ISSN: 1074-133X Vol 32 No. 1 (2025)

L^1 -Convergence of Double Fourier Transform in $L^p(R)$ Spaces, $p \ge 1$

Sakshi¹, Karanvir Singh²

sakshi.bfcmt@gmail.com1, karanvir@mrsptu.ac.in2

¹Department of Mathematics, Maharaja Ranjit Singh, Punjab Technical University, Bathinda, Punjab, India.

Article History: Abstract

Received: 18-07-2024 **Revised:** 31-08-2024

Accepted: 14-09-2024

In this research article, we have given a method which restrict the double fourier transform of f \in L^p (R) spaces, $1 \le p \le \infty$. Further, we have discussed the convergence by using the approximate identities. The aim of this paper is to extend the results of K. Devendra and S. Dimple[3] from one dimensional to two-dimensional trigonometric series.

Keywords: Schwartz space, convolution operator, approximate identities, L^p-Convergence.

2020 Mathematics Subject Classification. 42A20, 42A32, 42A38.

1. Introduction:

Let $f \in L^1(R)$. The fourier transform of f(x, y) is denoted by $g(\zeta, \phi)$ and is defined by:

$$g(\zeta,\phi) = \frac{1}{\sqrt{2\pi}} \int_{R} f(x,y) exp^{-\iota(\zeta x + \phi y)} dx dy, \zeta \epsilon R$$

If f, $g \in L^1(R)$, then the inverse fourier transform of g is defined as::

$$f(x,y) = \frac{1}{\sqrt{2\pi}} \int_{R} g(\zeta,\phi) exp^{\iota(\zeta x + \phi y)} d\zeta d\phi$$

for $x \in R$.

"As we know that several functions such as elementary constant functions sinwt, coswt do not converge in $L^1(R)$ and thus they do not have fourier transforms. But when these functions are multiplied by characteristic functions, then the resultiong functions converge in $L^1(R)$ and have fourier transforms".

As we know, Lebesgue lemma states that if $f \in L^1(R)$ then $\lim_{|\zeta| \to \infty} |g(\zeta)| = 0$. From which it follows that "Fourier transform is a continuous linear operator from $L^1(R)$ into $C_0(R)$, the space of all continuous functions on R which decay at infinity, i.e. $f(x) \to 0$ as $|x| \to \infty$. We say that if $f \in L^1(R)$, it is not necessary that g also belongs to $L^1(R)$.

In the present article, we provide a method for restricting Fourier transform of $f \in L^p(R)$ spaces using the pointwise convergence of convolution operators for approximate identities." **Definition 1.1.** Let $\psi \varepsilon L^1(R)$ suct that $\xi(0) = 1$. Then $\psi_{\varepsilon}(x,y) = \varepsilon^{-1}\psi\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon}\right)$ is called an approximate identity if

ISSN: 1074-133X Vol 32 No. 1 (2025)

- (i) $\int_{\mathbb{R}} \psi_{\epsilon}(x, y) dx dy = 1$
- (ii) $\sup_{\epsilon>0} \int_{\mathbb{R}} |\psi_{\epsilon}(x,y)| dxdy < \infty$,
- (iii) $\lim_{\epsilon \to 0} \int_{|x| > \delta, |y| > \delta} |\psi_{\epsilon}(x, y)| dx dy = 0$, for all $\delta > 0$ "

Proof. We can prove properties (i) and (ii) by following:

$$\int_{R} \psi_{\epsilon}(x, y) dx dy = \int_{R} \epsilon^{-1} \psi\left(\frac{x}{\epsilon}, \frac{y}{\epsilon}\right) dx dy = \int_{R} \psi\left(\frac{x}{\epsilon}, \frac{y}{\epsilon}\right) d\left(\frac{x}{\epsilon}, \frac{y}{\epsilon}\right) = 1$$

For (iii), it follows that:

$$\int_{|x|>\delta, |y|>\delta} \psi_{\epsilon}(x, y) dx dy = \int_{|x|>\delta, |y|>\delta} \frac{1}{\epsilon} \psi\left(\frac{x}{\epsilon}, \frac{y}{\epsilon}\right) dx dy$$

$$= \int_{\delta}^{\infty} \frac{1}{\epsilon} \psi\left(\frac{x}{\epsilon}, \frac{y}{\epsilon}\right) dx dy + \int_{-\infty}^{-\delta} \frac{1}{\epsilon} \psi\left(\frac{x}{\epsilon}, \frac{y}{\epsilon}\right) dx dy Substituting \ z = \frac{x}{\epsilon}, t = \frac{y}{\epsilon}$$

