also fosters the efficient reuse of features, thereby
reducing redundancy and substantially curtailing the total number of model parameters. The filter
depth for convolutions layers and dense block is (64,128,256,512). Subsequently, the model employs
multi-resolution dense blocks, which are crucial in capturing features at different scales and able to
capture the complex relationship and features of the organs. These blocks consist of densely
connected convolutional layers, promoting effective feature reuse and propagation. It is designed to
optimize the concatenation of features, ensuring that multiple copies of feature maps are not
needlessly stored, ultimately achieving memory efficiency. In scenarios where memory constraints
become a factor and retention of limited activation maps in memory, earlier layer information is
stored only once but remains accessible for subsequent layers. These dense blocks help to mitigate
memory overhead.Down-sampling is achieved through max-pooling layers after each dense block,
allowing the model to focus on higher-level features. The n down-sampling blocks i.e. D blocks with
feature map height h and width w can be denoted as follows:

Dy, ={D},. D}, ....c.....D} ,} (19)

where height and width of feature map is dependent on input feature map to the block (hipnpye,
Winpue) defined as given below:
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h _ hinput w

2

_ Winput

2

’

(20)

It can be seen in architecture proposed in Fig 3 that down-sampling can be achieved through {D-
dense blocks} which uses same equation to calculate the feature map size.
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Fig. 3 Network Architecture of Proposed X-DenseNet Model
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(i) Decoder Stage

In the decoder stage, the model reconstructs the segmented regions based on the features
extracted by the encoder. The N blocks dedicated for upsampling are Uyy =
(UL, URw Uy e UNw}. It starts with up-sampling layers to restore spatial information lost
during the downsampling in the encoder. The concatenation of features from different resolutions is
employed to preserve fine-grained details. This block comprises upsampling layer, then
convolutional layer with same filter and kernel size as in encoder stage. These layers are followed by
batch normalization and relu activation.
Then skip connections provides the feature concatenation and fine graded details. The decoder
concludes with a 1x1 convolutional layer followed by a softmax activation, generating the final
segmentation mask. The detailed training hyper-parameters are presented in Table 1. The provided
skip connections will allow the low level features maps generated in encoder stage to flow through
the network in later stages. The detailed features maps size and skip connections are presented in Fig
3. The height and width of feature maps of U blocks can be calculated as follows:

H= hinput *2, W= Winput * 2 (21)

Fig. 4 Schematic Representation of three layer dense block

It is worth noting here that, X-DenseNet exhibits similar structural framework to Xnet [36], albeit
with notable distinctions. Firstly, the dense blocks are the introduction in our proposed architecture
unlike X-net model. Further feature map calculation is as given in encoder and decoder stage.
Further, while the X-net model has demonstrated effectiveness when applied to X-ray images, we
have adapted and modified the model for application on abdominal CT scans.

4. Experiments and Results

4.1 Dataset

Flare 22 dataset is the challenge dataset which is available in public domain. It consists of 50
abdomen CT scans [44], [45]. This dataset encompasses 13 distinct organs, namely: liver, spleen,
pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right
adrenal gland, left adrenal gland, and duodenum. Data augmentation is employed in order to extend
the dataset. The Image Data Generator function from Keras facilitated rotations within a range of 10
degrees, as well as width and height shifts within a range of 0.1, along with zooming within a range
of 0.2, and random horizontal and vertical flips. This augmented dataset is expanded with 500
images, subsequently partitioned into training and testing sets using a 7:3 ratio through a randomized
split implemented with the ‘train_test_split' function. For the purpose of this research, experiments
were conducted specifically focusing on the liver, aorta, and spleen.
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4.2 Experimental Setup and Model Training
Our PMOS technique is implemented with 11" Gen Intel core i5-1135G7, 8GB RAM, python 3.6
and training is implemented with T4 GPU with 16 GB RAM. During the training phase, categorical
cross-entropy is employed as the loss function, suitable for multi-class segmentation tasks. The
Adam optimizer, combined with a dynamic learning rate schedule, ensures efficient convergence
during the training process. Training loss and accuracy per epoch is as shown in Fig 5.

