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Abstract:  

Introduction: Multi organ segmentation (MOS) is crucial for various medical applications 

such as disease diagnosis, treatment planning, and surgery. Manual segmentation of CT organs 

is inefficient, laborious and time-consuming, necessitating the development of automated 

techniques. To address these challenges, automatic techniques based on deep learning models 

are explored in this field. These techniques require improvements to deal with patient-to-patient 

variability in organ size, location, and shape. Despite the transformative potential of deep 

learning techniques, research studies often inadequately address low contrast and overlapping 

structures within CT scans. This paper proposes a novel two phase methodology to integrate 

deep learning models and image enhancement strategies.   

Methods: Our framework contributes in two stages named (a) Optimized Contrast Limited 

Adaptive Histogram Equalization-Weighted Grey Wolf Optimization (optiCLAHE-Weighted 

GWO), where the organs contrast is enhanced by employing weighted GWO for CLAHE clip 

limit selection (b) X-DenseNet architecture, where segmented regions of interest are produced 

with X-DenseNet model from the enhanced CT.  

Results: For validation of proposed multi organ segmentation (PMOS) technique, 

experimentation and comparative analysis with existing models has been conducted on FLARE 

22 challenge dataset. The Dice Score (DSC) of liver, aorta and spleen for proposed Multi organ 

segmentation (PMOS) approach is 90.4%, 99.38% and 98.33% respectively. The mean of 

Precision (Pre), Accuracy (Acc), F-score and DSC of the proposed approach are 95.05%, 

95.55%, 95.29% and 96.06% respectively.  

Keywords: Multiorgan Segmentation (MOS), Optimized Contrast Limited Adaptive Histogram 

Equalization (optiCLAHE), Grey Wolf Optimization (GWO), X-DenseNet 

 

 

1. Introduction 

Accurate organ segmentation in medical imaging plays a pivotal role in computer aided diagnostic 

(CAD) systems, clinical practices and treatment planning [1]. This enables radiologists to extract 

information such as area, size, shape, location and spatial relationships of organs. The detailed 

anatomical structure data produced from segmented images facilitates personalized treatments based 

on patient's anatomy. However, the labor-intensive and impractical manual segmentation necessitates 

the exploration of automated techniques. This not only significantly increases efficiency but also 

minimizes the susceptibility to errors, paving the way for more accurate and reliable organ 

segmentation. 

The automated methods in this field has witnessed significant evolution, transitioning from 

traditional techniques like atlas-based methods, statistical shape models, and graph cut [2] to the 

dominance of deep learning models. Fully convolutional neural networks (FCNNs) like U-Net and 

V-Net have played a crucial role, with their encoder-decoder architecture effectively capturing global 
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context and high-level features [3], [4].  Furthermore, transformer architectures highlight the ongoing 

efforts to enhance model generalization and context understanding. Despite significant advancement 

in deep learning models, it has been analyzed that two major challenges persists in this field. Firstly, 

low contrast, poor image quality, overlapping objects of CT scans makes it problematic to segment 

organs and surrounding tissues, impacting their ability to capture intricate details. Secondly, it is 

difficult to detect small organs which lead to degradation in accuracy of deep learning models.  

This study addresses these limitations by proposing a novel two-phased methodology. Each phase 

tackles a distinct aspect of the problem statement. The first phase is inspired from the review study 

[5], where a variation of CLAHE [6] gave optimum results. This stage incorporates an optimized 

Contrast Limited Adaptive Histogram Equalization (optiCLAHE) technique implemented with a 

novel weighted Grey Wolf Optimization (GWO) algorithm, collectively referred to as optiCLAHE-

weighted GWO [7]. The proposed optiCLAHE-weighted GWO algorithm dynamically selects an 

optimal clip limit for CLAHE by utilizing weighted GWO, with the objective of maximizing entropy 

and enhancing CT scans. The second phase utilized dense blocks in X-net architecture hence, named 

X-DenseNet to segment liver, aorta and spleen from abdomen CT scan. By focusing on efficient 

feature extraction, feature reuse, facilitated information propagation and mitigating training 

challenges, dense blocks enhance the overall capability of the architecture to accurately segment 

organs. The distinctive structure of dense blocks improves segmentation performance not only for 

large organs like liver and spleen but also for smaller one e.g. aorta in this study.  

The major objective of our research is to design an approach based on encoder-decoder architecture 

for better dice score and automatic segmentation of multiple organs. The contributions of the study 

are as given below: 

i. A novel approach to optimize and automate the clip selection limit of CLAHE algorithm by 

utilizing proposed weighted GWO algorithm. This will enhance the contrast by preserving 

organ shape and boundaries. 

ii. A dynamic weighting factors module is added to GWO in order to balance the dominant 

behavior of alpha, beta and delta wolves on other search agents. This will help the search 

agents to explore the more diverse search space. 

iii. The second phase of the proposed approach will incorporate three layer dense blocks to 

capture the more intrinsic features of the organs in order to improve the dice score. The 

optiCLAHE-weighted GWO is integrated with X-DenseNet architecture. 

iv. Our proposed approach shows superior performance for spleen and aorta when compared to 

the existing state-of-the-art methods. The mean dice score achieved for liver, aorta and spleen 

with the proposed approach is approx. 96%.  

v. This study also sheds light on limitation of trained model along with future directions in this 

field. 

The remainder of the study is organized as follows: Section 2 provides the related work in the paper. 

Section 3 introduces the proposed methodology where in Section 3.1 details the first phase named 

optiCLAHE – Weighted GWO, Section 3.2 introduces the X-DenseNet architecture. Section 4 

presents dataset, experimental setup, implementation details and comparison with state-of- the-art 
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methods. Section 5 demonstrated the ablation studies. Our study ends with detailed discussion along 

with findings, limitations and future directions in Section 6. 

