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Abstract:  

Accurate prediction of electric energy consumption is crucial for efficient load 

dispatching, energy utilization, and grid operation. Traditional statistical and classical 

machine learning methods struggle with the nonlinear nature of energy consumption data, 

often leading to higher prediction errors. Additionally, deep learning models using a 

single approach face challenges such as convergence to local minima and poor 

generalization. This paper proposes a nonlinear ensemble deep learning model for 

residential energy consumption prediction, incorporating Bayesian optimization for 

hyperparameter tuning. The model combines Long Short-Term Memory (LSTM), 

Bidirectional LSTM (BiLSTM), and 1D Convolutional Neural Networks (1D-CNN), 

leveraging their powerful nonlinear feature learning capabilities. A k-means clustering 

approach is used to preprocess and reduce variability in the data, enhancing the ensemble 

model's performance. The ensemble model was tested on real energy consumption data 

from two districts in Addis Ababa, showing significant improvements in prediction 

accuracy with lower MAE, RMSE, and MAPE values compared to single models and un-

clustered data. The integration of clustering and Bayesian optimization further enhanced 

model generalizability and minimized overfitting, demonstrating the effectiveness of a 

nonlinear approach in capturing complex energy consumption patterns. 

Keywords: Bayesian Optimization, Deep Learning, Ensemble Learning, Hyperparameter 

tuning, k-means Clustering. 

 

1.  Introduction 

Nowadays, people are highly dependent on the supply of sufficient and stable eclectic energy to live 

comfortably [31]. Consequently, electricity consumption demand has been rising due to the growth of 

urbanization along with the rapid growth of the human population throughout the world [32]. 

More importantly, energy demand in Africa keeps growing annually at an average rate of 4%, the 

highest in the world [13]. Similar to Africa, energy consumption demand steadily growing in Ethiopia. 

From the Ethiopian context, the residential consumption demand accounts for 39% which is the largest 

followed by the industrial (34%) and commercial (27%) sectors. Specifically, household energy 

demand is expected to exceed population growth because economic improvements have driven 

households to have appliances and become owners of energy dependent technological devices that use 

energy continuously. However, energy supply and distribution are characterized by frequent power 

interruption, inefficient utilization, and substantial waste [6]. Apart from the high demand frequent 

power outages problems, and the high level of energy demand especially in Ethiopia, once it is 
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generated, storing and preserving the produced electricity energy sufficiently using the current energy 

storage technology [1] is difficult. In other words, energy waste will occur if the electricity is 

adequately distributed and consumed as soon as it is produced following the consumption demand in 

each district.  

To this end, given the large contribution of the residential sector to total energy demand, it is feasible 

to study consumption trends and develop accurate models using state-of-the-art data-driven algorithms 

for effective planning and demand-supply management. Moreover, for reliable and efficient grid 

systems, effective load dispatching, and efficient energy utilization, accurate electricity consumption 

forecasting has become indispensable for energy companies. In this regard, machine learning and deep 

learning models have been widely used for electric load forecasting, power system monitoring, and 

anomalous energy usage detection [21]. However, the existing machine learning methods are incapable 

of capturing nonlinear energy consumption data and cannot yield accurate prediction results [5, 15]. 

Moreover, deep learning methods with a single model have been plagued by a poor capacity for 

generalization and a tendency to converge to local minima [11, 29]. In existing methods, little attention 

is given to the fine graining of the input data, which accounts for model complexity and larger 

prediction errors [35]. In general, despite several studies have been conducted for electric load 

forecasting based on deep learning and ensemble methods, enhancement is required to get optimal 

prediction performance by ensembling multiple deep learning algorithms with clustering and fine 

graining of the input data to learn nonlinear and complex energy data effectively [29, 25]. 

In this regard, the electricity consumption prediction method is imperative to ensure efficient load 

dispatching, scheduling, and efficient energy utilization [19]. This paper aims to investigate the 

effectiveness of an ensemble deep learning model for energy consumption prediction with fin-graining 

of input data including identifying optimal clusters of residential energy consumption profiles. The 

contributions of this paper can be summarized as follows: 

1. K-means clustering was applied for energy consumption profile characterization to acquire a 

more thorough understanding of how power consumption patterns of users behave. Moreover, optimal 

clusters were identified that will lead the subsequent ensemble model to learn the detail features and 

intrinsic behaviors of energy consumption data. 