, we get

$$\lim_{\epsilon \to 0} \int_{\underline{\delta}}^{\infty} \psi(z,t) dz dt + \int_{-\infty}^{-\frac{\delta}{\epsilon}} \psi(z,t) dz dt = 0.$$

Definition 1.2. "A sequence of functions $h_{n_{n \in \mathbb{N}}}$ such that $h_n(x,y) = nh(nx,ny)$ where

$$n = \frac{1}{\varepsilon}, n \to \infty, \varepsilon \to 0$$

is called an approximate identity if

- (i) $\int_{R} h_n(x, y) dx dy = 1$ for all n,
- (ii) $\sup_{n} \int_{\mathbb{R}} h_n(x, y) dx dy < +\infty$,
- (iii) $\lim_{n\to\infty} \int_{|x|>\delta} h_n(x,y) dx dy = 0$ for every $\delta > 0$."

By following the above definition, the following proposition can easily prove:

Proposition 1.1. "A sequence of functions $h_{n_{n_{\varepsilon}N}}$ with $h_n \ge 0$, $h_n(0,0) = 1$ is an approximate identity if for every $\varepsilon > 0$ there exists $n_0 \varepsilon N$ so that for all $n \ge n_0$ we have $\int_{-\varepsilon}^{\varepsilon} h_n > 1 - \varepsilon$. Let us consider the class $S^*(R)$ of C^{∞} -functions on R which are rapidly decreasing i.e. Schwartz class such that

$$S^*(R) = f: R \to R, \sup_{x \to R} (x, y) \frac{d^m}{dx^m} \frac{d^m}{dy^m} f(x, y) < \infty; n, m \in \mathbb{N} \cup \{0\}^m.$$

We know that if $f \in S^*(R)$, then $g \in S^*$ and " $S^*(R) \subset L^p(R)$ ". To prove the denseness of $S^*(R) \subset L^p(R)$, we have $\eta \in S^*(R) \Rightarrow |\eta(x,y)| \leq \frac{c}{1+|xy|^n}$.

For $1 \le p < \infty$,

$$\int_{R} |\eta(x,y)|^{p} dxdy \leq \int_{R} \frac{c^{p}}{(1+|xy|^{n})^{p}} < \infty \text{which gives } \eta \varepsilon L^{p}(R)$$

ISSN: 1074-133X Vol 32 No. 1 (2025)

. Define a sequence η_N such that

 $\eta_N(x, y) = f(x, y)$, if $-N \le x, y \le N$; and otherwise it will become 0.

 $\Rightarrow \exists \eta_N \varepsilon S(R), f \varepsilon L^p(R)$ such that

 $\int_{R} |\eta_N - f|^p dx \to 0.$

as
$$N \to \infty$$
.

"Hence $S^*(R)$ is dense in $L^p(R)$."

Proposition 1.2. Let $h_n = \alpha_n \psi_n + (1 - \alpha_n) \sigma_n$, where $\{\psi_n\}_{n \in \mathbb{N}}$, $\{\sigma_n\}_{n \in \mathbb{N}}$ are approximate identities and $0 \le \alpha_n \le 1$.

"(a) For $1 \le p \le +\infty$ and every $f \varepsilon L^p(R)$, $\lim_{n \to \infty} (h_n - \psi_n) \star f \to 0$ and $\lim_{n \to \infty} (h_n - \sigma_n) \star f \to 0$.

(b) For every
$$f \varepsilon L^{\infty}(R)$$
, $\lim_{n \to \infty} (h_n - \psi_n) \star f \to 0$ a.e..

(c) For $1 \le p \le +\infty$, if $\sum_n (1 - \alpha_n)^p < +\infty$, then for every $f \in L^p(R)$, $\lim_{n \to \infty} (h_n - \psi_n) \star f \to 0$ " a.e.

Proof. (a) "If $1 \le p \le +\infty$ and every $f \varepsilon L^p(R)$.

Using Minkowski's inequality,

$$\left| \left| \left| (h_n - \psi_n) \star f \right| \right|_p \le (1 - \alpha_n) \left(\left| \left| \sigma_n \star f - f \right| \right|_p + \left| \left| \psi_n \star f - f \right| \right|_p \right)$$

Now, As proved by Singh D. and Singh D. [2], we have

If $h_n(x)$ is an approximate identity and $f \in L^p(R)$, then $h_n \star f \to f \in L^p(R)$.

