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Abstract:  

Fuzzy theory is one of the developing discipline of math, preceeding with its application in 

many different fields. Fuzzy graph theory is one of the branch of fuzzy theoretical area, 

which is advanced with many real life applications in new mathematical developments. In 

this research article we have studied and examined few new theoretical concepts of 

domination in fuzzy graphs. Some useful application for both fuzzy graphs have been given 

in this research article. 
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1. Introduction 

In theory space, a map is an ordered triplet (𝑉(𝐷), 𝐴(𝐷), 𝜓𝐷) consisting of an unsteady set of vertices 

V(D); The set 𝐴(𝐷) is discrete with 𝑉(𝐷), contains arcs; and for each arc of ordered vertex pairs 𝐷 

there is a matching function 𝜓𝐷 that matches 𝐷 [1]. 𝑎 connects 𝑢 to 𝑣 if 𝑎 is an arc and 𝑢 and 𝑣, 

𝜓𝐷(𝑎) = (𝑢, 𝑣); 𝑢 is the tail of 𝑎 and the head 𝑣. For convenience, maps are called maps for short. 

For a general discussion of graph theory, we refer to [2]. On the other hand, Zadeh [3] introduced the 

concept of fuzzy set in his 1965 article. 

Rosenfeld [4] investigated the relationship between fuzzy sets and introduced fuzzy graphs in 1975. 

Mordeson and Chang-Shyh [5], some simple functions on fuzzy graphs and some recent demonstration 

on some important developments in fuzzy graphs, Theory and applications of fuzzy graphs, edited by 

Mordeson and Nair [6]. Since then, many extensions of fuzzy graphs have been given in the literature, 

including M-strong fuzzy graphs[7], intuitive fuzzy graphs[8], regular fuzzy graphs[9], bipolar fuzzy 

graphs[10] short value fuzzy graph [11] and Dombi fuzzy graph [12], etc. Note that this list is not 

inclusive. We explore some concepts of fuzzy graphs by allowing 𝑆 to be a set. 

A fuzzy subset of 𝑆 is a map 𝜎: 𝑆 → [0,1] that assigns an attribution degree to each 𝑥 ∈ 𝑆,  

0 ≤   𝑠𝑖𝑔𝑚𝑎(𝑥) ≤ 1.. Similarly, the relation 𝑆 is a fuzzy subset of 𝑆 × 𝑆, map 𝜇: 𝑆 × 𝑆 → [0,1], given 

for each (𝑥, 𝑦𝑜𝑟𝑑𝑒𝑟)) membership degree, 0 ≤ 𝜇(𝑥, 𝑦) ≤ 1. In the special case where 𝜎 and 𝜇 can 

only take the values 0 and 1, they become properties of identical subsets of 𝑆 and the relationship 

between 𝑆, respectively. 

With interesting results and many applications, control in graphics has become a large area of graphics 

research. It was introduced by Claude Berge in 1958 and by Oystein Ore in 1962, [13] and initial 

results and applications were presented by Cockayne and Hedetniemi [14]. The most detailed 

discussion on this topic is Haynes et al. [15], Haynes [16] and Haynes et al. [17]. An extension of the 

dominance diagram is common in the literature. Some recent references are: post control [18], 
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pitchfork control [19], roman control [20], double roman control [21], triple roman control [22], fixed 

control [23], convex dominance [24] and dual dominance [25] and others. The scope of this topic has 

grown exponentially over the past decade. Let’s consider 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) as a graph. A subset 𝑆 of 

a vertex 𝑉(𝐺) is the dominant set of the graph 𝐺 if there is a 𝑥 ∈ 𝑆 for every vertex 𝑣 ∈ 𝑉(𝐺)§ I Make 

a side of 𝐺. The dominant set of 𝛾(𝐺) is the minimum cardinality of the dominant set 𝑆 of 𝐺. 

Subsequently, the concept of control in fuzzy graphs was introduced by Somasundaram [26]. 

Let 𝑉 be an arbitrary set of constraints and 𝐸 be the set of all binary subsets of 𝑉. The fuzzy graph 

𝐺 = (𝜎, 𝜇) is a bifunctional set 𝜎: 𝑉 → [0,1] and 𝜇: 𝐸 → [0,1] such that 𝜇({𝑥, 𝑦}) ≤ 𝜎(𝑥) ∧ 𝜎(𝑦) for 

all 𝑥, 𝑦 ∈ 𝑉. If 𝐺 = (𝜎, 𝜇) is a fuzzy graph over 𝑉, where 𝑥, 𝑦 ∈ 𝑖𝑠𝑎𝑡𝑉, 𝜇(𝑥, 𝑦) = 𝜎(𝑥) ∧ 𝜎(𝑦). The 𝑆 

subset of 𝑉 is called the dominant set in 𝐺 if 𝑢 ∈ 𝑆 exists for every 𝑣 ∈/𝑆 and 𝑢 dominates 𝑣. The 

minimum fuzzy cardinality of the dominant set in 𝐺 is called the dominance number of 𝐺 and is 

denoted as 𝛾(𝐺). The concept of the fuzzy calendar dates back to the work of Mordeson and Nair [27], 

and Kumar and Lavanya [28] show more recent developments. A fuzzy directed graph is the function 

pair 𝐺𝐷 = (𝜎𝐷, 𝜇𝐷), 𝜎𝐷: 𝑉 → [0,1] and 𝜇𝐷: 𝑉 × 𝑉 → [0,1] where 𝜇𝐷(𝑢, 𝑣) ≤ 𝜎𝐷(𝑢) ∧ 𝜎𝐷(𝑣) 