2. Optimal hyperparameter combination is searched using a Bayesian optimization algorithm to 

get an improved prediction model. 

3. The robust ensemble model has been developed based on optimal cluster-generated energy 

consumption data. 

4. The ensemble deep learning model’s effectiveness in predicting the monthly aggregate residential 

energy 

    consumption is evaluated and verified against the base models using MAE, RMSE, and MAPE. 

2 Related Works 

Accurate electric energy consumption forecasting at both long-term and short-term horizons is 

necessary to establish a more stable supply-and-demand equilibrium [30]. To this end, several studies 

have been conducted on energy consumption forecasting problems. Wen et al. [35] proposed a deep-
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learning model to forecast the load demand for residential buildings with a one-hour resolution. 

Hyperopt hyperparameter tuning was employed to find the optimal hyperparameter combination. 

Moreover, accurate forecasting of electricity consumption is a very challenging task due to the high 

volatility of energy consumption. A. Salam and A. El Hibaoui in [24] introduced an improved 

intelligent energy prediction model based on deep feedforward neural networks and Long Short-Term 

Memory. M. Cai et al. [2] proposed deep neural network models, namely recurrent neural networks 

(RNN) and convolutional neural networks (CNNs). The proposed model is compared with the 

Seasonal ARIMAX model’s accuracy, computational efficiency, generalizability, and robustness. 

Among all the investigated deep learning techniques, the gated 24- h CNN model achieved the best 

performance, improving the forecasting accuracy by 22.6% compared to the seasonal ARIMAX. 

N. Somu, et al. in [27] proposed a hybrid model for building energy consumption forecasting using 

long short-term memory networks. In this work, a novel Haar wavelet-based mutation operator was 

introduced to improve the divergence nature of the sine cosine optimization algorithm while dealing 

with hyperparameter tuning using the sine cosine optimization algorithm. On the other hand, a hybrid 

of wavelet transform and machine learning model is proposed in [26] to estimate electrical load 

consumption using the historical time-series information of energy usage. To investigate the 

effectiveness of combining different deep learning algorithms for estimating residential household 

energy consumption, Authors in [14] employed a hybrid ensemble model consisting of CNN, 

multilayer LSTM, and BiLSTM algorithms, by which the CNN framework can extract spatial and non-

linear patterns of the energy data and multilayer LSTM used to learn temporal dependencies. 

An ensemble method [36] is developed to forecast the residential short-term energy consumption. 

Vector auto-regression, Gaussian process regression, and the long short-term memory neural network 

model were trained as base learners. Another ensemble method is proposed in [23] by combining the 

deep LSTM and Auto-regressive Integrated Moving Average (ARIMA) models. In this work, the 

ARIMA was used to capture the stationary pattern of load data, and the nonlinearity of the complex 

energy consumption data was tackled using LSTM architecture. The performance of the proposed 

model surpasses existing short-term load forecasting models with less computation complexity. 

Moreover, ensemble learning methods provide a powerful tool for improving accuracy and stability in 

power load forecasting by leveraging the strengths of multiple predictor techniques [30, 11, 29]. 

Hadjout et al. [10] introduced an ensemble model for monthly industrial energy consumption 

forecasting. The proposed model combines LSTM, GRU, and TCN based on weighted averages. 

Similarly, W. Khan et al. [16] developed an effective ensemble model but at this time the authors 

employed a stacking-based ensemble approach using simple neural networks (ANN) and LSTM as 

base learners for solar energy forecasting. XGBoost algorithm was used as a meta-learner to combine 

the base models and the proposed model exhibited better consistency and stability in different cases. 