2. Related Work 

The recent advancements in deep learning methods have overshadowed traditional medical image 

segmentation techniques such as atlas based methods [8], [9], [10], statistical shape models [11], 

[12], [13], [14], [15], [16], [17], graph cut [2], CRFs [18] etc. This shift shows the effectiveness and 

adaptability of deep learning methods in this field. While conventional techniques directly segment 

CT images with hand crafted features, whereas end-to-end data-driven learning models prove more 

suitable by facilitating automatic feature extraction for segmentation. Deep learning models such as 

CNNs, FCNs [19] excel in capturing detailed spatial features with their prior knowledge, crucial for 

delineating complex organs. However, the considerable diversity in anatomical structures across 

different patients and low intensity contrast of CT scans, poses a significant challenge in multi-organ 

segmentation [20].  

FCNNs, including U-Net [21] and V-Net [22], have dominated medical segmentation, with encoders 

capturing global context through downsampling, and decoders upscaling for precise predictions via 

skip connections. The FCN majority voting method [23], a variant of  FCN, leverages redundant 

segmentations to glean both high and low-level features like shape, size, and contour of organs. But 

the redundant segmentation require significant computational resources lead to new technique based 

on time implicit levels [24]. Another variation, FCN-DecNet [23] integrates FCN with multi scale 

weighted Probabilistic atlas (PA) and utilized convolution and deconvolution layer to achieve 

optimized results. But this study is semi-automated. A fully automated approach is developed [25] 

utilizing multi-atlas techniques for organ localization and employing a two-stage CNN for 

segmentation. There are other 3D variations such as 3D FCN [26], cascaded 3D FCN [27], 3D- U-

JAPA-net [28] and Federated 3D [29] showcasing the versatility in this domain. 

Dense V Net [13] performed extremely well on both small and large abdomen organs particularly 

emphasizing organs linked to the gastrointestinal tract, a critical aspect for navigation during 

endoscopic procedures. The contribution involved upsampling and downsampling with skip 

connections and batch wise spatial drop out. In a related study, deep multi-planar co-training stands 

out as it harnesses the full potential of unlabeled data to segment overlapped organs and delineate 

boundaries of organs [30].Shape-Guided Ultralight Network (SGU-Net), a novel approach designed 

for extremely efficient computational performance. SGU-Net is an ultra light convolution method 

that aims to strike a balance between computational efficiency and segmentation accuracy, making it 

particularly well-suited for deployment in resource-constrained hardware environments [31]. Self-

supervised learning, eliminating manual annotations, led to the self-supervised attention UNet for 

OAR segmentation [32], [33]. There are another U-Net based networks proposed named Residual U-

net[34], nnUnet[35] etc. Further, deep learning based region growing technique is presented by [36]. 

FCNNs excel in medical image segmentation but struggle with long-range spatial context. Inspired 

by transformer success in NLP, numerous studies has been conducted in research such as Axial 

Fusion Transformer UNet [37], UNet TRansformers (UNETR), retaining the "U-shaped" architecture 

[38]. A study proposed the Cross-Convolutional Transformer Network (C2Former) as a solution for 

image segmentation challenges. A central innovation is the redesign of a cross-convolutional self-
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attention mechanism that effectively integrates both local and global context information while 

modeling dependencies, thus enhancing the model's ability to understand the semantic features 

within images [39]. 

Inspired from the success of the U-Net encoder-decoder architecture, X-Net is utilized as baseline in 

the proposed work. X-net was never explored for this task and this study is the first to apply X-Net to 

abdominal organ segmentation. The accurate segmentation of small organs remains a significant 

challenge, which leads to performance degradation of the model. In PMOS model, additional feature 

extraction stage is provided and it avoids over fitting using L2 regularization. X-net excels in 

capturing spatial relationships within images, which is of paramount importance in multi-organ 

segmentation for accurately outlining organ boundaries. Secondly, its deep architecture enables the 

learning of hierarchical features from medical images [40]. Our study has incorporated three layer 

dense blocks to the X-Net hence named as X-DenseNet. The more detailed architecture is discussed 

in section 3.2. The comparison of different network variants of the proposed study is presented in 

ablation study section 5 where in dense blocks came out as critical part of the architecture. 

 

3. Methods 

This section proposes a two phased approach for multiorgan segmentation for abdomen CT images. 

Fig 1 shows the schematic diagram of the two phases of the proposed methodology. The two phases 

are (a) optiCLAHE – Weighted GWO (b) X-DenseNet. The more detailed methodology of two 

phases is explained in section 3.1 and section 3.2. 

3.1 Optimized Contrast Limited Adaptive Histogram Equalization-Weighted Grey Wolf 

Optimization (optiCLAHE-Weighted GWO) 

The low contrast in medical images poses a challenge for accurate multi-organ segmentation [4]. 

While various methods exist to address this issue, histogram-based techniques, particularly Contrast 

Limited Adaptive Histogram Equalization (CLAHE), have proven to be notably effective in 

enhancing contrast across diverse medical image anatomies [41]. CLAHE distinguishes itself from 

its predecessor, Adaptive Histogram Equalization (AHE), by thwarting excessive contrast 

amplification and noise in the image. This is accomplished by locally partitioning the image into tiles 

or sections (tn) and imposing a clip limit (CL) on each of them. The efficacy of CLAHE is 

influenced by several parameters, including the number of tiles, clip limit, and the redistribution of 

intensity range. A low clip value results in gradual slope of the equalized histogram, resulting in a 

modest enhancement of contrast. Conversely, a high clip limit sidesteps the redistribution of 

histogram bins but becomes more prone to noise [6]. Thus, it is crucial to make a careful selection of 

the clip limit. 