Data Augmentation Methods Rotation, width shift, height shift, zoom,
horizontal flip and vertical flip
Initialization of the network Glorot Uniform Intializer [Xavier
Initialization
Batch size 16
Patch size 64 X 64 x 3
Total epochs 200
Kernel size 3x3
Optimizer Adam
Initial learning rate 0.001
Stopping criteria, and optimal model | When reached defined no of epochs (200)
selection criteria
Training loss categorical cross-entropy
Training time 1-2 min/epoch
Table 1 Training Protocols
0.8
0.6 1
- Accuracy
Loss
0.4
0.2

0 25 50 75 100 125 150 175 200
Epoch

Fig. 5 Model Training History representing change in accuracy and loss with respect to epochs
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4.3 Evaluation Metrics
In this research study, we have used various evaluation metrics named Dice Coefficient (DSC),
Accuracy (Acc), Precision (Pr), Recall (Rec) and F-Score (FS) in order to confirm the segmentation
results achieved by our proposed method. The equations of the aforementioned parameters are as
given below:

TP+TN

Acc = TPITNTFPIEN (22)
Pr = % Range: [0, 1] (23)
Rc = % Range: [0, 1] (24)
FS =2x % Range: [0, 1] (25)
DSC = —ZxIntersection  pange: [0, 1] (26)

Union+Intersection

4.4 Comparison with state-of-the-art methods

In the literature, a variation of nnUnet known as Residual U-net has exhibited superior performance
in literature. The incorporation of residual connections in nnUnet synergizes the architectural
strengths of nnU-Net, particularly its context-preserving skip connections, with the benefits of
residual connections, leading to enhanced accuracy and effectiveness in segmentation tasks [34]. A
study [46] is proposed to deal with unlabeled data and enhance the model's generalization
capabilities. The methodology involves generating pseudo labels through the utilization of the Swin
Transformer. Subsequently, these pseudo labels are amalgamated with labeled data and input into the
PHTrans framework for further processing. A study introduced a novel methodology termed 3D
Cross-Pseudo Supervision (3D-CPS), which constitutes a semi-supervised network built upon nnU-
Net, incorporating the Cross-Pseudo Supervision technique. Additionally, a dynamic adjustment of
semi-supervised loss weights throughout epochs, aiming to promote linearity expansion [47]. A
coarse-to-fine framework is employed to refine segmentation results in two sequential stages within
a variation of nnUnet and USE-Net, termed Residual-USE-Net [43]. This innovative approach
involves the integration of two teacher models and a student model to enhance the segmentation
process [48]. The residual squeeze-and-excitation (SE) blocks are integrated to enhance the overall
performance and efficiency of the architecture. All these studies have used FLARE 22 challenge
dataset.

Reference | Network Architecture Liver Aorta Spleen

[34] Residual U-Net 0.9753 0.9566 0.9701

[46] Self-Training and Hybrid | 0.9761 0.9863 0.9572
Architecture

[47] 3D-CPS 0.9733 0.9630 0.9202

[48] Cross Teaching Teachers | 0.9763+0.0154 | 0.9375+0.0469 | 0.9471+0.1386
Proposed Approach 0.904670 0.993811 0.983357

Table 2 Dice Score comparison of competing methods with our proposed approach. Dice score of spleen and aorta is higher for our approach

than competing methods.
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The aforementioned four studies reported in literature are compared with the proposed approach for
abdomen multi organ segmentation. The quantitative results of the proposed X-DenseNet
architecture with the competing methods are presented in

Table 2. The Dice Score of the proposed X-DenseNet for liver, aorta and spleen is 0.904, 0.9938, and
0.9833 respectively. The effectiveness of the proposed approach in segmenting the aorta and spleen
surpasses that of state-of-the-art studies. Notably, the Dice Similarity Coefficient (DSC) for the aorta
and spleen outperforms competing methods, although it is relatively lower for the liver. The
proposed approach yields mean values of Precision (Pre), Accuracy (Acc), F-Score, and DSC as
95.05%, 95.55%, 95.29%, and 96.06%, respectively, as presented in Table 3.

Proposed Approach | Liver Aorta Spleen Mean
Pr (%) 89.683130 98.769899 96.725836 95.059621
Acc (%) 88.944611 99.383046 98.349294 95.5589
F-Score (%) 89.280966 99.075524 97.530810 95.2957
DSC (%) 90.4670 99.3811 98.3357 96.06126

Table 3 Mean of evaluation metrics for liver, aorta and spleen for our proposed approach

0.98
0.96
0.94
0.92

0.9
0.88

0.86
Self-Training and...
Residual U-Net

Cross Teaching...