In general, most of the related works [16, 23, 24] have employed grid search for optimization tasks to 

improve deep learning and ensemble model performance. However, this optimization approach is 

highly criticized for high computation time requirements and is ineffective when the number of 

hyperparameter spaces and the type of hyperparameters have been increased. In addition, the presence 

of outliers in a dataset degrades model prediction performance and reduces model generalization 

abilities. This problem has been observed in the above-mentioned related works that little attention is 
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given to the fine-graining of the input data, which accounts for model complexity and larger prediction 

errors [35].  

3 Methodology 

The proposed method comprises three main phases: (1) Data preprocessing and clustering for energy 

consumption pattern identification; (2) Deep learning model hyperparameter tuning using a Bayesian 

optimization algorithm and (3) Individual base model training and model fusion to develop ensemble 

model and performance evaluation. In general, figure 11 shows the details of the proposed model. 

3.1 Description of Data and Data Preprocessing 

The data for this study was collected from the Ethiopian electric utility. The collected data is about 

two districts of Addis Ababa city, South and West Addis Ababa (hereafter South AA and West AA) 

district’s monthly residential energy consumption data ranging from May 2019 to January 2021. Since 

each month’s consumption data was obtained from a different monthly bill report in separate Excel 

files for each month, it is necessary to combine the individual monthly file into a single, sequentially 

arranged dataset for each district as a Figure 1 shows. 

 

Figure 1: Data Aggregation  

There were many missing values in each month’s data because some customers may not have paid 

their consumption charge within the specified billing period. Consequently, users who have zero 

electric consumption for at least one month out of the 20 months or users who are absent for at least 

one month out of 20 months have been removed using filtering techniques because they are not good 

representatives of the samples. After filtering out the missing values, Table 1 shows the size of the 

input observation. Therefore, given the number of customers, C in each month for each selected 

district, and the number of months, M, the input observations or dataset D for each case study data is: 

                                                       Dataset,D = C * M                                                                            (1) 

where C is the number of customers in each month and M is the number of months considered in each 

district. Furthermore, Table 1 summarizes the descriptive statistics of each district dataset.  

Table 1: Descriptive statistics of the load consumption dataset 

Dataset Count  Mean Max. Min.  Std. Skewness Kurtosis 

South AA 309303 304.00 919 0.100 182.74 0.849 0.29 

West AA 313491 279.72 9120 0.020 215.87 11.24 7.93 
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Moreover, Figure 2 shows the average monthly electricity consumption over 20 months for the South 

AA district on the left and West AA district on the right.  

  
Figure 2: Aggregate Monthly Energy Consumption of west and West AA 

The data indicates that there is significant variation in electricity consumption habits from month to 

month in both districts. Furthermore, the pattern of electricity usage in each district is non-linear and 

irregular making difficult accurate predictions of this data using classical machine learning models and 

traditional statistical techniques [7]. In other words, this kind of data requires an effective 

preprocessing method such as a k-means clustering algorithm to discover the optimal clusters 

comprising more stable and similar consumption profiles. Moreover, integrating advanced data 

preprocessing techniques such as k-means clustering will enable the subsequent ensemble deep 

learning model [5, 17, 22] to learn the nonlinear complex association between energy consumption 

features and make accurate predictions. 

3.2 Experiment Setup 

This section tried to discuss experimentation phases of our study which include data processing and 

ensemble deep learning model development based on the cluster-generated data. In this phase, the 

Keras framework on top of TensorFlow was selected to utilize a deep learning framework, 

hyperparameters, and a Bayesian optimization algorithm based on the BayesSearchCV interface. 

3.2.1 Energy Consumption Clustering and Analysis 

In this study, K-means++ clustering was employed to discover the optimal clusters because kmeans++ 

is developed as an enhanced version of k-means clustering in initial cluster center identification and 

can give faster computation advantages [33]. 

In this study, K-means++ clustering was employed to discover the optimal clusters because k -

means++ is developed as an enhanced version of k -means clustering in initial cluster center 

identification and can give faster computation advantages [5]. 