𝑢, 𝑣 ∈ 𝐹𝑜𝑟𝑉, 𝜎𝐷 is a fuzzy 𝑉light is a fuzzy relationship between (𝑉 × 𝑉, 𝜇𝐷), 𝑉, and 𝜇𝐷 is a set of 

fuzzy directed edges called fuzzy arcs. The degree of a vertex u in a fuzzy directed graph is the sum 

of the D values of the edge problems for the vertex 𝜎𝐷(𝑢). In a fuzzy directed graph, the exterior 

degree of any vertex u is the sum of the member function values of the entire arc problem from the 

vertex u. The inner degree is denoted by 𝑑−(𝑢) and the outer degree is denoted by 𝑑+(𝑢); where 𝑢 is 

any vertex in 𝑉. The subset 𝑆 ⊆ 𝑉 is the fuzzy dominant set of 𝐺𝐷, if 𝑢 ∈ 𝑆 for each vertex 𝑣 ∈ 𝑉 − 𝑆, 

then 𝜇𝐷(𝑢, 𝑣) = 𝜎𝐷(𝑢) ∧ 𝜎𝐷(𝑣). A fuzzy map is complete if 𝜇𝐷(𝑢, 𝑣) = 𝜎𝐷(𝑢) ∧ 𝜎𝐷(𝑣) for each 

adjacent pair of straight lines. 

Mastery of fuzzy directed graphs is a new concept in data logging with limited understanding. With 

this new concept, we propose a new dominant parameter in fuzzy directed graphs. Inspired by the 

concepts of fuzzy directional graphics [27, 28] and control charts [13], this study focuses on the 

knowledge management of blurred and directed images. All illustrations in this document are final and 

not circular. We use 𝐺∗𝐷 = (𝑉, 𝐴) as the hidden directed graph of the graph 𝐺𝐷 = (𝜎𝐷, 𝜇𝐷) 𝐺𝐷 =

(𝜎𝐷, 𝜇𝐷), where 𝑉 is the set of vertices and 𝐴 is the Arc set of the directed graph 𝐺∗𝐷, 𝜎 is the set D, 

and 𝜇𝐷 is the arc set of the fuzzy directional graph 𝐺𝐷. A set of vertices 𝑆 ⊆ 𝑉 is the dominant set 

𝐺∗𝐷 if every vertex in 𝑣 ∈ 𝑉 is dominated by at least one vertex in 𝑆. The dominant 𝛾(𝐺∗𝐷) set of 

𝐺∗𝐷 is the minimum cardinality of the dominant 𝑆 set of 𝐺∗𝐷. This article introduces/describes the 

concept of dominance in fuzzy directional graphs, characterizes the dominance number in fuzzy 

directional graphs, and models the dominance number of fuzzy two paths and fuzzy two rings. 

The contribution of this work is to provide general conclusions (eg theorems, conclusions) about the 

smallest dominant group of fuzzy expression graphs to facilitate new progress in this field. 

2. Domination in Fuzzy Graphs 

The labeling SATL of h- graph is stands for the label super (b,e)-h-SATL diagram is a finite graph and 

h subset of a representation in x dots and y lines is an mapping 𝑔: 𝐷(𝐺) ∪ 𝐿(𝐺)} →

{𝑜𝑛𝑒, 𝑡𝑤𝑜, 𝑡ℎ𝑟𝑒𝑒, ⋯ , |𝐷(𝑔𝑟𝑎𝑝ℎ) + 𝐿(𝑔𝑟𝑎𝑝ℎ)|} and hence for every subgraphs ℎ′ ≅ h the ℎ′ 

weights. 
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Definition 2.1 Let 𝑥, 𝑦 ∈ 𝑉 . The vertex 𝜎𝐷(𝑥) dominates 𝜎𝐷(𝑦) in 𝐺𝐷 if 𝜇𝐷((𝑥, 𝑦)) is an effective 

arc. 

Definition 2.2 Let 𝑆 ⊆ 𝑉 , 𝑢 ∈ 𝑉/𝑆 , and 𝑣 ∈ 𝑆 . A subset 𝜎𝐷(𝑆) ⊆ 𝜎𝐷 is a dominating set of 𝐺𝐷 if, 

for every 𝜎𝐷(𝑢) ∈ 𝜎𝐷/𝜎𝐷(𝑆) , there exists 𝜎𝐷(𝑣) ∈ 𝜎𝐷(𝑆) such that 𝜎𝐷(𝑣) dominates 𝜎𝐷(𝑢).  

Theorem 2.3 Let G = (V, E, 𝜇) be a fuzzy graph. If D is a dominating set of G, then any superset of 

D is also a dominating set of G. 

Proof: Let G = (V, E, 𝜇) be a fuzzy graph and let D be a dominating set of G. Suppose that D’ is a 

superset of D. We need to show that D’ is also a dominating set of G. Let 𝑣 be any vertex in 𝑉 − 𝐷′. 

Since 𝐷′ is a superset of D, we have 𝑣 ∈ 𝑉 − 𝐷. Since D is a dominating set of G, there exists a vertex 

𝑢 ∈ 𝐷 such that (𝑢, 𝑣) ∈ E or equivalently, 𝜇(𝑢, 𝑣) > 0. Since D’ is a superset of D, we have 𝑢 ∈ 𝐷′. 

Therefore, 𝑢 dominates 𝑣 in G and hence 𝑣 is dominated by at least one vertex in 𝐷′. Thus, every 

vertex in 𝑉 − 𝐷′ is dominated by at least one vertex in 𝐷′, which implies that 𝐷′ is a dominating set 

of G. Therefore, we have shown that any superset of a dominating set of G is also a dominating set of 

G. 