3D-CPS X-DenseNet

M Liver M Aorta [l Spleen

Fig. 6 Comparison of Dice Coefficient of different approaches with proposed X-DenseNet

5. Ablation Study

In our experiments, we have conducted ablation studies to assess the impact of various modules in
our technique. Table 5 presents the dice score results of the different organs. For the sake of
comparison, we adopted X-Net as our baseline, as we aimed to enhance its performance on our
specific dataset. Specifically, we implemented the existing X-Net architecture without optiCLAHE-
WeightedGWO on our dataset, resulting in dice scores of 0.2799, 0.97633, and 0.9759 for the liver,
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aorta, and spleen, respectively. This baseline performance serves as a reference point for evaluating
the enhancements we introduce in subsequent analyses.

Original Image Segmented Image

True Positive (TP) and False
Negative (FN)

False Positive (FP)

Table 4 Qualitative Results of Multiorgan Segmentation with Proposed Technique on 2D Axial Slices

Effect of optiCLAHE-WeightedGWO. The objective is to discern the impact of incorporating first
phase into the existing X-Net framework. The results presented in the Table 5 clearly demonstrate
that training the X-Net model on a dataset enhanced with optiCLAHE-Weighted GWO vyields
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superior performance compared to training the model without this enhancement algorithm.
Specifically, the dice scores for the liver, aorta, and spleen exhibit significant improvement, reaching
0.481719, 0.985, and 0.981, respectively. These findings underscore the essential nature of the initial
phase's inclusion in our methodology.

Experiments Liver Aorta Spleen
X-Net 0.279913 0.976334 0.975982
X-Net with optiClahe- Weighted GWO 0.481719 0.985 0.981
First Phase + X-Net + 3 Dense Block on 100 0.633846 0.991 0.982
iterations
PROPOSED: First Phase +X-Net+3 Dense Block 0.904670 0.993811 0.983357
on 200 iterations

Table 5 Quantitative Results of ablation study

Effect of Adding Dense Blocks. To gauge the significance of dense blocks in enhancing the X-Net
architecture on a preprocessed dataset with optiCLAHE-Weighted GWO, a systematic exploration
was conducted. Initially, one dense block was added incrementally until optimal results were
obtained. Strikingly, the most favorable outcomes were achieved with the inclusion of three dense
blocks. Beyond this point, the performance exhibited a noticeable decline upon introducing a fourth
dense block. Consequently, after a series of experiments, the proposed X-denseNet with three dense
blocks emerged as the architecture delivering superior results. This experimentation establishes the
indispensability of employing three dense blocks for X-Net on our dataset. Further, experiments are
performed with spatial dropouts to improve the complexity of architecture; however favorable
outcomes are not achieved.

Effect of number of iterations. The appropriate number of epochs for segmentation model training
depends on the dataset and model complexity, with a balance needed to avoid underfitting or
overfitting. Regular monitoring of validation metrics, such as the Dice Similarity Coefficient (DSC)
score, helps identify the optimal point for model convergence. We have performed experiments to
get the best suitable count of iterations for this architecture and environmental variables. It has been
observed that X-denseNet with 200 epochs yielded the most favorable results. While the number of
epochs between 100 and 200 had a relatively minimal impact on the performance of the model
concerning the aorta and spleen, a discernible effect was observed in the dice score for the liver. This
underscores the critical role of epoch count in achieving optimal performance, particularly with
respect to certain organs within our dataset.

6. Discussion

In this paper, a novel approach is proposed to accurately segment multiple organs from abdomen CT
images. The experiments are conducted to segment liver, aorta and spleen.

6.1 Findings
The proposed approach consists of two phases (a) optiCLAHE-Weighted GWO (b) X-DenseNet.
The proposed method, named optiCLAHE, employs a Swarm Intelligence (SI) algorithm called Grey
Wolf Optimization (GWO) to automatically select an optimized clip limit for Contrast Limited
Adaptive Histogram Equalization (CLAHE).
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Ablation Study Results

PROPOSED

Arst-
Phase+
X-Net + 3
Dense
Blocks +
100 epoch

First Phas
e+X-Net

X-Net

0.0 0.1 0.2 03 0.4 0.5 0.6
Relative Improvement over X-Net

Fig. 7 Effect of different phases on the baseline X-Net

The paper then introduces segmentation architecture, X-DenseNet, which integrates enhanced
images for multi-organ segmentation. We have utilized FLARE 22 Challenge dataset for training of
our model. Further, we have used Dice Score (DSC), Precision (Pr), Accuracy (Acc) and F-Score
(FS) to evaluate the proposed model. The DSC is used to perform the comparative study of existing
studies in literature. The key steps of the first phase include initialization, objective function
definition, updating positions based on the fitness values of alpha, beta, and delta wolves, and
dynamic adjustment of weights for the search agents. The algorithm aims to strike a balance between
exploration and exploitation in the search space, adapting its behavior based on the fitness values
encountered during optimization. The experimental findings on architecture reveal three featured
crucial modifications that significantly contribute to the improvement in Dice Score. Firstly, the
changes proposed in coefficients a,, ag, and as in first phase plays a pivotal role in achieving a
more balance between exploration and exploitation of the search space. This adaptability facilitates
to faster convergence towards an optimal solution. The sinusoidal function °‘sin(1/T max)’
introduces a non-linear component that can enhance the robustness of the algorithm. Secondly,