The silhouette coefficient is used to evaluate how effective a clustering method is. It has a value 

between -1 and 1 . From this 𝑎(𝑖) represents the average distance from an item 𝑖 in the cluster 𝐴 to 

all other objects in 𝐴, and 𝑑(𝑖, 𝐶) represents the average distance from an object 𝑖 to all objects in the 

cluster 𝐶 ≠ 𝐴. After computing 𝑑(𝑖, 𝐶) and 𝐶 ≠ 𝐴 for each cluster, the smallest cluster is chosen as 

described below. 

𝑏(𝑖) = min
𝐶≠𝐴

 𝑑(𝑖, 𝐶) with 𝑖 ∈ 𝐴 (2) 
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The value 𝑏(𝑖) denotes to what extent a data point 𝑖 is dissimilar to its nearest neighbor cluster. Thus, 

the silhouette values, silh(i) are given in Equation (3): 

silh⁡(𝑖) =
𝑎(𝑖) − 𝑏(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
(3) 

Another cluster validation metric is the DBI which is used to determine the goodness of clusters. The 

DBI for 𝐾 clusters 𝐶𝑖 with 𝑖 = 1,… , 𝐾 is defined according to Equation (4): 

𝐷𝐵𝐾 =
1

𝐾
∑  

𝐾

𝑖=1

 max
𝑗≠𝑖

 𝑓𝑖,𝑗 (4) 

                       where: 

𝑓𝑖,𝑗 =
diam⁡(𝐶𝑖) + diam⁡(𝐶𝑗)

𝑑(𝐶𝑖 , 𝐶𝑗)
(5) 

and, in this case, the diameter of a cluster is defined as: 

diam⁡(𝐶𝑖) = (
1

𝑛𝑖
∑  

𝑥∈𝐶𝑖

  ∥∥𝑥 − 𝑧𝑖∥∥
2)

1
2

(6) 

with 𝑛𝑖 the number of data points and 𝑧𝑖 the centroid of cluster 𝐶𝑖. The DBI will achieve very small 

values, which guarantees the presence of high-quality clusters. Therefore, the ideal number of 

clusters is discovered when this index is minimized depending on the input dataset. 
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As indicated in Table 2, each district data is grouped into the best similar cluster, and each cluster has 

a different observation size. For example, in the south AA district (Cluter 1 = 111503, Cluster 2 = 

152620, and Cluster 3 = 45183 observations). In the case of West AA data ( Cluster 1 = 169800, Cluster 

2 = 109227, and Cluster 3 = 34464 observations). Moreover, from Table 2, it has been indicated that 

the silhouette score for each cluster is > 0.5, which is higher, and the data points are correctly grouped 

in their proper cluster. Furthermore, the similarity (cohesion) of data points in a cluster is also very 

high as the larger silhouette score reveals the closeness of data points in a cluster. In general, the cluster 

validation results in Table 2 show that k-means clustering is a viable solution to characterize the energy 

consumption profiles and generate optimal clusters that will improve the prediction accuracy of the 

subsequent ensemble models. 

Table 2: K-means clustering validation results 

District  Dataset  #Cluster  Silhouette_Score  DBI_Score  

South AA 309303 3 0.5478 0.5785 

West AA 313492 3 0.550 0.593 

A dataset with normal distribution has skewness and kurtosis values of 0 and 3, respectively. However, 

as Table 1 and Figure 3, Figure 4, and Figure 5  show, our dataset is positively skewed. This kind of 

asymmetrical data distribution and complicated energy consumption patterns [7] requires efficient data 

clustering and an ensemble deep learning model that can handle much better than the classical machine 

learning models and statistical techniques. 

Moreover, k-means clustering results in Figure 7 illustrate that South AA data is grouped into 3 clusters 

of energy consumption profiles. Accordingly, Cluster 1 contains the medium size energy consumption 

profiles and the user’s monthly energy usage is between 275kW and 575kW. Next to Cluster 1, Cluster 

2 is indicated in the brown box and contains lower energy users; their monthly energy consumption is 

between 0.1kW and 275KW, but the largest observation or energy consumption profiles are grouped 

in this category. The last cluster consists of the group of consumption profiles that comprises the 

highest monthly energy consumption profiles whose monthly consumption revolves between 575 kW 

and 925 kW, but this group accommodates the smallest number of observations.  