This study focuses on automatic selection of the optimized clip limit. The search space, which 

refers to the range of possible solutions for clip limit, is vast and intricate, with numerous potential 

optimal points. This is where meta-heuristics, versatile problem-solving strategies, come into play. 

These methods begin with a diverse initial set of potential solutions. As the process unfolds through 

iterations, these solutions are refined and improved. Population-based algorithms, such as Swarm 

Intelligence (SI) algorithms, are particularly adept at this. They retain and utilize crucial information 

about the search space throughout the iterative process [7]. In this research study, SI algorithm 

named Grey Wolf is improved by focusing more on better search space, information preservation 

and convergence speed. Fig. 2g 2 depicts the schematic diagram of first phase of the methodology. 

The steps in the optiCLAHE-Weighted GWO algorithm are given below: 
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Step 1-Initialization. The fundamental parameter configurations in this experiment for weighted-

GWO are as given below: Maximum number of iterations (𝑇𝑚𝑎𝑥) is set to 100, No of wolves or 

search agent is designated as 50 and the dimensionality is established as 1. The lower bound (lb) is 

defined as 0; while the upper bound (ub) is stipulated as 100. In each dimension, stochastic values 

within the range of 0 to 1 are generated for all search agents. This yields search agents with random 

initial positions situated within the specified bounds, thereby setting the stage for the optimization 

process. Hence initialize the search agents or grey wolfs say 𝑋𝑖 = 1……𝑛 and coefficients a, A and 

C. 

 

Fig. 1 Schematic diagram of proposed approach for multiorgan segmentation of Liver, Aorta and Spleen 

Step 2- Objective Function. The objective function of this experiment is to maximize the fitness 

value, aiming to identify a set of parameters that yield the highest amalgamation of contrast and 

information content (entropy) in the equalized image. In essence, it seeks to achieve equilibrium 

between contrast enhancement and information preservation, as quantified by entropy. This 

algorithm leads to the maximization of contrast improvement, all while mitigating the potential 

hazard of excessive amplification of noise in the equalized image. 

𝑭⃗⃗ =
𝟏

(𝒄𝒐𝒏𝒕𝒓𝒂𝒔𝒕+𝒆𝒏𝒕𝒓𝒐𝒑𝒚)
       (1) 

For each wolf or search agent, the fitness of the current position is evaluated using the objective 

function. Subsequently, the position of alpha (𝑋𝛼
⃗⃗ ⃗⃗  ), beta (𝑋𝛽

⃗⃗ ⃗⃗ ) and delta wolf  𝑋𝛿
⃗⃗ ⃗⃗ , is decided based on 
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the calculated fitness among all the wolfs. 𝐹𝛼⃗⃗  ⃗, 𝐹𝛽
⃗⃗⃗⃗ . 𝐹𝛿

⃗⃗⃗⃗  will store the fitness values of alpha, beta and 

delta wolves.  

Step 3- Update Positions. The positions 𝑋1
⃗⃗⃗⃗ , 𝑋2

⃗⃗⃗⃗ , 𝑋3
⃗⃗⃗⃗  are calculated based on the coefficients and 

positions of the alpha, beta, and delta wolves which are the leaders in the wolf pack hierarchy 

according to their fitness values. 

𝑿𝟏
⃗⃗⃗⃗  ⃗ = 𝑿𝜶

⃗⃗⃗⃗  ⃗ − 𝑨𝜶
⃗⃗⃗⃗  ⃗. (𝑫𝜶

⃗⃗ ⃗⃗  ⃗)       (2) 

 𝑿𝟐
⃗⃗⃗⃗  ⃗ = 𝑿𝜷

⃗⃗⃗⃗  ⃗ − 𝑨𝜷
⃗⃗⃗⃗  ⃗. (𝑫𝜷

⃗⃗ ⃗⃗  ⃗)       (3) 

  𝑿𝟑
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑿𝜹

⃗⃗ ⃗⃗  − 𝑨𝜹
⃗⃗ ⃗⃗  . (𝑫𝜹

⃗⃗⃗⃗  ⃗)        (4) 

Where 𝑋𝛼
⃗⃗ ⃗⃗  , 𝑋𝛽

⃗⃗ ⃗⃗ , 𝑋𝛿
⃗⃗ ⃗⃗  variables will hold the positions of the alpha, beta, and delta wolves, respectively. 

𝐷𝛼
⃗⃗⃗⃗  ⃗, 𝐷𝛽

⃗⃗ ⃗⃗  , 𝐷𝛿
⃗⃗ ⃗⃗   are the vectors representing the absolute differences between the current position 

(parameter set) and the positions of the alpha, beta, and delta wolves respectively. These vectors 

indicate the direction and magnitude of the update and calculated as follows: 

𝑫𝜶
⃗⃗ ⃗⃗  ⃗ = |𝑪𝟏

⃗⃗ ⃗⃗  . 𝑿𝜶
⃗⃗⃗⃗  ⃗ − 𝑿⃗⃗ |        (5) 

𝑫𝜷
⃗⃗ ⃗⃗  ⃗ = |𝑪𝟐

⃗⃗ ⃗⃗  . 𝑿𝜷
⃗⃗⃗⃗  ⃗ − 𝑿⃗⃗ |        (6) 

𝑫𝜹
⃗⃗⃗⃗  ⃗ = |𝑪𝟑

⃗⃗ ⃗⃗  . 𝑿𝜹
⃗⃗ ⃗⃗  − 𝑿⃗⃗ |        (7) 

𝑪⃗⃗ = 𝟐. 𝒓𝟐⃗⃗⃗⃗        (8) 

where 𝐶1
⃗⃗⃗⃗ , 𝐶2

⃗⃗⃗⃗  and 𝐶3
⃗⃗⃗⃗  are coefficients calculated based on random variable 𝑟2⃗⃗  ⃗. 

