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Abstract 

𝐸𝑑𝑠(𝐺) ,the Degree sum energy of a graph 𝐺 is the total of all the absolute values of its 

Degree Sum eigenvalues. In this investigation one upper and lower constraints on the 

degree Sum energy are obtained in this study. 
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1. Introduction 

Let us assume that 𝐺 is a simple graph, and that 𝑉 (𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}  is its vertex set. When the 

vertices 𝑣𝑖 and 𝑣𝑗  are adjacent, the adjacency matrix 𝐴(𝐺) of the graph 𝐺 is a square matrix of rank 𝑛 

with the  (𝑖: 𝑗) − entry equal to unity, otherwise, it is equal to zero. The eigenvalues of the graph G 

are are  𝜹𝟏, 𝜹𝟐, … . , 𝜹𝒏, of 𝐴(𝐺), which are considered to be non-increasing in order. 

I. Gutman [6] originally defined the energy of G in 1978 as the total of its eigenvalues absolute values: 

𝑬(𝑮) = ∑ |𝜹𝒌|𝒏
𝒌=𝟏 . There has been a steady flow of articles on this subject since I. Gutman first 

established the graph energy 𝐸(𝐺) of a simple graph 𝐺. For basic mathematical properties of the theory 

of graph energy including its upper and lower bounds one can see [4, 11]. Erich Huckle[8], employed 

the energy of graphs technique in the early 1930s to develop approximations solutions for a family of 

organic molecules known as conjugated hydro carbons. 

Numerous matrix types, including Incidence [10], Distance [9], Lapalcian [7], Maximum Degree 

Matrix [1] and others are established and researched for graphs, with inspiration drawn from the 

adjacency matrix of a graph. In their publication [12], Ramane et al. introduced and investigated sum-

degree energy of 𝐺, defined as follows: 

Let G be a simple graph with connections. The matrix 𝐷𝑆𝑀(𝐺)  =  [𝑑𝑘𝑗  ]  needs to be defined as, 

𝑑𝑘𝑗 = {
 𝑑𝑘 + 𝑑𝑗 , 𝑤ℎ𝑒𝑛 𝑣𝑘  𝑎𝑛𝑑 𝑣𝑗  𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0                       𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒,
 

This is referred to as G's degree sum matrix. 

The degree sum energy DSE of 𝐺 is then written as 𝐸𝑑𝑠(𝐺) = ∑ |𝜉𝒌|𝒏
𝒌=𝟏 , where, 𝜉𝒌 are the 

eigenvalues of DSM(G), Furthermore, these eigenvalues are real numbers and are sorted in 

ascending order. 

Note that DSM(G) has 𝑡𝑟𝑎𝑐𝑒 =  0, and ∑ 𝜉𝑘
2 = 2𝔈𝑛

𝑘=1 , 𝑤ℎ𝑒𝑟𝑒 𝔈 = ∑ ( 𝑑𝑘 + 𝑑𝑗)2
1≤𝑘<𝑗≤𝑛  . 
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2. Bounds for Degree sum Energy 

Throughout this section G denotes a simple graph. This section is aimed to discuss upper and lower 

bounds for Degree sum Energy (DSE) of 𝐺. 

Theorem 2.1. Let 𝐺 be a connected graph with 𝑛 vertices and 𝑚 edges and 2𝔈 ≥ 𝑛 then  

𝐸𝑑𝑠(𝐺) ≤
2𝔈

𝒏
+

𝟏

𝒏
√2𝔈(𝑛 − 1)(𝒏𝟐 − 2𝔈). 

Proof: Cauchy-Schwarz inequality states that if (𝑎1, 𝑎2, … , 𝑎𝑛) and (𝑏1, 𝑏2, … , 𝑏𝑛) are 𝑛 −  𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

then: 

(∑ 𝑎𝑘𝑏𝑘    

𝑛

𝑘=1

)

2

≤ (∑ 𝑎𝑘
2

𝑛

𝑘=1

) (∑ 𝑏𝑘
2

𝑛

𝑘=1

).  

For 𝑎𝑘  =  1,  𝑏𝑘 = |𝜉𝒌|  and   2 ≤ 𝑘 ≤ 𝑛, in the above inequality, we obtain  

(∑|𝜉𝒌|   

𝑛

𝑘=1

)

2

≤ (∑ 12

𝑛

𝑘=1

) (∑|𝜉𝒌|2

𝑛

𝑘=1

).  

Therefore,  

(𝐸𝑑𝑠(𝐺) − 𝜉𝟏)𝟐 ≤  (𝒏 − 𝟏) ∑ 𝜉𝒌
2𝑛

𝑘=1 = (𝑛 − 1)(2𝔈 − 𝜉𝟏
𝟐), 

𝑬𝒅𝒔(𝑮) = 𝜉𝟏 + √(𝑛 − 1)(2𝔈 − 𝜉𝟏
𝟐). 

Now consider the function,  

𝒇(𝒙) = 𝒙 + √(𝑛 − 1)(2𝔈 − 𝒙𝟐) 

Note that 𝑓 is decreasing for 𝑥 ≥ √
2𝔈

𝑛
, for  

𝑓′(𝑥) = 1 −
(𝑛−1)𝑥

√(𝑛−1)(2𝔈−𝑥2)
≤ 0, 

If and only if, 𝑥 ≥ √
2𝔈

𝑛
. 

Since, 1 ≤ √
2𝔈

𝑛
≤  

2𝔈

𝑛
≤ 𝜉𝟏,  we have, 

𝑓(𝜉𝟏) ≤  𝒇 (
2𝔈

𝑛
). 

Therefore,  

𝑬𝒅𝒔(𝑮) ≤ 𝑓(𝜉𝟏) ≤  𝒇 (
2𝔈

𝑛
). 