 

Figure 3: Skewness test for South AA after clustering. 
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Figure 4: Skewness of West AA Data before Clustering and After Clustering 

 

Figure 5:  Skewness test for West AA data after clustering.  

 

Figure 6: K-means clustering Results. 

3.3 Deep Learning Model 

Deep learning methods have gained greater attention because of their remarkable performance in 

image classification, natural language processing, and nonlinear electric load consumption prediction 

[9, 36]. Convolutional neural networks (CNN) [18], Long Short-Term Memory networks (LSTM) [8], 

and Gated Recurrent networks (GRU) [17] are the most widely used deep learning algorithms. 
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3.3.1 Long-Short Term Memory Neural Networks (LSTM) 

Long short-term memory network (LSTM) is an improved version of a recurrent neural network 

frequently used in time forecasting and natural language processing. With its special memory cell, 

LSTM is capable of storing information involving long-range temporal dependencies [31]. LSTM 

network can establish long-term temporal correlation information and overcome vanishing gradient 

problems of RNNs networks as Figure 8 shows the sequential learning capabilities of LSTM. The self-

connection of the LSTM memory block, referred to as the cell state, preserves (remembers) longer-

range temporal dependencies of the data. Moreover, LSTM architecture is equipped with 

multiplicative gate modules which include an input gate, forget gate, and output gate [25]. The gate 

units are responsible for regulating the flow of information while sequential data processing is dealt 

with LSTM model.  

 

Figure 7: LSTM Sequential Learning Process  

𝑦̂𝑡+1 = 𝑓∑⁡ (𝑊𝑖𝑥𝑖 ∗ 𝑏𝑖) (7) 

where the 𝑊𝑖 and 𝑥𝑖 are the updated weight vector and the input data respectively. Furthermore, f is 

the activation function. 

3.3.2 Bidirectional LSTM (BiLSTM) 

Bidirectional Long Short-Term Memory (BiLSTM) is the defamation of the LSTM algorithm which 

is capable of learning sequential data in both forward and backward directions as Figure 9 shows. It is 

more effective in learning the past and the future context information in two ways forward and 

backward directions allowing it to capture the context from both past and future information. This 

makes Bidirectional LSTM well-suited for tasks involving sequential data such as natural language 

processing and time series forecasting. The forward and backward operation of the BiLSTM can be 

expressed using Equations 8-10.  

ℎ⃗ 𝑡 = LSTM(𝑥𝑡, ℎ⃗ 𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8)

ℎ←𝑡 = LSTM(𝑥𝑡, ℎ←𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9)

𝑦̂𝑡+1 = 𝑤 →𝑦
ℎ ℎ⃗ 𝑡 +𝑊 ←ℎ𝑦, ℎ𝑡← + 𝑏𝑦⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10)
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BiLSTM trains two LSTM networks, where the first LSTM network processes the input sequence in 

the forward direction, and the second LSTM network processes in the reverse direction with a reversed 

copy of the input [15]. 

 
Figure 8: BiLSTM Structure  

3.3.3 1D-Dimensional Convolution Neural Network (1D-CNN) 

Model  Parameter name Types / Range values  Optimal value selected  

1D-CNN 

Number filters  [32,64,128,256]  64 

Kernel size  [2,3,4,5]  3 

Pool type  [MaxPooling1D,AveragePooling1D] MaxPooling1D  

Activation function  [relu,tanh,Linear] relu 

Epoch  [40,80,120,160] 80 

Optimizer  [RMSProp,Adam,Adadalta]  Adam 

Batch size  [32,64,120,180] 32 

Learning rate  [0.0001,0.001,0.01,0.1]  0.001  

BiLSTM 

Activation function [relu,tanh,Linear] relu 

Dropout rate [0.1,0.2,0.4,0.5] 0.2 

Optimizer [RMSProp,Adam,Adadalta] Adam  

Epoch  [40,80,120,200]  120  

Batch size  [32,64,128,256]  64 

Learning rate  [0.0001,0.001,0.01,0.1]  0.01 

LSTM  

Activation function [relu,tanh,Linear] tanh 

Dropout rate [0.1,0.2,0.4,0.5]  0.2 

Epoch  [40,80,120,160] 160  

Batch size  [32,64,120,180]  64 

Optimizer [RMSProp,Adam,Adadalta] RMSProp  

Learning rate  [0.0001,0.001,0.01,0.1]  0.01 

Convolutional neural networks (CNNS) are the most popular deep learning algorithms with similar 