Proposed modified equations to update wolf position: The coefficient ‘A’ influences the hunting 

behavior of the pack. The wolf positions X1
⃗⃗⃗⃗ , X2

⃗⃗⃗⃗  and X3
⃗⃗⃗⃗  are computed based on Aα

⃗⃗ ⃗⃗  , Aβ
⃗⃗ ⃗⃗  , Aδ

⃗⃗ ⃗⃗  instead of 

only  A⃗⃗  unlike GWO. The coefficient A⃗⃗  will be calculated as follows:  

                                                                      𝑨𝜶
⃗⃗⃗⃗  ⃗ = 𝟐𝒂𝜶⃗⃗ ⃗⃗  . 𝒓𝟏 ⃗⃗ ⃗⃗  – 𝒂𝜶⃗⃗ ⃗⃗                        (9) 

𝑨𝜷
⃗⃗⃗⃗  ⃗ = 𝟐𝒂𝜷⃗⃗ ⃗⃗  . 𝒓𝟏 ⃗⃗ ⃗⃗  − 𝒂𝜷⃗⃗ ⃗⃗          (10) 

𝑨𝜹
⃗⃗ ⃗⃗  = 𝟐𝒂𝜸⃗⃗ ⃗⃗  . 𝒓𝟏 ⃗⃗ ⃗⃗  − 𝒂𝜸⃗⃗ ⃗⃗          (11) 

The coefficients 𝑎𝛼, 𝑎𝛽, and 𝑎𝛿 control the rate at which the alpha, beta, and delta wolves 

respectively influence the search agents. By modifying these parameters based on the current 

iteration T and the maximum number of iterations 𝑇𝑚𝑎𝑥, the algorithm dynamically adjusts the 

exploration and exploitation phases. This helps in achieving a better balance between exploration 

(utilizing information from other wolves) and exploitation (utilizing information from the best 

wolves) of the search space. Early in the optimization process, there is more emphasis on 

exploration, while in later stages; there is more focus on exploitation. This adaptability can lead to 

faster convergence towards an optimal solution. Also, exponential region (maximum curvature) is 

the potential candidate for clip limit value [39]. The sinusoidal function `sin(1/T_max)` in the 

equation for 𝑎𝛿 introduces a non-linear component that can enhance the robustness of the algorithm.  

𝒂𝜶 = 𝟐 (𝟏 −
𝟏

𝑻𝒎𝒂𝒙
)           (12) 

𝒂𝜷 = 𝟐 (𝟏 −
𝟏

(𝑻𝒎𝒂𝒙)𝟐
)       (13) 

𝒂𝜹 = 𝟐(𝟏 − 𝐬𝐢𝐧 (
𝟏

𝐓𝐦𝐚𝐱
))       (14) 

Dynamic weights are calculated based on fitness value. Each calculated position is then combined 

with weights 𝑊1
⃗⃗ ⃗⃗  ⃗, 𝑊2

⃗⃗ ⃗⃗  ⃗, 𝑊3
⃗⃗ ⃗⃗  ⃗ and the positions. The current position of the search agent is updated using 

the weighted combination. The equations calculate weighting factors based on the fitness values of 
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the alpha, beta, and delta wolves relative to the best fitness value in the population. This allows the 

algorithm to favor the positions of wolves that have performed well, potentially guiding the search 

towards promising areas of the solution space. The weights 𝑊1
⃗⃗ ⃗⃗  ⃗, 𝑊2

⃗⃗ ⃗⃗  ⃗, 𝑊3
⃗⃗ ⃗⃗  ⃗ ensure that the influence of 

the alpha, beta, and delta wolves is balanced. This helps to avoid situations where one wolf 

dominates the influence on the search agents, promoting a more diverse exploration of the solution 

space. The utilization of dynamic weighting factors reduces the sensitivity of the algorithm to hyper-

parameter tuning.  

𝑾𝟏
⃗⃗ ⃗⃗ ⃗⃗  =

𝑭𝜶⃗⃗ ⃗⃗  ⃗

𝑭𝑩𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
          (15) 

𝑾𝟐
⃗⃗ ⃗⃗ ⃗⃗  =  

𝑭𝜷⃗⃗ ⃗⃗  ⃗

𝑭𝑩𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
          (16) 

 𝑾𝟑
⃗⃗ ⃗⃗ ⃗⃗  =  

𝑭𝜹⃗⃗⃗⃗  ⃗

𝑭𝑩𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
         (17) 

𝑿⃗⃗ (𝒕 + 𝟏) =  𝑿𝟏
⃗⃗⃗⃗  ⃗𝑾𝟏

⃗⃗ ⃗⃗ ⃗⃗  + 𝑿𝟐
⃗⃗⃗⃗  ⃗𝑾𝟐

⃗⃗ ⃗⃗ ⃗⃗  + 𝑿𝟑
⃗⃗⃗⃗  ⃗𝑾𝟑

⃗⃗ ⃗⃗ ⃗⃗          (18) 

Step 4 – Repeat: The algorithm rigorously assesses whether the current search agent surpasses the 

fitness levels of the alpha, beta, and delta wolves. In the event of superiority, the respective wolf's 

position and fitness records are updated. This iterative loop persists for the designated number of 

iterations, during which it systematically refines the positions of the search agents predicated on their 

individual fitness values and the coordinates of the alpha, beta, and delta wolves. The fitness metric 

of the alpha wolf (𝐹𝛼⃗⃗  ⃗) at the present iteration is meticulously logged in the Convergence Curve. 