incorporation of dynamic weights w;, WZ’W; allows the algorithm to prioritize the positions of
wolves that have performed well, guiding the search towards promising areas of the solution space.

The weights W;, W,, W5 ensure a balanced influence of the alpha, beta, and delta wolves. In the
ablation study during the second phase, it becomes evident that there is room for improvement in the
existing X-Net architecture when applied to our dataset.

Inspired form DenseNet a thought of introducing third crucial change i.e. dense block to existing X-
Net, resulting in a notable improvement in the Dice Score. The model employs multi-resolution
dense blocks, which are instrumental in capturing features at different scales and able to capture the
complex relationship and features of the organs. This helps to detect small organs such as aorta in
our study. Down-sampling is achieved through max-pooling layers after each dense block, allowing
the model to focus on higher-level features. Combining the advancements from the first and second
phases, the proposed approach yields mean values of Precision, Accuracy, F-Score, and Dice
Similarity Coefficient (DSC) as 95.05%, 95.55%, 95.29%, and 96.06%, respectively, as presented in
the table.
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The relative improvement in dice score of liver, aorta and spleen with respect to the baseline X-Net
is shown in Fig 7. It can be observed from the Figure 7 and Table 5 that the inclusion of both the
phases impacts the DSC hence makes it mandatory for the required efficiency. The DSC score
achieved for liver, aorta and spleen with the proposed model is 0.904670, 0.993811, and 0.983357
respectively. The results show that there is huge improvement from the baseline X-Net in DSC of
liver however the percentage increase in performance for aorta and spleen is 1.79% and 0.76%
respectively. Further, when the results are compared with the competing methods in Table 4 and Fig
6, it is noteworthy that competing methods such as [34], [46], [47] and [48] exhibit a superior Dice
Similarity Coefficient (DSC) score for the liver compared to the proposed approach. However, the
DSC scores for the aorta and spleen are higher in our proposed model than in the competing
methods.

6.2 Limitations

The qualitative results of segmentation of liver, aorta and spleen are illustrated in Table 4. In Case 1
and 2, the True Positive (TP) and False Negative (FN) scenario is depicted, representing the best
results where all three organs are segmented accurately. However, it is crucial to note that the
proposed model, while promising, is not flawless. In Case 3 and 4, the False Positive (FP) situation is
presented, with red squares and outline highlighting the FP pixels in the image. This indicates
instances where the liver is not segmented accurately, and some pixels that should be negative are
erroneously classified as positive. Consequently, these FP cases for the liver contribute to
degradation in the mean dice of the proposed model. This observed limitation may arise from the
architecture’s inability to capture intricate features of the liver comprehensively. Considering a more
advanced architecture, such as U-Net++, 3D U-Net, or similar, could potentially lead to an
improvement in the Dice score by better capturing the detialed features of the liver. The experiments
are conducted focusing on abdomen CT scans and three specific organs. The generalizability of the
proposed approach to different datasets and organ systems needs to be explored. The experimental
setup, including the use of T4 GPU, may limit the accessibility of the proposed methodology to
researchers with less computational power.

6.3 Future directions

Firstly, our current study excludes pathological scans, such as those involving tumors or lesions.
Further, more small organs such as pancreas, duodenum and esophagus can be included in the future
researches because it is difficult to capture the complex shapes, structures and spatial relationships.
In future work, we are actively engaged in developing methodologies to address the segmentation of
these smaller organs. The existing literature highlights that techniques based on 2D models may face
limitations in capturing the full three-dimensional information present in CT scans. Therefore,
adopting more advanced models such as 3D UNet, Vision Transformer, ReXNet, among others, may
lead to improved Dice scores by better leveraging the three-dimensional context. Moreover,
exploring ensemble approaches involving different segmentation models or variations of the
proposed model could further enhance accuracy and robustness. Ensemble methods often leverage
the diversity of multiple models to achieve more reliable and generalized segmentation results.
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