human biological perception processing systems [18]. 1D-CNN is a special type of CNN network with 

powerful feature extraction and time series forecasting capabilities. 1DCNN is composed of three basic 

components  

which include the convolution layer for feature extraction, the pooling layer for dimension reduction, 

and the neuron in fully connected layers use a weights matrix to apply a linear transformation to the 

input vector [12] as shown in Figure 10. 
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3.3.4 Ensemble Deep Learning Model 

The ensemble model integrates multiple learning algorithms to obtain models that perform better than 

the single constituent base models. This means that the optimal and strong generalizable 

 

Figure 9: 1D-CNN Architecture  

ensemble model can be obtained by combining multiple base models or algorithms. In this paper to 

build an ensemble deep learning model, first of all, each base models are trained with their optimal 

hyperparameter configuration as Table 3 shows the set of optimal hyperparameters of each base model. 

The optimal hyperparameter combination of each base model was determined using the Bayesian 

optimization (BO) algorithm. Bayesian optimization algorithm is a metaheuristic hyperparameter 

tuning approach based on the probability model of the global function which aims to intelligently 

identify the optimal combination of hyperparameters with reasonable computation time.  

Table 3: Hyperparameters tuning for selected deep learning models.   

After the optimal clusters have been generated, the observations in each cluster are divided into training 

and testing sets to train the proposed model with each cluster’s data as Figure 10 illustrates. Despite 

the varying dataset size, 70% of the instances comprising the first 16 months of load consumption data 

of each cluster was used for model training by keeping the sequential order of the monthly energy 

consumption is relevant. Then, the remaining 30% approximately the final four months of the dataset 

was used to test the model’s performance. This is because we aimed to predict the next four months’ 

aggregate monthly load consumption using the previous 16 months’ load consumption data. The 

pseudocode detailed in algorithm 2 shows the proposed model execution process, including data 

partitioning into training and test datasets. 

Thus, given LSTM, BiLSTM, and CNN-GRU are chosen algorithms to build the base models, then 

each model prediction output can be represented by ˆ m1, ˆ m2 and ˆ m3, respectively. Similarly, their 

respective weights can be generated as w1, w2 and w3, for ˆ m1, ˆ m2 and ˆ m3 models, respectively, 

with different weight values based on the proportion of the performance of each base model that will 

yield an optimal ensemble model. The weight value for each base model should be a small fraction 

number ranging from 0 to 1. This means that the sum of the weight values of all base models should 

be ≤ 1. Then, the final weighted average ensemble model can be, represented as WAE, and be found 

by merging base models as illustrated in Equation 12.  

𝑊𝐴𝐸 = ((𝑤1 ∗ 𝑚̂1) + (𝑤2 ∗ 𝑚̂2) + (𝑤3 ∗ 𝑚̂3)) (11) 
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Where 𝑤1, 𝑤2 and 𝑤3 are the weights for 𝑚̂1, 𝑚̂2 and 𝑚̂3 models respectively. 
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Figure 10: The Proposed Ensemble Model  

3.3.5 Performance Evaluation 

Whether machine learning models are developed for classification or regression tasks, several metrics 

can be used to quantitatively evaluate their efficacy and performance. 

1. Mean Absolute Error (MAE): MAE is a statistical metric that can be used to quantify the 

discrepancies between the expected and target values [4]. 

2. Root Mean Square Error (RMSE): RMSE is one of the popular statistical metrics employed to 

calculate the difference between the actual and expected predicted values in regression model 

evaluation as expressed in Equation 13. 