So, by using the above, we obtain $||(h_n - \sigma_n) \star f||_n \to 0$."

(b) "For $f \in L^{\infty}(R)$, $|(h_n - \psi_n) \star f| \le ||(h_n - \psi_n) \star f|| \to 0$ by part (a)."

(c) "For $f \varepsilon L^p(R)$,

 $\int_{R} \sum_{n} (1 - \alpha_{n})^{p} |\sigma_{n} \star f(x, y)|^{p} dx dy = \sum_{n} ||(1 - \alpha_{n})\sigma_{n} \star f(x, y)||_{p}^{p} \leq \sum_{n} (1 - \sigma_{n})^{p} ||f||_{p}^{p} < +\infty.$

Then $(1 - \alpha_n)\sigma_n \star f \to 0$ a.e. Similarly $(\alpha_n - 1)\psi_n \star f \to 0$ a.e.

Definition 1.3. "An approximate identity $\{h_n\}$ is called L^p -good if $h_n \star f \to f$ a.e. for all $f \in L^p(R)$, and it is called good if it is L^p -good for every $1 \le p \le +\infty$. An approximate identity $\{h_n\}$ is called L^p -bad if therte exists $f \in L^p(R)$ such that $h_n \star f$ not approachable to f on a set of positive measure. **Definition 1.4.** Let $\{\psi_n\}_{n \in \mathbb{N}}$ and $\{\sigma\}_{n \in \mathbb{N}}$ be approximate identities , α_n be a sequence of real numbers with $0 \le \alpha_n \le 1$ and $\alpha_n \to 1$. We call preturbed approximate identities any approximate identity $\{h_n\}_{n \in \mathbb{N}}$ of the form $h_n \psi_n + (1 - \alpha_n) \sigma_n$."

2. Main Results.

Theorem 2.1.

(i)" Given any good approximate identity $\{\psi_n\}_{n\in\mathbb{N}}$ there exists a perturbed approximate identity $\{h_n\}_n \in \mathbb{N}$ such that $f \in L^q(\mathbb{R})$

$$(h_n \star \hat{f})(\zeta, \phi) = \widehat{h_n}(\zeta, \phi) \hat{f}(\zeta, \phi) \left(\widehat{h_n}(\zeta, \phi) \hat{f}(\zeta, \phi)\right) \to f(x, y) \leq q < p$$

(ii) $\left(\widehat{h_n}(\zeta,\phi)\widehat{f}(\zeta,\phi)\right) \to f(x,y)$ for q > p and $\left(\widehat{h_n}(\zeta,\phi)\widehat{f}(\zeta,\phi)\right)$ not approaches to f(x,y) for $1 \le q \le p$.

ISSN: 1074-133X Vol 32 No. 1 (2025)

(iii)
$$(\widehat{h_n}(\zeta,\phi)\widehat{f}(\zeta,\phi)) \to f(x,y)$$
 for $q=\infty$

 $(\widehat{h_n}(\zeta, \phi)\widehat{f}(\zeta, \phi))$ not approachable to f(x, y) for $1 \le q < \infty$."

Proof. (i) Let

$$\begin{split} g_n(x) &= \frac{1}{\sqrt{2\pi}} \int_R e^{\iota(x\zeta + y\phi)} \widehat{h_n}(\zeta, \phi) \widehat{f}(\zeta, \phi) d\zeta d\phi = \frac{1}{\sqrt{2\pi}} \int_R e^{\iota(x\zeta + y\phi)} \widehat{h_n}(\zeta, \phi) \int_R f(x, y) dx dy \\ &= \frac{1}{\sqrt{2\pi}} \int_R h_n(x + y) f(x, y) dx dy or = (h_n \star f)(x, y) \widehat{h_n}(\zeta, \phi) \widehat{f}(\zeta, \phi) \\ &= \frac{1}{\sqrt{2\pi}} \int_R e^{\iota(x\zeta + y\phi)} \widehat{h_n}(\zeta, \phi) \widehat{f}(\zeta, \phi) d\zeta d\phi = (h_n \star f)(x, y) \text{``Fix } q \geq p \end{split}$$

and taking $1 - \alpha_n = \frac{1}{(n\log^2 n)^{1/p}}$. Since $\sum_n (1 - \alpha_n)^q < +\infty$ and ψ_n is an L^q -good approximate identity, using Proposition 1.4. we obtain that h_n is also an L^q -good approximate identity." Hence for $q \ge p, (h_n \star f)(x, y) \to f(x, y)$

Now, we have to prove that for each $1 \le q < p$, there exists $f_q \varepsilon L^q(R)$ so that " $\limsup_k |x|^k \frac{d^k}{dx^k} (h_k \star f_q \to \infty)$ " on a set of positive measure.