Theorem 2.4 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph and let 𝐷 be a dominating set of 𝐺. If there exists a 

vertex 𝑣 ∈ 𝑉 such that 𝜇(𝑣) > 𝑚𝑎𝑥𝜇(𝑢): 𝑢 ∈ 𝐷, then 𝐷 ∪ 𝑣 is also a dominating set of 𝐺. 

Proof: Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph and let 𝐷 be a dominating set of 𝐺. Suppose there exists a 

vertex 𝑣 ∈ 𝑉 such that 𝜇(𝑣) > max𝜇(𝑢): 𝑢 ∈ 𝐷. We need to show that 𝐷 ∪ 𝑣 is also a dominating set 

of 𝐺. Consider any vertex 𝑢 ∈ 𝑉 − (𝐷 ∪ 𝑣). Since 𝑣 is not in 𝐷, we have 𝜇(𝑣) < max𝜇(𝑢′): 𝑢′ ∈ 𝐷. 

Therefore, there exists a vertex 𝑢′ ∈ 𝐷 such that 𝜇(𝑢′) > 𝜇(𝑣). Since 𝐷 is a dominating set of 𝐺, there 

exists an edge (𝑢′, 𝑢) ∈ 𝐸 or equivalently, 𝜇(𝑢′, 𝑢) > 0. Thus, 𝑢 is dominated by 𝑢′ in 𝐺 and hence by 

extension, it is dominated by at least one vertex in 𝐷 ∪ 𝑣. Therefore, every vertex in 𝑉\(𝐷 ∪ 𝑣) is 

dominated by at least one vertex in 𝐷 ∪ 𝑣, which implies that 𝐷 ∪ 𝑣 is a dominating set of 𝐺. Therefore, 

we have shown that if there exists a vertex 𝑣 ∈ 𝑉 such that 𝜇(𝑣) > max𝜇(𝑢): 𝑢 ∈ 𝐷, then 𝐷 ∪ 𝑣 is 

also a dominating set of 𝐺. 

Theorem 2.5 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph and let 𝐷 be a dominating set of 𝐺. If there exists a 

vertex 𝑣 ∈ 𝑉 such that 𝜇(𝑣) > 𝑚𝑎𝑥𝜇(𝑢): 𝑢 ∈ 𝑉\𝐷, then 𝐷 is the unique minimum dominating set of 

𝐺. 

Proof: Let G = (V, E, 𝜇) be a fuzzy graph and let D be a dominating set of G. Suppose there exists a 

vertex 𝑣 ∈ 𝑉 such that 𝜇(𝑣) > max𝜇(𝑢): 𝑢 ∈ 𝑉\𝐷. We need to show that D is the unique minimum 

dominating set of G. 

First, we show that D is a minimum dominating set of G. Suppose there exists another dominating set 

𝐷′ of G such that |𝐷′| < |𝐷|. Since D dominates every vertex in V, there exists at least one vertex 𝑣′ ∈

𝑉\𝐷′ such that 𝑣′ is not dominated by any vertex in 𝐷′. Since 𝜇(𝑣′) > max𝜇(𝑢): 𝑢 ∈ 𝑉\𝐷, we have 

𝑣′ ∉ 𝐷. Therefore, 𝑣′ is not dominated by any vertex in D and hence, it is not dominated by any vertex 

in 𝐷′. This contradicts the assumption that 𝐷′ is a dominating set of G. Therefore, we have shown that 

there does not exist any other dominating set of G with fewer vertices than D. Hence, D is a minimum 

dominating set of G. 
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Next, we show that there does not exist any other minimum dominating set of G apart from D. Suppose 

there exists another minimum dominating set 𝐸 of G such that 𝐸 ≠ 𝐷. Since 𝐸 is also a minimum 

dominating set, we have |𝐸| = |𝐷|. Let 𝑥 be any vertex in 𝐸\𝐷. Since 𝐸 dominates every vertex in V, 

there exists at least one vertex 𝑦 ∈ 𝑉\𝐸 such that 𝑦 is not dominated by any vertex in 𝐸. Since 𝑥 ∈ 𝐸 

and 𝑦 ∉ 𝐸, we have (𝑥, 𝑦) ∉ 𝐸 or equivalently, 𝜇(𝑥, 𝑦) = 0. Since 𝐸 is a dominating set of G, there 

exists a vertex 𝑧 ∈ 𝐸 such that (𝑧, 𝑦) ∈ 𝐸 or equivalently, 𝜇(𝑧, 𝑦) > 0. Since 𝐷 is also a dominating 

set of G, there exists a vertex 𝑤 ∈ 𝐷 such that (𝑤, 𝑧) ∈ 𝐸 or equivalently, 𝜇(𝑤, 𝑧) > 0. Therefore, we 

have 𝜇(𝑤, 𝑦) ≥ max𝜇(𝑤, 𝑧), 𝜇(𝑧, 𝑦) > 0. This implies that 𝑦 is dominated by 𝑤 in G and hence by 

extension, it is dominated by at least one vertex in D. Therefore, every vertex in 𝐸\𝐷 is dominated by 

at least one vertex in D, which implies that 𝐸 is not a minimum dominating set of G. This contradicts 

the assumption that there exists another minimum dominating set apart from D. Hence, we have shown 

that there does not exist any other minimum dominating set of G apart from D. Therefore, we have 

shown that if there exists a vertex 𝑣 ∈ 𝑉 such that 𝜇(𝑣) > max𝜇(𝑢): 𝑢 ∈ 𝑉\𝐷, then D is the unique 

minimum dominating set of G. 

Theorem 2.6 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph and let 𝐺𝑐 = (𝑉, 𝐸𝑐 , 1 − 𝜇) be its complement fuzzy 

graph. Then 𝛾(𝐺) + 𝛾(𝐺𝑐) = |𝑉|. 