3. Mean Absolute Percentage Error (MAPE): The MAPE is used to calculate the percentage 

difference between the actual and expected values of load consumption data. [3]. The mathematical 

formula for MAPE is given in Equation 14. 

 MAE ⁡ =
1

𝑛
∑  

𝑛

𝑖=1

  |𝑦 − 𝑦̂| (12)

𝑅𝑀𝑆𝐸⁡ = √
1

𝑛
∑  

𝑛

𝑖=1

  (𝑦 − 𝑦̂)2 (13)

 MAPE ⁡ =
1

𝑛
∑  

𝑛

𝑖=1

 
|𝑦 − 𝑦̂|

𝑦
∗ 100 (14)
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where y and ˆ y represent the actual and predicted values respectively. Furthermore, n denotes the total 

number of data that were utilized in the model evaluation process.  

3.4 Results Analysis 

This section provides the experimental results discussion and comparative analysis of the proposed 

ensemble deep learning model and the base models using different case study data, which includes 

South AA and West AA. 

Table 4: Comparison of the proposed and baseline deep learning models on South AA data. 

Data  Algorithm  MAE  RMSE  MAPE(%) 

Cluster 1 1D-CNN  56.097  65.869 0.195 

GRU  63.499 74.679 0.210 

LSTM 56.658  66.646 0.179 

BiLSTM 57.904 67.777  0.186 

Ensemble  54.472  65.509  0.160 

Cluster 2 1D-CNN  60.916 73.170 3.154 

GRU  51.953  63.904 3.180 

LSTM 51.965  64.054 3.195 

BiLSTM 59.711 69.964 0.195 

Ensemble  51.389  62.385 3.033 

Cluster 3 1D-CNN  99.237  116.411 0.164 

GRU  103.903 120.980 0.175 

LSTM 99.014 116.439 0.163  

BiLSTM 97.567 117.137 0.146  

Ensemble  98.082  121.360 0.151  

Table 4 shows the proposed model performance in comparison with base models (1DCNN, LSTM, 

BiLSTM) models using MAE, RMSE, and MAPE metrics. Accordingly, the proposed ensemble model 

shows superior performance than the base models on cluster 1 data with lower prediction error values 

54.472, 65.509, and 0.16o for MAE, RMSE, and MAPE respectively. Similarly, the ensemble model 

outperforms the base models on cluster 2 data based on MAE(51.389) and RMSE(62.385) regardless 

of the larger MAPE values. But, in the case of cluster 3 data, BiLSTM has achieved the best 

performance with lower 97.567 and 0.146 error values for MAE and MAPE respectively. 

Table 5: Model Performance comparison on Training and Test set with clustering and without 

clustering, South AA case study data 

Data  Algorithm         Training  Test  

MAE  RMSE  MAE  RMSE  

Clustered  1D-CNN  58.358 70.057 60.916 73.170 

LSTM 58.579  70.123 51.965 64.054 

BiLSTM  61.927  74.520 59.711 69.964 

Ensemble  58.287  69.975 51.389 62.385 

Un-Clustered  1D-CNN  178.995 256.540 182.874 266.111 

LSTM 162.288 250.252 167.094 261.151 

BiLSTM  174.277 255.662 179.108 261.151 
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Ensemble  163.369  250.762 168.630 260.684 

Table 5 summarizes the performance of training and test data accuracy on post-clustering and without-

clustering energy consumption data. The results have demonstrated that the proposed ensemble model 

and the base models have achieved lower MAE and RMSE prediction errors on post-cluster data about 

the training and test accuracy. Moreover, the MAE and RMSE errors on test data are much lower 

compared with the training errors. From these results, we can conclude that integrating k-means++ 

clustering with deep learning methods enables the model to learn the new data very well and make 

better generalizations [20, 33]. Moreover, the Post-clustering based ensemble model demonstrates 

superior performance with a significant prediction error decrease of MAE (64.321%) and RMSE 

(72.095%) on training data, and MAE(69.525%) and RMSE (76.068%) on test data, as compared to 

the performance obtained without clustering. 