Set,

$$f_q(x,y) = \frac{1}{(xylog^2(x/2,y/2))^{1/q}} \chi_{[0,1]}(x) \varepsilon L_q(R).$$

Take

$$r_n = \frac{1}{n^{1+1/p}(logn)^{2/p}}$$
, $a_n = r_n^{\frac{1}{p+1}} = \frac{1}{n^{1/p}}(logn)^{\frac{2}{p(p+1)}}$,

"
$$J_n = [a_n - r_n, a_n + r_n]$$
 and

$$U_n = [-a_n + r_n, -a_{n+1} + r_{n+1}],$$
"

for sufficiently large n and for all $k \ge n$, $x \in U_k$.

$$h_k \star f_q(x,y) \geq (1-\alpha_k)\sigma_k \star f_q(x) \geq \frac{1}{\left(klog^2(k)\right)^{1/p}} \int_{-J_k} \sigma_k(x,y) f_q(x-y) dx dy Now, we have,$$

$$h_k \star f_q(x, y) \ge \frac{f_q(C_{r_k}(\log k)^{2/p+1})}{(k \log^2 k)^{1/p}} \int_{-I_k} \sigma_k(x, y) dx dy$$

or,
$$f_q(C_{r_k}(logk)^{2/p+1}) = \frac{k^{1/q+1/pq}(logk)^{\frac{2}{pq(p+1)}}}{c^{1/q}(log(c/2k^{(p+1)/p}(logk)^{2/p(p+1)}))^{2/q}}$$

Then,
$$h_k \star f_q(x, y) \ge C_k^{\frac{1}{q} - \frac{1}{p} + \frac{1}{pq}} H_q(k) > k^{\delta} \ge n^{\delta}$$
,

where,
$$H_q(k) = \frac{(logk)^{\frac{2}{pq(p+1)} - \frac{2}{p}}}{C^{1/q}(log(C/2k^{(p+1)/p}(logk)^{2/p(p+1)})^{2/q}}$$

ISSN: 1074-133X Vol 32 No. 1 (2025)

and
$$0 < \delta < 1/q - 1/p + 1/pq$$
.
So, $\frac{d^k}{dx^k} \frac{d^k}{dy^k} \Big(h_k \star f_q(x, y) \Big) \ge C \frac{d^k}{dx^k} \frac{d^k}{dy^k} \Big(k^{1/q - 1/p + 1/pq} H_q(k) \Big)$
or, $|xy|^n \frac{d^n}{dx^n} \frac{d^n}{dy^n} \Big(h_k \star f_q(x, y) \Big) \ge |xy|^n \int_{-J_k} f_q(x - y) \frac{d^n}{dx^n} \frac{d^n}{dy^n} \sigma_k(x, y) dx dy$
for $k \ge n$, $|xy|^k \frac{d^k}{dx^k} \frac{d^k}{dy^k} \Big(h_k \star f_q(x, y) \Big) \ge |xy|^n \frac{d^n}{dx^n} n^\delta \ge |xy|^n \frac{d^n}{dx^n} \frac{d^n}{dy^n} \Big(\frac{1}{(x - y)^{p\delta}} \Big)$

$$= \frac{|xy|^n (-1)^n (p\delta + n - 1)!}{(p\delta)! (x - y)^{p\delta + n}}$$

$$\ge |xy|^n \frac{(-1)^n (p\delta + n - 1)!}{(p\delta)! Cr_n (logn)^{2/p + 1} (logn)^{2\delta/p + 1}} \to \infty \text{ as } n \to \infty.$$

"In view of Sawyer's Principle [4], there exists a functions $f \varepsilon L^q([0,1)) \subseteq L^q(R)$ such that $\limsup_n |xy|^n \frac{d^n}{dx^n} \frac{d^n}{dy^n} (h_n \star f) \to \infty$ a.e. on a set of positive measure in R. It follows that $(h_n \star f)$ not belongs to S(R) or $h_n \star f$ not approachable to f or $\widehat{h_n}(\zeta, \phi) \widehat{f}(\zeta, \phi)$ not approachable to f(x, y) for $1 \le q < p$.