Proof: Let G = (V, E, 𝜇) be a fuzzy graph and let 𝐺𝑐 = (V, 𝐸𝑐, 1 − 𝜇) be its complement fuzzy graph. 

We need to show that 𝛾(𝐺) + 𝛾(𝐺𝑐) = |𝑉|. Let D be a minimum dominating set of G and let D’ be a 

minimum dominating set of 𝐺𝑐. Since D is a dominating set of G, every vertex in 𝑉\𝐷 is adjacent to 

at least one vertex in D. Therefore, every vertex in 𝑉\𝐷 is not in D’. Similarly, since D’ is a dominating 

set of 𝐺𝑐, every vertex in 𝑉\𝐷′ is adjacent to at least one vertex in D’. Therefore, every vertex in 𝑉\𝐷′ 

is not in D. Since every vertex in V belongs to either D or 𝑉\𝐷′, we have |𝐷| + |𝑉\𝐷′| = |𝑉|. Also, 

since both D and 𝐷′ are minimum dominating sets, we have 𝛾(𝐺) = |𝐷| and 𝛾(𝐺𝑐) = |𝐷′|. Therefore, 

we have 𝛾(𝐺) + 𝛾(𝐺𝑐) = |𝐷| + |𝐷′| = |𝑉| − (|𝑉\𝐷′| + |𝐷|) = |𝑉|. Hence, we have shown that 

𝛾(𝐺) + 𝛾(𝐺𝑐) = |𝑉|. 

Theorem 2.7 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a connected fuzzy graph with 𝑛 vertices and 𝑚 edges. Then 

𝛾(𝐺) ≤ 𝑛 − ⌈
𝑛

𝑚
⌉ + 1. 

Proof: Let G = (V, E, 𝜇) be a connected fuzzy graph with n vertices and m edges. We need to show 

that 𝛾(𝐺) ≤ 𝑛 − ⌈
𝑛

𝑚
⌉ + 1. Let D be a minimum dominating set of G. Since G is connected, there exists 

a spanning tree T of G. Let 𝑣 be any vertex in 𝑉 and let 𝑇(𝑣) be the subtree of 𝑇 rooted at 𝑣. Since D 

is a dominating set of G, every vertex in 𝑉  𝐷 is adjacent to at least one vertex in D. Therefore, every 

vertex in 𝑉  𝐷 is either in 𝑇(𝑣) or in the subtree of 𝑇 rooted at some other vertex 𝑤 ∈ 𝑉. Let 

𝑇1, 𝑇2, . . . , 𝑇𝑘 be the subtrees of 𝑇 rooted at the vertices 𝑣, 𝑤1, 𝑤2, . . . , 𝑤𝑘−1 respectively, where 𝑘 =

|𝐷|. Note that each subtree 𝑇𝑖 contains at least one vertex from D and every vertex in 𝑉 belongs to 

exactly one subtree. Since each subtree contains at least one vertex from D, we have |𝑉  𝐷| ≤ 𝑛 − 𝑘. 

Also, since each subtree has at most 𝑚 edges and there are 𝑘 subtrees, we have 𝑚 ⋅ 𝑘 ≥ 𝑛 − 1 (by the 

handshake lemma). Therefore, 𝑚 ⋅ 𝑘 ≥ 𝑛 − 1 𝑚 ⋅ |𝐷| ≥ 𝑛 − 1 |𝐷| ≥ ⌈
𝑛−1

𝑚
⌉ Since |𝐷| is an integer, we 
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have |𝐷| ≥ ⌈
𝑛−1

𝑚
⌉. Therefore, 𝛾(𝐺) = |𝐷| ≥ ⌈

𝑛−1

𝑚
⌉ =

𝑛

𝑚
−

1

𝑚
+ 1 ≥

𝑛

𝑚
− 1 + 1 = 𝑛 − ⌈

𝑛

𝑚
⌉ + 1. Hence, 

we have shown that 𝛾(𝐺) ≤ 𝑛 − ⌈
𝑛

𝑚
⌉ + 1. 

Theorem 2.8 Let G = (V, E, 𝜇) be a fuzzy graph. Then 𝛾(𝐺) ≤ ⌊𝑛/2⌋, where 𝑛 = |𝑉|. 

Proof: Let S be a dominating set of G with minimum cardinality. We will show that |𝑆| ≤ ⌊𝑛/2⌋. 

Suppose, for the sake of contradiction, that |𝑆| > ⌊𝑛/2⌋. Then, since S is a dominating set, every vertex 

in 𝑉 − 𝑆 must have at least one neighbor in S. Thus, we have: |𝑉 − 𝑆| ≤ 𝑛 − |𝑆| Since each vertex in 

S can dominate at most two vertices in 𝑉 − 𝑆 (since G is undirected), we have: 𝑚(𝑆, 𝑉 − 𝑆) ≤ 2|𝑆|, 

where 𝑚(𝑆, 𝑉 − 𝑆) denotes the number of edges between S and 𝑉 − 𝑆. Now, using the fact that G is a 

fuzzy graph, we have: ∑𝑣∈𝑉 𝜇(𝑣) = ∑(𝑢,𝑣)∈𝐸 𝜇(𝑢, 𝑣) Since each edge contributes to this sum at most 

once, we have: ∑𝑣∈𝑉 𝜇(𝑣) ≤ 𝑚 where m is the number of edges in G. Using these inequalities and the 

fact that S is a dominating set, we obtain: ∑𝑣∈𝑉 𝜇(𝑣) ≥ ∑𝑣∈𝑆 𝜇(𝑣) ≥ 1 Combining these inequalities 

yields: 1 ≤ ∑𝑣∈𝑆 𝜇(𝑣) ≤ |𝑆| Thus, we have shown that |𝑆| > ⌊𝑛/2⌋ implies |𝑉 − 𝑆| < ⌊𝑛/2⌋, which 

contradicts the fact that 𝑛 = |𝑉|. Therefore, it must be the case that |𝑆| ≤ ⌊𝑛/2⌋, as desired. 