Ultimately, the conclusive alpha position (𝑋𝛼
⃗⃗ ⃗⃗  ), its corresponding fitness reading (𝐹𝛼⃗⃗  ⃗), and the 

progression pathway (`Convergence_curve`) collectively constitute the algorithm's output. As a 

result, the derived (𝑋𝛼
⃗⃗ ⃗⃗  ) value stands poised to serve as the optimal clip limit for the subsequent 

image enhancement phase. 

 

  Fig. 2 Flow Diagram of first phase of i.e. optiCLAHE - Weighted GWO 
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3.2 X-Dense Net Architecture  

This phase aims to segment multiple organs from abdomen CT scans. In this phase, the 2D CT 

enhanced axial slices generated in the previous phase are taken as input and 2D segmented axial 

slices are produced as outputs. This includes two steps: (i) Encoder Stage (ii) Decoder Stage. 

Initially, CT slices are enhanced with optiCLAHE - weighted GWO and the generated input is 

passed to the X-DenseNet architecture. The enhanced images have better entropy information. The 

detailed encoder and decoder stage of the model is given below: 

(i) Encoder Stage 

The primary goal of encoder stage is to extract fundamental features such as edges and gradients. It 

takes input images with dimensions of 64x64x3 and processes them via a series of convolutional 

layer. There are 15 convolutional layer in both encoder and decoder network with kernel size of 3 x 

3. We have designated the combination of downsampling layers as block D, where Batch 

Normalization is employed after each convolutional operation to stabilize and accelerate the training 

process. This ensures that the model's parameters remain well-conditioned throughout training. Then, 

activation function, specifically ReLU (Rectified Linear Unit), is utilized to introduce non-linearity, 

aiding the model in learning complex relationships within the data. Following, Max Pooling layer 

with pool size of 2 x 2 is strategically placed to down-sample the feature maps, reducing spatial 

dimensions while retaining essential information. This allows the model to capture higher-level 

features in subsequent layers efficiently [42].   

Inspired from [13] and [43], Dense Convolutional Network, or DenseNet layer is added to the 

architecture after max-pool layer. In dense block structure, one convolution layer is intricately 

connected to every subsequent convolution layer passing feature maps in a feed-forward manner, 

creating a highly interlinked network structure in dense block. The three-layer dense block is utilized 

and the schematic diagram for the same is shown in Fig 4. They effectively address the vanishing-

gradient problem that has plagued deep neural networks, facilitating the unhindered flow of gradients 

during training. Additionally, they promote robust feature propagation, encouraging the seamless 

transfer of information across layers. This design also fosters the efficient reuse of features, thereby 

reducing redundancy and substantially curtailing the total number of model parameters. The filter 

depth for convolutions layers and dense block is (64,128,256,512). Subsequently, the model employs 

multi-resolution dense blocks, which are crucial in capturing features at different scales and able to 

capture the complex relationship and features of the organs. These blocks consist of densely 

connected convolutional layers, promoting effective feature reuse and propagation. It is designed to 

optimize the concatenation of features, ensuring that multiple copies of feature maps are not 

needlessly stored, ultimately achieving memory efficiency. In scenarios where memory constraints 

become a factor and retention of limited activation maps in memory, earlier layer information is 

stored only once but remains accessible for subsequent layers. These dense blocks help to mitigate 

memory overhead.Down-sampling is achieved through max-pooling layers after each dense block, 

allowing the model to focus on higher-level features. The n down-sampling blocks i.e. D blocks with 

feature map height h and width w can be denoted as follows: 

𝑫𝒉,𝒘 = {𝑫𝒉,𝒘
𝟎 , 𝑫𝒉,𝒘

𝟐 , ………… . . 𝑫𝒉,𝒘
𝒏 }         (19) 

where height and width of feature map is dependent on input feature map to the block (ℎ𝑖𝑛𝑝𝑢𝑡, 

𝑤𝑖𝑛𝑝𝑢𝑡) defined as given below: 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 2 (2025) 

 

569 

 

𝐡 =
𝐡𝐢𝐧𝐩𝐮𝐭

𝟐
 , 𝐰 =

𝐰𝐢𝐧𝐩𝐮𝐭

𝟐
                    (20) 

It can be seen in architecture proposed in Fig 3 that down-sampling can be achieved through {D-

dense blocks} which uses same equation to calculate the feature map size. 

 

Fig. 3 Network Architecture of Proposed X-DenseNet Model 
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(ii) Decoder Stage 

In the decoder stage, the model reconstructs the segmented regions based on the features 

extracted by the encoder. The N blocks dedicated for upsampling are 𝑈𝐻,𝑊 =

{𝑈𝐻,𝑊
1 , 𝑈𝐻,𝑊

2 , 𝑈𝐻,𝑊
3 ……𝑈𝐻,𝑊

𝑁 }. It starts with up-sampling layers to restore spatial information lost 

during the downsampling in the encoder. The concatenation of features from different resolutions is 

employed to preserve fine-grained details. This block comprises upsampling layer, then 

convolutional layer with same filter and kernel size as in encoder stage. These layers are followed by 

batch normalization and relu activation. 