Let p_n be a decreasing sequence of real numbers such that $p_1 > p_2 > \dots p_n > \dots p$. for each p_i we can construct a perturbation $\{h_n^i\}_n$ of $\{\psi_n\}$ that is L^q -good for $q \geq p_i$, and L^q -bad for $1 \geq q < p_i$. Consider a sequence of blocks $\{T_k\}_{k \in \mathbb{N}}$, where $T_k = \{h_{n_{k-1}+1}, \dots, h_{n_k}^k\}$ and $\{n_k\}$ is a sequence of positive integers increasing to infinity. Let $S_k = \{n_{k-1}+1, \dots, n_k\}$. and let $\{h_n\}_n = U_k T_k$. Now, fix q > p. There exists $n_0 \in \mathbb{N}$ so that for all $n > n_0$ we have $p_n < q$ ".

$$\sum_{k=n_0}^{\infty} \sum_{n \in S_k} (1 - \alpha_n^k)^q \le \sum_{k=n_0}^{\infty} \sum_{n \in S_k} \frac{1}{(n \log^2 n)}^{q/p_{n_0}} \le \sum_{n} \frac{1}{(n \log^2 n)^{q/p_{n_0}}} < \infty.$$

Using Proposition 1.2(c), we get $h_n \star f \to f$ for $f \in L^q(R)$, q > p, or $\widehat{h_n}(\zeta, \psi) \widehat{f}(\zeta, \psi) \to f(x, y)$ for q > p.

Now consider a sequence " $C_i^N \to \infty$ as $i \to \infty$. Since $\{h_n^i\}_n$ is L^q -bad for all $q < p_i$, it is also L^p -bad. These exists $f_i \in L^p([0,1))$ and $\lambda_i^N > 0$ such that

$$\begin{split} ||sup_{n>n_{i-1}}h_n^i\star f_i(x,y)|| &> \int ||h_n^i\star f_i(x,y)||^p \ dxdy > C^N ||f_i(xy-\lambda_i^N)||_p^p \\ &= 2C_i^N, \big[||f_i(xy-\lambda_i^N)||_p = 2^{1-i}, C^N = 2^{(i-1)p+1}C_i^N\big]. \\ \end{split}$$

It follows that there exists $n_i > n_{i-1}$, so that $||sup_{n_{i-1} < n \le n_i} h_n^i \star f_i|| > C_i^N$.

Set
$$\tilde{f} = \sum_i f_i$$
, then $||\tilde{f}||_p \le \sum_i ||f_i||_p \le 2$.

"Suppose that $\{h_n\}$ satisfies a weak (p,p) inequality in $L^p([0,1))$, We know that if μ be a finite positive Borel measure, then there exists a sequence μ_n of atomic measure that converges to μ weakly or if f has compact support then

$$\int_{R} d\mu_{n} f(x, y) \to \int_{R} f(x, y) d\mu d\gamma$$

where, $\mu_n \to \mu$ and $\gamma_n \to \gamma$, weakly.

If $f \varepsilon L^1(R)$, $d\mu d\gamma = |f(x,y)| dx dy$ is a finite Borel measure, so we can find $\gamma_n \mu_n = \sum_{i=1}^N C_i^N \delta_{\lambda_i^N} \to \mu \gamma$ weakly.

ISSN: 1074-133X Vol 32 No. 1 (2025)

Consider

$$\begin{aligned} \left| \left\{ \sup_{n} \left(h_{n}^{i} \star f \right) \right\} \right| &= \int_{-J_{k}} \left| h_{n}^{i}(x, y) f(x - y) \right|^{p} dx dy \le \int_{-J_{k}} \left| h_{n}^{i}(x, y) d\mu_{n}(x - y) \right|^{p} dx dy \\ &\le \left| \left| \sum_{i=1}^{N} f(xy - \lambda_{i}^{N}) C_{i}^{N} \right| \right|_{p}^{p} \sum_{i=1}^{N} \left| C_{i}^{N} \left| f(xy - \lambda_{i}^{N}) \right| \right|_{p}^{p} \le C_{0}^{N} \left| \left| f \right| \right|_{p}^{p} \\ &= 2^{p} C_{0}^{N} . \text{"} (1) \end{aligned}$$

On the other hand

$$\left|\left\{sup_n(h_n\star f)\right\}\right| \leq \left|\left\{sup_{n_{i-1} < n \leq n_i} \left(h_n^i\star f(i)\right)\right\}\right| > C_i^N\left(2\right)$$