Hence,  

𝑬𝒅𝒔(𝑮) ≤
2𝔈

𝒏
+ √(𝒏 − 𝟏) (2𝔈 − (

2𝔈

𝑛
)

2
)  
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or equivalently, 

𝑬𝒅𝒔(𝑮) ≤
2𝔈

𝒏
+

𝟏

𝒏
√2𝔈(𝑛 − 1)(𝒏𝟐 − 2𝔈). 

Theorem 2.2. Let G be simple graph connected having order 𝑛 and size 𝑚, then 

                                    𝐸𝑑𝑠(𝐺) ≤
4𝔈

(𝜉𝟏−𝜉𝒏)
.                                                       2.1 

Proof: Considering, 𝑥 = 𝑥𝑘  𝑎𝑛𝑑  𝑦 = 𝑦𝑘 , 1 ≤ 𝑘 ≤ 𝑛   as real sequence such that ∑ |𝑥𝑘| =𝑛
𝑘=1

1 𝑎𝑛𝑑   ∑ |𝑥𝑘| = 0 ,    𝑛
𝑘=1  the inequality stated below has been proved in[11]: 

|∑ 𝑥𝑘𝑦𝑘   

𝑛

𝑘=1

| ≤
1

2
( max

1≤𝑘≤𝑛
(𝑦𝑘) − min

1≤𝑘≤𝑛
(𝑦𝑘)  )                                         2.2      

Since, ∑ |𝜉𝒌| = 0,𝑛
𝑘=1  for  𝑦𝑘 = 𝜉𝒌

 and  𝑥𝑘 =  
𝜉𝒌

∑ |𝜉𝒌|,𝑛
𝑘=1

  for each 𝑘 ∈ {1,2, … ,3} we have,  

∑ 𝑥𝑘   

𝑛

𝑘=1

=  
∑ 𝜉𝒌

𝑛
𝑘=1

∑ |𝜉𝒌|𝑛
𝑘=1

= 0 

and 

∑|𝑥𝑘|   

𝑛

𝑘=1

=  
∑ |𝜉𝒌|𝑛

𝑘=1

∑ |𝜉𝒌|𝑛
𝑘=1

= 𝟏 

Thus, the inequality (2.2) holds. 

Since, ∑ 𝜉𝑘
2 = 2𝔈𝑛

𝑘=1 , we have 

|∑ 𝑥𝑘𝑦𝑘   𝑛
𝑘=1 | = |∑ |𝜉𝒌|𝑛

𝑘=1 ∙
𝜉𝒌

∑ |𝜉𝒌|𝑛
𝑘=1

| = |
∑ (𝜉𝒌)𝟐𝑛

𝑘=1

∑ |𝜉𝒌|𝑛
𝑘=1

| =
2𝔈

   𝐸𝐷𝑆(𝐺)
. 

Applying this in (2.2), we get, 

2𝔈

   𝐸𝑑𝑠(𝐺)
≤

𝟏

𝟐
(𝒎𝒂𝒙(𝜉𝒌) − 𝒎𝒊𝒏(𝜉𝒌)), 

From which , we have  

2𝔈

𝐸𝑑𝑠(𝐺)
≤

𝟏

𝟐
(𝜉𝟏 − 𝜉𝒏). 

If  𝐺 ≅ 𝐾𝑛, then we see that, 

𝜉𝒌 = (𝒏 − 𝟏)2, 𝜉𝟐 = −(𝒏 − 𝟏), … . , 𝜉𝒏 = −(𝒏 − 𝟏) 

and,  

𝜉𝟏 − 𝜉𝒏 = 𝒏(𝒏 − 𝟏). 

 So the  equality holds in (2.1). 

********* 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 1 (2025) 

 

306 
https://internationalpubls.com 

Acknowledgement: The authors are thankful to Prof. Chandrashekara Adiga for his encouragement 

and suggestions. 

References 

[1]  C. Adiga and Smith M ,On Maximum degree energy of a Graph,Int. J. Contemp. Math. Sciences, 4(34), (2012). 

[2]  D. Babi_c and I. Gutman, More lower bounds for the total 𝜋 −electron energy of alternant hydrocarbons, MACTH 

Commun. Comput., 32 (1995), 7-17. 

[3]  E.H•ukel, Quantentheoretische Beitr•age zum Benzolproblem I. Die Elektronenkon guration des Benzols und 

verwandter Vebindungen.Z:phys.70 (1931) 204-286. 

[4]  B.J. McClelland, Properties of the latent roots of a matrix: The estimation of 𝜋 −electron energy,J. Chem.Phys., 41, 

No. 1 (2007). 

[5]  S. S. Dragomir, A survey on cauchy-Bunyakovsky-Schwarz type discreate inequalities, J.Inequal. Pure Appl.Math. 

4(3) (2003), 1-142. 

[6]  I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz.Graz, 103 (1978), 1-22. 

[7]  I. Gutman and B. Jhou, Laplacian energy of a Graph, Lin. Algebra Appl, 414 (2006), 29-37. 

[8]  G. Indulal, I. Gutman, A. Vijaykumar, On distance energy of Graphs, MATCH Commun.Math. Comput. Chem. 

60(2008), 355-372. 

[10]  M. R. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of Graph, MATCH  Commun. Math. Comput. Chem. 

bf60 (2008), 561-572. 

[11]  D. S. Mitrinovi_c and P. M. Vasi_c, Analytic inequalities, Springer, Berlin, (1970). 

[12]  H.S.Ramane, D.S.Revankar, and J.B.Patil. Bounds for the degree sum eigenvalues and degree sum energy of a 

graph. International Journal of Pure and Applied Mathematical  Sciences, 6(2),( 2013) 161-167. 

 

 