Then skip connections provides the feature concatenation and fine graded details. The decoder 

concludes with a 1x1 convolutional layer followed by a softmax activation, generating the final 

segmentation mask. The detailed training hyper-parameters are presented in Table 1. The provided 

skip connections will allow the low level features maps generated in encoder stage to flow through 

the network in later stages. The detailed features maps size and skip connections are presented in Fig 

3. The height and width of feature maps of U blocks can be calculated as follows:  

 𝐻 = ℎ𝑖𝑛𝑝𝑢𝑡 ∗ 2,    𝑊 = 𝑤𝑖𝑛𝑝𝑢𝑡 ∗ 2     (21) 

 

 

 

Fig. 4 Schematic Representation of three layer dense block 

It is worth noting here that, X-DenseNet exhibits similar structural framework to Xnet [36], albeit 

with notable distinctions. Firstly, the dense blocks are the introduction in our proposed architecture 

unlike X-net model. Further feature map calculation is as given in encoder and decoder stage. 

Further, while the X-net model has demonstrated effectiveness when applied to X-ray images, we 

have adapted and modified the model for application on abdominal CT scans. 

4. Experiments and Results 

4.1 Dataset 

Flare 22 dataset is the challenge dataset which is available in public domain. It consists of 50 

abdomen CT scans [44], [45]. This dataset encompasses 13 distinct organs, namely: liver, spleen, 

pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right 

adrenal gland, left adrenal gland, and duodenum. Data augmentation is employed in order to extend 

the dataset. The Image Data Generator function from Keras facilitated rotations within a range of 10 

degrees, as well as width and height shifts within a range of 0.1, along with zooming within a range 

of 0.2, and random horizontal and vertical flips. This augmented dataset is expanded with 500 

images, subsequently partitioned into training and testing sets using a 7:3 ratio through a randomized 

split implemented with the 'train_test_split' function. For the purpose of this research, experiments 

were conducted specifically focusing on the liver, aorta, and spleen.  
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4.2 Experimental Setup and Model Training 

Our PMOS technique is implemented with 11th Gen Intel core i5-1135G7, 8GB RAM, python 3.6 

and training is implemented with T4 GPU with 16 GB RAM. During the training phase, categorical 

cross-entropy is employed as the loss function, suitable for multi-class segmentation tasks. The 

Adam optimizer, combined with a dynamic learning rate schedule, ensures efficient convergence 

during the training process. Training loss and accuracy per epoch is as shown in Fig 5. 

 

Data Augmentation Methods Rotation, width shift, height shift, zoom, 

horizontal flip and vertical flip 

Initialization of the network Glorot Uniform Intializer /Xavier 

Initialization 

Batch size 16 

Patch size 64 x 64 x 3 

Total epochs 200 

Kernel size 3 x 3 

Optimizer Adam 

Initial learning rate 0.001 

Stopping criteria, and optimal model 

selection criteria 

When reached defined no of epochs (200)  

Training loss categorical cross-entropy 

Training time 1-2 min/epoch 

Table 1 Training Protocols 

 

 

Fig. 5 Model Training History representing change in accuracy and loss with respect to epochs 
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4.3 Evaluation Metrics 

In this research study, we have used various evaluation metrics named Dice Coefficient (DSC), 

Accuracy (Acc), Precision (Pr), Recall (Rec) and F-Score (FS) in order to confirm the segmentation 

results achieved by our proposed method. The equations of the aforementioned parameters are as 

given below: 

𝑨𝒄𝒄 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
    (22) 

𝑷𝒓 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 Range: [0, 1]     (23) 

𝑹𝒄 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
 Range: [0, 1]     (24) 

𝑭𝑺 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
 Range: [0, 1]   (25) 

𝑫𝑺𝑪 =
𝟐×𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑼𝒏𝒊𝒐𝒏+𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
 Range: [0, 1]   (26) 

4.4 Comparison with state-of-the-art methods 

In the literature, a variation of nnUnet known as Residual U-net has exhibited superior performance 

in literature. The incorporation of residual connections in nnUnet synergizes the architectural 

strengths of nnU-Net, particularly its context-preserving skip connections, with the benefits of 

residual connections, leading to enhanced accuracy and effectiveness in segmentation tasks [34]. A 

study [46] is proposed to deal with unlabeled data and enhance the model's generalization 

capabilities. The methodology involves generating pseudo labels through the utilization of the Swin 

Transformer. Subsequently, these pseudo labels are amalgamated with labeled data and input into the 

PHTrans framework for further processing. A study introduced a novel methodology termed 3D 

Cross-Pseudo Supervision (3D-CPS), which constitutes a semi-supervised network built upon nnU-

Net, incorporating the Cross-Pseudo Supervision technique. Additionally, a dynamic adjustment of 

semi-supervised loss weights throughout epochs, aiming to promote linearity expansion [47]. A 

coarse-to-fine framework is employed to refine segmentation results in two sequential stages within 

a variation of nnUnet and USE-Net, termed Residual-USE-Net [43]. This innovative approach 

involves the integration of two teacher models and a student model to enhance the segmentation 

process [48]. The residual squeeze-and-excitation (SE) blocks are integrated to enhance the overall 

performance and efficiency of the architecture. All these studies have used FLARE 22 challenge 

dataset. 