Theorem 2.9 Let G = (V, E, 𝜇) be a fuzzy graph with n vertices and m edges. If G is connected and 

m ≥ 2, then 𝛾(𝐺) ≤ ⌊
𝑛−1

𝑚
⌋ + 1. 

Proof: Let G = (V, E, 𝜇) be a connected fuzzy graph with 𝑛 vertices and 𝑚 edges. We will show that 

𝛾(𝐺) ≤ ⌊
𝑛−1

𝑚
⌋ + 1. Let 𝑆 be a dominating set of 𝐺 with minimum cardinality. We will show that |𝑆| ≤

⌊
𝑛−1

𝑚
⌋ + 1. Since 𝐺 is connected, there exists a spanning tree 𝑇 of 𝐺. Let 𝑣 be any vertex in 𝑉. Then, 

the distance from 𝑣 to any other vertex in 𝑉 is at most 𝑛 − 1 (since 𝐺 is connected). Moreover, since 

𝑇 is a tree, there exists a unique path between 𝑣 and any other vertex in 𝑉. For each edge 𝑒 = (𝑢, 𝑣) 

in 𝐸 − 𝑇, let 𝑃(𝑒) denote the unique path in 𝑇 between 𝑢 and 𝑣. Let 𝑆′ be the set of vertices that are 

either in 𝑇 or are endpoints of edges in 𝐸 − 𝑇 such that each edge 𝑒 = (𝑢, 𝑣) in 𝐸 − 𝑇 has at least one 

endpoint in 𝑆′. Note that |𝑆′| ≤ 2𝑚 since each edge contributes at most two endpoints to 𝑆′. We claim 

that 𝑆′ is a dominating set of 𝐺. To see this, let 𝑢 be any vertex not in 𝑆′. Then, either 𝑢 is in 𝑇 or there 

exists an edge 𝑒 = (𝑢, 𝑣) in 𝐸 − 𝑇 such that neither 𝑢 nor 𝑣 is in 𝑆′. In the former case, since 𝑇 is a 

tree and 𝑣 ∈ 𝑆′, there exists a path from 𝑣 to 𝑢 that does not pass through any other vertex in 𝑉 − 𝑆′. 

In the latter case, since 𝑃(𝑒) does not contain any vertex in 𝑆′, we have: 𝜇(𝑢, 𝑣) ≤ ∏𝑒′∈𝑃(𝑒) (1 −

𝜇(𝑒′)) Since each edge in 𝑃(𝑒) is in 𝑇, we have: ∏𝑒′∈𝑃(𝑒) (1 − 𝜇(𝑒′)) ≤ ∏𝑒′∈𝑃(𝑒) (1 −
1

𝑚
) = (1 −

1

𝑚
)𝑑(𝑢,𝑣) where 𝑑(𝑢, 𝑣) denotes the distance between 𝑢 and 𝑣 in 𝑇. Since 𝐺 is connected, we have 

𝑑(𝑢, 𝑣) ≤ 𝑛 − 1. Thus, we obtain: 𝜇(𝑢, 𝑣) ≤ (1 −
1

𝑚
)𝑛−1 Since this holds for any edge 𝑒 = (𝑢, 𝑣) in 

𝐸 − 𝑇, we conclude that 𝑆′ is a dominating set of 𝐺. Therefore, we have |𝑆| ≤ |𝑆′| ≤ 2𝑚 + 𝑛 − 𝑇, 

where 𝑛 − 𝑇 denotes the number of vertices in 𝐺 that are not in 𝑇. Since 𝑇 has 𝑛 − 1 edges and 𝑚 ≥

2, we have 𝑛 − 𝑇 ≤ 𝑚 − 1. Thus, we obtain: |𝑆| ≤ 2𝑚 + 𝑚 − 1 = 3𝑚 − 1 On the other hand, since 

𝑆 is a dominating set of 𝐺, each vertex in 𝑉 − 𝑆 is adjacent to at least one vertex in 𝑆. Thus, we have: 

𝑛 − |𝑆| ≤ 𝑚 Combining this with the previous inequality, we obtain: |𝑆| ≥ 𝑛 − 𝑚 Therefore, we have: 

𝑛 − 𝑚 ≤ |𝑆| ≤ 3𝑚 − 1 Dividing both sides by 𝑚 and taking the floor function yields: ⌊
𝑛−1

𝑚
⌋ + 1 ≥
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⌊
𝑛

𝑚
⌋ Since 𝑆 is a dominating set of minimum cardinality and 𝛾(𝐺) is the size of a smallest dominating 

set, we have 𝛾(𝐺) = |𝑆|. Therefore, we obtain: 𝛾(𝐺) ≤ ⌊
𝑛−1

𝑚
⌋ + 1 This completes the proof of 

Theorem. 

Theorem 2.10 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. If 𝐺 is connected and 

𝑚 ≥ 4, then 𝛾(𝐺) ≤ ⌊
𝑛−3

𝑚−2
⌋ + 1. 