Overall, the results show that the best prediction accuracy and the lowest MAE, RMSE, and MAPE 

errors are obtained when multiple deep learning techniques are combined and utilized in the form of 

an ensemble model [28, 37], coupled with hyperparameter optimization on post-clustering data. 

Table 6: Comparison of the proposed model and baseline deep learning models on West AA data. 

Data  Algorithm  MAE  RMSE  MAPE(%) 

Cluster 1 1D-CNN  58.071 69.092  12.097 

GRU  58.538 69.884  12.418 

LSTM 58.039 69.079  12.086 

BiLSTM 58.487 69.758  12.312  

Ensemble  57.584 68.136  11.601  

Cluster 2 1D-CNN  63.511 74.157  0.197 

GRU  67.750 78.317  0.218  

LSTM 62.458 76.379  0.180  

BiLSTM 65.867 76.337  0.210  

Ensemble  62.335  73.765  0.181  

Cluster 3 1D-CNN  69.394 87.537  0.113  

GRU  69.007 87.457 0.115  

LSTM 69.138 88.323 0.110 

BiLSTM 70.374  90.007 0.171 

Ensemble  68.581  85.730  0.112  

Moreover, Table 6 summarizes the performance of the proposed model and the base models on the 

West AA case study data. From this result, the ensemble model outperforms the base models in the 

case of cluster 1 data showing a significant error decrease of MAE(1.543%), and RMSE(2.325%) 

compared to the BiLSTM which is the worst-performing base model. 
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Figure 11: MAE Values for Clustered and Un-clustered, 

South AA Data  
 

Figure 12: MAE Values for Clustered Vs Un-clustered, 

West AA Data  

Figure 11 and Figure 12, shows that the performance of the ensemble model significantly improved in 

the case of cluster generated data with MAE(69.696%) error decrease south AA case study data and 

MAE(55.595%) error decrease on the west AA data. From these results, we can conclude that the 

potential of k-means clustering to find the optimal clusters of the energy data significantly contributes 

to the ensemble deep model to learn complex energy data effectively and exhibits lower prediction 

errors in the new dataset compared to the model performance on un-cluster data concerning MAE 

performance metric. To generalize the training of deep learning and their ensemble models with post-

clustering data affirms the better performance. This is because in addition to outlier treatment, 

clustering of highly variable energy consumption data [17, 34] into more similar consumption patterns 

enables the proposed model to learn the detailed features of the input data. 

4 Conclusion 

In this study, the effectiveness of deep learning models (1D-CNN, LSTM, BiLSTM and GRU) and 

ensemble model is investigated for aggregate energy consumption prediction focusing on the 

residential users category. The model’s performance was assessed on both the un-cluster and post-

clustered energy datasets. The integration of k-means clustering with an ensemble model to find the 

optimal cluster that minimizes the high variability and complexity of energy consumption data has 

been investigated. The viability of the clustering technique to group energy consumption data into a 

more similar consumption profile was validated and promising results were found which has enabled 

the ensemble deep model to learn the complete and intrinsic nature of the energy consumption data. 

Hence, the integration of clustering approach with deep learning and ensemble techniques significantly 

improves the prediction performance of the proposed model with very low prediction errors when 

compared to the performance obtained without clustering. Furthermore, while properly combining the 

capabilities of multiple deep learning algorithms, results indicate that the proposed ensemble model 

has outperformed the optimal base model performance in all case study data sets used in this study. In 

addition, enhanced by the metaheuristic Bayesian based hyperparameter tuning method, the proposed 

ensemble deep learning model has demonstrated the best performance and better generalization 

abilities without facing the problem of model overfitting while the trained model is exposed to test 

data. 
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Overall, the ensemble model proposed in this study has demonstrated better capabilities for learning 

the complex energy consumption data and provides a significant MAE, RMSE and MAPE error 

decrease in both case study data as compared to base algorithms, i.e., LSTM, BiLSTM and 1D-CNN 

performance. In the future, the income level and family size information about the customers should 

be incorporated as exogenous variables to enhance the prediction accuracy of the energy consumption 

demand. Additionally, optimal time steps should be determined using automatic optimization methods. 
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