Reference Network Architecture Liver Aorta Spleen 

[34] Residual U-Net 0.9753 0.9566 0.9701 

[46] Self-Training and Hybrid 

Architecture 

0.9761 0.9863 0.9572 

[47] 3D-CPS 0.9733 0.9630 0.9202 

[48] Cross Teaching Teachers 

 

0.9763±0.0154 0.9375±0.0469 0.9471±0.1386 

 Proposed Approach 0.904670 0.993811 0.983357 
 

Table 2 Dice Score comparison of competing methods with our proposed approach. Dice score of spleen and aorta is higher for our approach 

than competing methods. 
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The aforementioned four studies reported in literature are compared with the proposed approach for 

abdomen multi organ segmentation. The quantitative results of the proposed X-DenseNet 

architecture with the competing methods are presented in  

Table 2. The Dice Score of the proposed X-DenseNet for liver, aorta and spleen is 0.904, 0.9938, and 

0.9833 respectively. The effectiveness of the proposed approach in segmenting the aorta and spleen 

surpasses that of state-of-the-art studies. Notably, the Dice Similarity Coefficient (DSC) for the aorta 

and spleen outperforms competing methods, although it is relatively lower for the liver. The 

proposed approach yields mean values of Precision (Pre), Accuracy (Acc), F-Score, and DSC as 

95.05%, 95.55%, 95.29%, and 96.06%, respectively, as presented in Table 3. 

 

Proposed Approach Liver  Aorta Spleen Mean 

Pr (%) 89.683130 98.769899 96.725836 95.059621 

Acc (%) 88.944611 99.383046 98.349294 95.5589 

F-Score (%) 89.280966 99.075524 97.530810 95.2957 

DSC (%) 90.4670 99.3811 98.3357 96.06126 

 

Table 3 Mean of evaluation metrics for liver, aorta and spleen for our proposed approach 

 

 

Fig. 6 Comparison of Dice Coefficient of different approaches with proposed X-DenseNet 

 

5. Ablation Study 

In our experiments, we have conducted ablation studies to assess the impact of various modules in 

our technique. Table 5 presents the dice score results of the different organs. For the sake of 

comparison, we adopted X-Net as our baseline, as we aimed to enhance its performance on our 

specific dataset. Specifically, we implemented the existing X-Net architecture without optiCLAHE-

WeightedGWO on our dataset, resulting in dice scores of 0.2799, 0.97633, and 0.9759 for the liver, 
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aorta, and spleen, respectively. This baseline performance serves as a reference point for evaluating 

the enhancements we introduce in subsequent analyses.  

 Original Image Segmented Image 

 

 

 

 

 

 

True Positive (TP) and False 

Negative (FN) 

  
 

 

 

 
 

 

 
 

 

False Positive (FP) 

 

 
 

 

 

 
 

 

 

 

Table 4 Qualitative Results of Multiorgan Segmentation with Proposed Technique on 2D Axial Slices 

Effect of optiCLAHE-WeightedGWO. The objective is to discern the impact of incorporating first 

phase into the existing X-Net framework. The results presented in the Table 5 clearly demonstrate 

that training the X-Net model on a dataset enhanced with optiCLAHE-Weighted GWO yields 
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superior performance compared to training the model without this enhancement algorithm. 

Specifically, the dice scores for the liver, aorta, and spleen exhibit significant improvement, reaching 

0.481719, 0.985, and 0.981, respectively. These findings underscore the essential nature of the initial 

phase's inclusion in our methodology. 

Experiments Liver Aorta Spleen 

X-Net 0.279913 0.976334 0.975982 

X-Net with optiClahe- Weighted GWO 0.481719 0.985 0.981 

First Phase + X-Net + 3 Dense Block on 100 

iterations 

0.633846 0.991 0.982 

PROPOSED: First Phase +X-Net+3 Dense Block 

on 200 iterations 

0.904670 0.993811 0.983357 

 

Table 5 Quantitative Results of ablation study 

Effect of Adding Dense Blocks. To gauge the significance of dense blocks in enhancing the X-Net 

architecture on a preprocessed dataset with optiCLAHE-Weighted GWO, a systematic exploration 

was conducted. Initially, one dense block was added incrementally until optimal results were 

obtained. Strikingly, the most favorable outcomes were achieved with the inclusion of three dense 

blocks. Beyond this point, the performance exhibited a noticeable decline upon introducing a fourth 

dense block. Consequently, after a series of experiments, the proposed X-denseNet with three dense 

blocks emerged as the architecture delivering superior results. This experimentation establishes the 

indispensability of employing three dense blocks for X-Net on our dataset. Further, experiments are 

performed with spatial dropouts to improve the complexity of architecture; however favorable 

outcomes are not achieved. 

Effect of number of iterations. The appropriate number of epochs for segmentation model training 

depends on the dataset and model complexity, with a balance needed to avoid underfitting or 

overfitting. Regular monitoring of validation metrics, such as the Dice Similarity Coefficient (DSC) 

score, helps identify the optimal point for model convergence. We have performed experiments to 

get the best suitable count of iterations for this architecture and environmental variables. It has been 

observed that X-denseNet with 200 epochs yielded the most favorable results. While the number of 

epochs between 100 and 200 had a relatively minimal impact on the performance of the model 

concerning the aorta and spleen, a discernible effect was observed in the dice score for the liver. This 

underscores the critical role of epoch count in achieving optimal performance, particularly with 

respect to certain organs within our dataset. 

6. Discussion 

In this paper, a novel approach is proposed to accurately segment multiple organs from abdomen CT 

images. The experiments are conducted to segment liver, aorta and spleen. 

6.1 Findings  

The proposed approach consists of two phases (a) optiCLAHE-Weighted GWO (b) X-DenseNet. 