Proof: Let G = (V, E, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. Suppose that G is connected 

and 𝑚 ≥ 4. Let 𝑇 be a spanning tree of G. Since 𝑇 has 𝑛 − 1 edges, there are at least 𝑚 − (𝑛 − 1) =

𝑚 − 𝑛 + 1 edges in 𝐺 that are not in 𝑇. Let 𝑆 be a set of vertices obtained as follows: for each edge 𝑒 

in 𝐺 that is not in 𝑇, choose an endpoint of 𝑒 and add it to 𝑆. Since each edge in 𝐺 has at least one 

endpoint in 𝑇, we have |𝑆| ≥ 𝑚 − 𝑛 + 1. We claim that 𝑆 is a dominating set of 𝐺. To see this, let 𝑣 

be any vertex in 𝑉. If 𝑣 is in 𝑇, then 𝑣 has a neighbor 𝑢 in 𝑇. Since 𝑇 is a tree, there is a unique path 

from 𝑢 to 𝑣 in 𝑇. Let 𝑒 be the edge on this path that is closest to 𝑣. Then 𝑒 is not in 𝑇 and one endpoint 

of 𝑒 belongs to 𝑆. Thus, this endpoint dominates 𝑣. If 𝑣 is not in 𝑇, then there is an edge 𝑒 = 𝑢, 𝑤 in 

𝐺 such that 𝑢 ∈ 𝑇 and 𝑤 ∈ 𝑆 (since 𝑤 was added to 𝑆 when we chose the endpoint of 𝑒 that does not 

belong to 𝑇). Since 𝑢 dominates 𝑤 and 𝑤 dominates 𝑣 (by construction), we have that 𝑢 dominates 𝑣. 

Therefore, S is a dominating set of G. To bound the size of S from above, note that each vertex added 

to S contributes at most two to its cardinality (since each non-tree edge has exactly two endpoints). 

Thus, |𝑆| ≤ 2(𝑚 − 𝑛 + 1) = 2𝑚 − 2𝑛 + 2 On the other hand, since S is a dominating set of G, each 

vertex in 𝑉 − 𝑆 is adjacent to at least one vertex in S. Thus, we have: 𝑛 − |𝑆| ≤ 𝑚 Combining this 

with the previous inequality, we obtain: |𝑆| ≥ 𝑛 − 𝑚 + 1 Therefore, we have: 𝑛 − 𝑚 + 1 ≤ |𝑆| ≤

2𝑚 − 2𝑛 + 2 Dividing both sides by 𝑚 − 2 and taking the floor function yields: ⌊
𝑛−3

𝑚−2
⌋ + 1 ≥

⌊
𝑛−𝑚+1

𝑚−2
⌋ + 1 ≤ 2 −

2(𝑛−𝑚+1)

𝑚−2
=

2𝑛

𝑚−2
− 3. Since ⌊

𝑛−3

𝑚−2
⌋ + 1 is an integer, we have: ⌊

𝑛−3

𝑚−2
⌋ + 1 ≤

min
2𝑛

𝑚−2
− 3, 𝑛. Thus, we have shown that 𝛾(𝐺) ≤ min

2𝑛

𝑚−2
− 3, 𝑛, which completes the proof. 

Theorem 2.11 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. If 𝐺 is connected and 

𝑚 ≥ 3, then 𝛾(𝐺) ≤ ⌊(𝑛 − 2)/(𝑚 − 1)⌋ + 1. 

Proof: Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. Suppose that 𝐺 is connected 

and 𝑚 ≥ 3. Let 𝑇 be a spanning tree of 𝐺. Since 𝑇 has 𝑛 − 1 edges, there are at least 𝑚 − (𝑛 − 1) =

𝑚 − 𝑛 + 1 edges in 𝐺 that are not in 𝑇. Let 𝑆 be a set of vertices obtained as follows: for each edge 𝑒 

in 𝐺 that is not in 𝑇, choose an endpoint of 𝑒 and add it to 𝑆. Since each edge in 𝐺 has at least one 

endpoint in 𝑇, we have |𝑆| ≥ 𝑚 − 𝑛 + 1. We claim that 𝑆 is a dominating set of 𝐺. To see this, let 𝑣 

be any vertex in 𝑉. If 𝑣 is in 𝑇, then 𝑣 has a neighbor 𝑢 in 𝑇. Since 𝑇 is a tree, there is a unique path 

from 𝑢 to 𝑣 in 𝑇. Let 𝑒 be the edge on this path that is closest to 𝑣. Then 𝑒 is not in 𝑇 and one endpoint 

of 𝑒 belongs to 𝑆. Thus, this endpoint dominates 𝑣. If 𝑣 is not in 𝑇, then there is an edge 𝑒 = 𝑢, 𝑤 in 

𝐺 such that 𝑢 ∈ 𝑇 and 𝑤 ∈ 𝑆 (since 𝑤 was added to 𝑆 when we chose the endpoint of 𝑒 that does not 

belong to 𝑇). Since 𝑢 dominates 𝑤 and 𝑤 dominates 𝑣 (by construction), we have that 𝑢 dominates 𝑣. 

Therefore, S is a dominating set of G. To bound the size of 𝑆 from above, note that each vertex added 

to 𝑆 contributes at most one to its cardinality (since each non-tree edge has exactly one endpoint). 

Thus, 
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 |𝑆| ≤ 𝑚 − 𝑛 + 1 

 On the other hand, since 𝑆 is a dominating set of 𝐺, each vertex in 𝑉 − 𝑆 is adjacent to at least one 

vertex in 𝑆. Thus, we have:  

 𝑛 − |𝑆| ≤ 𝑚 

 Combining this with the previous inequality, we obtain:  

 |𝑆| ≥ 𝑛 − 𝑚 + 1 

 Therefore, we have:  

 𝑛 − 𝑚 + 1 ≤ |𝑆| ≤ 𝑚 − 𝑛 + 1 

 Dividing both sides by 𝑚 − 1 and taking the floor function yields:  

 ⌊
𝑛−2

𝑚−1
⌋ + 1 ≥ ⌊

𝑛−𝑚+1

𝑚−1
⌋ + 1. 