Combining equations, we get

$$C_0^N > C_i^N But C_i^N \to \infty$$

as $i \to +\infty$. Hence $h_n \star f$ not approachable to f in $L^p([0,1))$. Since the spaces $L^q([0,1))$ are nested, $\{h_n\}$ is $L^q([0,1))$ -bad for all $1 \le q \le p$. Therefore, such a choice of $\{n_k\}$ makes $\{h_n\}$ $L^q(R)$ -bad for all $1 \le q \le p$. This implies that $\widehat{h_n}(\zeta,\psi)\widehat{f}(\zeta,\psi)$ not approachable to f(x,y) for $1 \le q \le p$. (iii) "Let $\{\psi_n\}_{n\in\mathbb{N}}$ be a good approximate identity and let $\{\zeta_n\}_{n\in\mathbb{N}}$ be any approximate identity. Let $\{p_n\}$ be a sequence of real numbers satisfying

$$1 \le p_1 < p_2 < \ldots < p_n \to \infty$$

Consider the blocks $\{T_k\}$, where each block T_k is related to p_i , for $i \varepsilon S_n$, let

$$h_i = \alpha_i^k \psi_i^k + (1 - \alpha_i^k) \sigma_i^k.$$

Choose n_k such that $\alpha_i^k \to 1$. Then since $\{\psi_n\}$ is L^{∞} good,

 $\psi_n \star f \to f$ a.e. for all $f \varepsilon L^{\infty}(R)$,

and, $\alpha_i^k \psi_i^k \star f \to f$ a.e. for all $f \varepsilon L^{\infty}(R)$

Since, $\sigma_i^k \star f(x) \le ||f||_{\infty}$.

 $(1 - \alpha_i^k)\sigma_i^k \star f \to 0$ a.e. for all $f \in L^{\infty}(R)$.

it follows that $h_n \star f \to 0$ a.e. for all $f \varepsilon L^{\infty}(R)$.

This implies that $\left(\widehat{h_n}(\zeta,\psi)\widehat{f}(\zeta,\psi)\right) \to f(x,y)$ for $q=\infty$.

The approximate identity $\{h_n^k\}_n$ is L^{pm} -bad for every $m\varepsilon\{1,\ldots,k\}$, since it is L^q -bad for every $1 \le q \le p_k$. There exists $f_m^k\varepsilon L^{p_m}([0,1))$ with $||f_m^k(xy-\lambda_m^{k(N)}||=2^{-k},\lambda_m^{k(N)}>0$ and $n_m^k>m_{k-1}$ so that

$$\left| \left\{ sup_{n_{k-1}} < n < n_m^k (h_n^k \star f_m^k) \right\} \right| > C^N ||f_m^k (xy - \lambda_m^{k(N)})||_{p_m}^{p_m} = \frac{C_k^N}{2^{kp_m}}$$

Let $\tilde{f} = \sum_{k \ge k_0} f_{k_0}^k$, then $||\tilde{f}||_{pk_0} < 2$.

So,
$$|\{sup_n(h_n \star \tilde{f})\}| \le C_0 ||\tilde{f}||_{pk_0}^{pk_0} \le 2^{p_{k_0}} C_0^N.$$
 (3)

Hence,
$$|\{sup_n(h_n \star \tilde{f})\}| \ge |\{sup_{n_{k-1}} < n < n_m^k(h_n^k \star f_{k_0}^k)\}| > \frac{c_k^N}{2^{kp_{k_0}}}$$
" (4)

ISSN: 1074-133X Vol 32 No. 1 (2025)

Using the equations, we get

$$C_0^N > \frac{C_k^N}{2^{kp_{k_0}(k+1)}} \to +\infty$$

Thus we conclude that $\widehat{h_n}(\zeta, \psi)\widehat{f}(\zeta, \psi)$ not approachable to f(x, y) for $1 \le q \le \infty$.

Hence, the proof is completed.

References:

- [1] A.Bellow, Perturbation of a sequence, Advances in Mathematics, 78(1989), 131-139.
- [2] K. Devendra and S. Dimple, Fourier Transform in $L^p(R)$ Spaces, $p \ge 1$, 3(2011), 14-25.
- [3] K. Reinhold-Larsson, Discrepancy of behaviour of perturbed sequences in L^p -spaces , Proc. Amer. Math. Soc., 120(1994), 865-874.
- [4] S. Sawyer, Maximal inequalities of weak type, Ann. of Math, 84(2)(1966), 157-174.