The proposed method, named optiCLAHE, employs a Swarm Intelligence (SI) algorithm called Grey 

Wolf Optimization (GWO) to automatically select an optimized clip limit for Contrast Limited 

Adaptive Histogram Equalization (CLAHE). 
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Fig. 7 Effect of different phases on the baseline X-Net 

The paper then introduces segmentation architecture, X-DenseNet, which integrates enhanced 

images for multi-organ segmentation. We have utilized FLARE 22 Challenge dataset for training of 

our model. Further, we have used Dice Score (DSC), Precision (Pr), Accuracy (Acc) and F-Score 

(FS) to evaluate the proposed model. The DSC is used to perform the comparative study of existing 

studies in literature. The key steps of the first phase include initialization, objective function 

definition, updating positions based on the fitness values of alpha, beta, and delta wolves, and 

dynamic adjustment of weights for the search agents. The algorithm aims to strike a balance between 

exploration and exploitation in the search space, adapting its behavior based on the fitness values 

encountered during optimization. The experimental findings on architecture reveal three featured 

crucial modifications that significantly contribute to the improvement in Dice Score. Firstly, the 

changes proposed in coefficients 𝑎𝛼, 𝑎𝛽, and 𝑎𝛿 in first phase plays a pivotal role in achieving a 

more balance between exploration and exploitation of the search space. This adaptability facilitates 

to faster convergence towards an optimal solution. The sinusoidal function ‘sin(1/T_max)’ 

introduces a non-linear component that can enhance the robustness of the algorithm. Secondly, 

incorporation of dynamic weights 𝑊1
⃗⃗ ⃗⃗  ⃗, 𝑊2

⃗⃗ ⃗⃗  ⃗, 𝑊3
⃗⃗ ⃗⃗  ⃗ allows the algorithm to prioritize the positions of 

wolves that have performed well, guiding the search towards promising areas of the solution space. 

The weights 𝑊1
⃗⃗ ⃗⃗  ⃗, 𝑊2

⃗⃗ ⃗⃗  ⃗, 𝑊3
⃗⃗ ⃗⃗  ⃗ ensure a balanced influence of the alpha, beta, and delta wolves. In the 

ablation study during the second phase, it becomes evident that there is room for improvement in the 

existing X-Net architecture when applied to our dataset. 

Inspired form DenseNet a thought of introducing third crucial change i.e. dense block to existing X-

Net, resulting in a notable improvement in the Dice Score. The model employs multi-resolution 

dense blocks, which are instrumental in capturing features at different scales and able to capture the 

complex relationship and features of the organs. This helps to detect small organs such as aorta in 

our study. Down-sampling is achieved through max-pooling layers after each dense block, allowing 

the model to focus on higher-level features. Combining the advancements from the first and second 

phases, the proposed approach yields mean values of Precision, Accuracy, F-Score, and Dice 

Similarity Coefficient (DSC) as 95.05%, 95.55%, 95.29%, and 96.06%, respectively, as presented in 

the table. 
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The relative improvement in dice score of liver, aorta and spleen with respect to the baseline X-Net 

is shown in Fig 7. It can be observed from the Figure 7 and Table 5 that the inclusion of both the 

phases impacts the DSC hence makes it mandatory for the required efficiency. The DSC score 

achieved for liver, aorta and spleen with the proposed model is 0.904670, 0.993811, and 0.983357 

respectively. The results show that there is huge improvement from the baseline X-Net in DSC of 

liver however the percentage increase in performance for aorta and spleen is 1.79% and 0.76% 

respectively. Further, when the results are compared with the competing methods in Table 4 and Fig 

6, it is noteworthy that competing methods such as [34], [46], [47] and [48] exhibit a superior Dice 

Similarity Coefficient (DSC) score for the liver compared to the proposed approach. However, the 

DSC scores for the aorta and spleen are higher in our proposed model than in the competing 

methods. 

6.2 Limitations 

The qualitative results of segmentation of liver, aorta and spleen are illustrated in Table 4. In Case 1 

and 2, the True Positive (TP) and False Negative (FN) scenario is depicted, representing the best 

results where all three organs are segmented accurately. However, it is crucial to note that the 

proposed model, while promising, is not flawless. In Case 3 and 4, the False Positive (FP) situation is 

presented, with red squares and outline highlighting the FP pixels in the image. This indicates 

instances where the liver is not segmented accurately, and some pixels that should be negative are 

erroneously classified as positive. Consequently, these FP cases for the liver contribute to 

degradation in the mean dice of the proposed model. This observed limitation may arise from the 

architecture's inability to capture intricate features of the liver comprehensively. Considering a more 

advanced architecture, such as U-Net++, 3D U-Net, or similar, could potentially lead to an 

improvement in the Dice score by better capturing the detialed features of the liver. The experiments 

are conducted focusing on abdomen CT scans and three specific organs. The generalizability of the 

proposed approach to different datasets and organ systems needs to be explored. The experimental 

setup, including the use of T4 GPU, may limit the accessibility of the proposed methodology to 

researchers with less computational power. 

6.3 Future directions 

Firstly, our current study excludes pathological scans, such as those involving tumors or lesions. 

Further, more small organs such as pancreas, duodenum and esophagus can be included in the future 

researches because it is difficult to capture the complex shapes, structures and spatial relationships. 

In future work, we are actively engaged in developing methodologies to address the segmentation of 

these smaller organs. The existing literature highlights that techniques based on 2D models may face 

limitations in capturing the full three-dimensional information present in CT scans. Therefore, 

adopting more advanced models such as 3D UNet, Vision Transformer, ReXNet, among others, may 

lead to improved Dice scores by better leveraging the three-dimensional context. Moreover, 

exploring ensemble approaches involving different segmentation models or variations of the 

proposed model could further enhance accuracy and robustness. Ensemble methods often leverage 

the diversity of multiple models to achieve more reliable and generalized segmentation results. 
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