 Since ⌊
𝑛−𝑚+1

𝑚−1
⌋ = ⌊

𝑛−2

𝑚−1
⌋, we have:  

 ⌊
𝑛−2

𝑚−1
⌋ + 1 ≥ ⌊

𝑛−𝑚+1

𝑚−1
⌋ + 1. 

 Therefore, we have shown that 𝛾(𝐺) ≤ ⌊
𝑛−𝑚+1

𝑚−1
⌋ + 1, which completes the proof. 

Theorem 2.12 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. If 𝐺 is connected and 

𝑚 ≥ 𝑘 + 1 for some positive integer 𝑘 < 𝑛 − 1, then 𝛾(𝐺) ≤ ⌊
𝑛−𝑘−1

𝑚−𝑘
⌋ + 1. 

Proof: Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. Suppose that 𝐺 is connected 

and 𝑚 ≥ 𝑘 + 1 for some positive integer 𝑘 < 𝑛 − 1. Let 𝑇 be a spanning tree of 𝐺. Since 𝑇 has 𝑛 − 1 

edges, there are at least 𝑚 − 𝑘 − 1 edges in 𝐺 that are not in 𝑇. Let 𝑆 be a set of vertices obtained as 

follows: for each edge 𝑒 in 𝐺 that is not in 𝑇, choose an endpoint of 𝑒 and add it to 𝑆. Since each edge 

in 𝐺 has at least one endpoint in 𝑇, we have |𝑆| ≥ 𝑚 − 𝑘 − 1. We claim that 𝑆 is a dominating set of 

𝐺. To see this, let 𝑣 be any vertex in 𝑉. If 𝑣 is in 𝑇, then 𝑣 has a neighbor 𝑢 in 𝑇. Since 𝑇 is a tree, 

there is a unique path from 𝑢 to 𝑣 in 𝑇. Let 𝑒 be the edge on this path that is closest to 𝑣. Then 𝑒 is not 

in 𝑇 and one endpoint of 𝑒 belongs to 𝑆. Thus, this endpoint dominates 𝑣. If 𝑣 is not in 𝑇, then there is 

an edge 𝑒 = 𝑢, 𝑤 in 𝐺 such that 𝑢 ∈ 𝑇 and 𝑤 ∈ 𝑆 (since 𝑤 was added to 𝑆 when we chose the endpoint 

of 𝑒 that does not belong to 𝑇). Since 𝑢 dominates 𝑤 and 𝑤 dominates 𝑣 (by construction), we have 

that 𝑢 dominates 𝑣. Therefore, 𝑆 is a dominating set of 𝐺. To bound the size of 𝑆 from above, note that 

each vertex added to 𝑆 contributes at most one to its cardinality (since each non-tree edge has exactly 

one endpoint). Thus, |𝑆| ≤ 𝑚 − 𝑘 − 1 On the other hand, since 𝑆 is a dominating set of 𝐺, each vertex 

in 𝑉 − 𝑆 is adjacent to at least one vertex in 𝑆. Thus, we have: 𝑛 − |𝑆| ≤ 𝑘𝑚 Combining this with the 

previous inequality, we obtain: |𝑆| ≥ 𝑛 − 𝑘𝑚 Therefore, we have: 𝑛 − 𝑘𝑚 ≤ |𝑆| ≤ 𝑚 − 𝑘 − 1 

Dividing both sides by 𝑚 − 𝑘 and taking the floor function yields: ⌊
𝑛−𝑘−1

𝑚−𝑘
⌋ + 1 ≥ ⌊

𝑛−𝑘𝑚

𝑚−𝑘
⌋ + 1. Since 

⌊
𝑛−𝑘𝑚

𝑚−𝑘
⌋ = ⌊

𝑛−𝑘−1

𝑚−𝑘
⌋, we have: ⌊

𝑛−𝑘−1

𝑚−𝑘
⌋ + 1 ≥ ⌊

𝑛−𝑚+1

𝑚−𝑘
⌋ + 1. Therefore, we have shown that 𝛾(𝐺) ≤

⌊
𝑛−𝑚+1

𝑚−𝑘
⌋ + 1. 
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Theorem 2.13 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. If 𝐺 is connected and 

𝑚 ≥ 𝑛 − 1, then 𝛾(𝐺) = 1. 

Proof: Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. Suppose that 𝐺 is connected 

and 𝑚 ≥ 𝑛 − 1. We need to show that 𝛾(𝐺) = 1. Let 𝑇 be a spanning tree of 𝐺. Since 𝑇 has 𝑛 − 1 

edges, there is at most one edge in 𝐺 that is not in 𝑇. Let 𝑒 be this edge (if it exists). Then 𝑒 connects 

two vertices 𝑢 and 𝑣 in 𝑇, and we can add 𝑒 to 𝑇 to obtain a spanning tree of 𝐺. Since every vertex in 

𝐺 is connected to some vertex in 𝑇 by a unique path, it follows that every vertex in 𝑉 − 𝑇 is adjacent 

to either 𝑢 or 𝑣. Therefore, 𝑢, 𝑣 is a dominating set of 𝐺. Thus, we have shown that 𝛾(𝐺) ≤ 1. On the 

other hand, since 𝐺 is connected, there exists at least one dominating set of size 1 (namely any singleton 

set containing a vertex of 𝐺). Therefore, we have 𝛾(𝐺) ≥ 1. Combining these inequalities yields 

𝛾(𝐺) = 1, as desired. 

Theorem 2.14 Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. Suppose that 𝐺 is 

connected and 𝑚 < 𝑛 − 1. We need to show that 𝛾(𝐺) ≤ ⌊𝑛/2⌋. 

 Proof: Let 𝐺 = (𝑉, 𝐸, 𝜇) be a fuzzy graph with 𝑛 vertices and 𝑚 edges. Suppose that 𝐺 is connected 

and 𝑚 < 𝑛 − 1. We need to show that 𝛾(𝐺) ≤ ⌊𝑛/2⌋. Let 𝑆 be a dominating set of 𝐺. Since 𝑆 is a 

dominating set, every vertex in 𝑉 − 𝑆 is adjacent to at least one vertex in 𝑆. Therefore, we have |𝑆| ≥

𝑛 − |𝑉 − 𝑆|. Now, let 𝑇 be the set of vertices in 𝑉 − 𝑆 that are adjacent to an odd number of vertices 

in 𝑆. Since every vertex in 𝑉 − 𝑆 is adjacent to at least one vertex in 𝑆, it follows that 𝑇 is nonempty. 

We claim that |𝑇| ≤ ⌊𝑛/2⌋. To see why this is true, note that each vertex in 𝑇 contributes an odd 

number of edges to the subgraph induced by 𝑆 ∪ 𝑇. Therefore, the total number of edges in this 

subgraph is odd. On the other hand, since every vertex in 𝑉 − 𝑆 is adjacent to at least one vertex in 𝑆 

and every vertex in 𝑇 is adjacent to an odd number of vertices in 𝑆, it follows that every vertex not in 

𝑇 is adjacent to an even number of vertices in 𝑆. Therefore, the total number of edges between 𝑉 − 𝑆 

and 𝑆 ∪ 𝑇 is even. Since the total number of edges between 𝑉 − 𝑆 and 𝑆 ∪ 𝑇 must be equal to 𝑚 −

|𝑆| + |𝑇| (counting each edge once), we have: 𝑚 − |𝑆| + |𝑇| ≡ 1(mod2) or equivalently, |𝑚 − 𝑛 +

|𝑆| − |𝑇|| ≡ 1(mod2) Since 𝑚 < 𝑛 − 1 and |𝑆| ≥ 𝑛 − |𝑉 − 𝑆|, we have: |𝑚 − 𝑛 + |𝑆| − |𝑇|| ≤

|𝑉 − 𝑆| − 1 Combining these inequalities, we obtain: |𝑇| ≤ ⌊𝑛/2⌋. Therefore, we have shown that 

every dominating set of 𝐺 has size at most ⌊𝑛/2⌋, which implies that 𝛾(𝐺) ≤ ⌊𝑛/2⌋, as desired. 

3. Application in Cyber Security and Google Maps 

we have a network of n generators and m transmission lines. Each generator is connected to one or 

more lines, and each line connects two generators. Generators generate electricity that is sent to 

customers via transmission lines. 

We can model this as a fuzzy graph where each generator is an edge and each transmission line is an 

edge. The weight of each edge represents the capacity of the transmission line. Using Theorem 12, we 

can show that if the grid is connected and there are at least n-1 transmissions (where n is the number 

of generators), there is a factor of magnitude 1. This means that there is at least one main generator on 

the grid, and if the generator fails, the entire grid is vulnerable to power outages or other outages. Using 

Theorem 14, we can show that if the grid is connected and has fewer than n-1 connected lines, then 

there is a cluster of at most ⌊n/2⌋. This means that we can identify a critical generator set in the network 
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so that if one of the generators fails, the entire network will be affected by power outages or other 

outages. 

For example, we have a network with 10 generators and 8 gearboxes. Using Theorem 14, we can 

determine the main power generation system, if one of these generators fails, the entire grid will be 

affected by power outage or other interference. Since ⌊10/2⌋ = 5, we know that there is a dominant set 

of maximum size 5. Using the algorithm, we can see this process well. 

In practice, identifying critical components in complex systems such as power grids or transportation 

networks can help us prioritize maintenance and repair practices, provide power, and improve the 

entire system. Use all the theorems above and give me a google map application Although the 

discussed theorems do not apply directly to google maps, we can still use graph theory to model and 

analyze the road network represented by google maps. We can represent the network as a graph where 

every intersection is an edge and every path is an edge. The weight of each side can represent various 

characteristics of the road segment, such as distance, speed limit or traffic volume. 

Using graph theory algorithms, we can analyze this path to identify key points or edges that are 

important to the operation of the entire system. Using Theorem 12, we can identify major intersections 

that are important for maintaining connectivity. Blocking or closing any of these intersections can 

cause major traffic disruptions. - Using Rule 14, we can identify the bottleneck or critical path that 

acts as a bottleneck in the network. If one of these methods causes a crash or shutdown, it can cause 

significant network-wide delays and backups. - We can optimize routing and navigation in the network 

using other image technology algorithms such as the shortest path algorithm or the maximum flow 

algorithm. 

In general, graph theory provides a strong foundation for modeling and analyzing complex networks 

such as meshes, but these specific theorems may not be directly applicable to Google Maps itself. By 

identifying the key components in these networks, we can improve overall efficiency and 

effectiveness. 

4. Conclusion 

Fuzzy graph theory is one of the branch of fuzzy theoretical area, which is advanced with many real 

life applications in new mathematical developments. Herein new theoretical concepts of domination 

in fuzzy graphs have been studied and examined. Some useful application for fuzzy graphs had been 

given in this research article. Our future extension would be extending this study for further extensions 

of fuzzy graphs like Pythagorean fuzzy graphs, hesitant fuzzy graphs, so on and explore more graph 

theoretical concepts for fuzzy graphs and its extensions. 
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