ISSN: 1074-133X Vol 32 No. 1 (2025)

Some Results of Total Domatic Number on Anti Fuzzy Graph

R. Muthuraj^{1*}, P. Vijayalakshmi² and A. Sasireka³

¹Research Supervisor & Associate Professor, PG & Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai – 622 001, Tamilnadu, India.

² Research Scholar, PG & Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai – 622 001, Affiliated to Bharathidhasan University, Tiruchirappalli, Tamilnadu, India. Assistant Professor, Department of Mathematics, PSNA College of Engineering and Technology, Dindigul – 624 622, Tamilnadu, India.

³Assistant Professor, Department of Mathematics, PSNA College of Engineering and Technology, Dindigul – 624 622, Tamilnadu, India. e-mail rmr1973@gmail.com

Article History:

Received: 10-07-2024

Revised: 23-08-2024

Accepted: 06-09-2024

Abstract:

Let $A_G = (N, A, \sigma, \mu)$ be an anti fuzzy graph. A partition $DP = \{D_1, D_2, \ldots, D_K\}$ of $N(A_G)$ is referred to as total domatic partition of A_G if for each D_i is a total dominating set of anti fuzzy graph A_G and $N(A_G) = UD_i$. The maximum cardinality taken over all maximum number of classes with a minimal total domatic partition of A_G is called the total domatic number of A_G and it is denoted by $d_t(A_G)$. The maximum number of classes with maximum fuzzy cardinality of a partition $D_i(A_G)$ is called anti fuzzy total domatic number of anti fuzzy graph A_G and it is denoted by $d_{ft}(A_G)$. In this paper, we gain some preferred results and limits that referring to the full domatic number on anti fuzzy graph.

Keywords: Anti fuzzy graph, Dominating set, Total dominating set, Vertex degree.

1. Introduction

The notion of an anti-fuzzy structure on a graph was familiar to Muhaamad Akram [1] owing to the fuzzy relation pioneered by Zadeh [11]. E. J. Cockayne, S. T. Hedetniemi[2] delivered the idea of domatic number of a graph. The idea of a graph's anti domatic number was first developed by Bohdan Zelinka [13]. Domatic number and total domatic number of complete uniform hypergraphs and complete bipartite uniform hypergraphs were computed by Dash, S.P. [3]. The generalities of certain different forms of anti-fuzzy graphs were presented by R. Muthuraj and A. Sasireka [6, 7&8] who also determined the domination parameters on anti-fuzzy graphs. Additionally, they invented the concept of the anti-fuzzy graph's total domatic number and established boundaries for it. In this paper, we define the definition of total domatic number and partial total domatic number on anti fuzzy graph A_G also extant some general bounds and results that relate the total domatic number of A_G.

Note

The total dominating set D of A_G contained each support node in A_G . In both N\D and D, it able to dominate many nodes.

ISSN: 1074-133X Vol 32 No. 1 (2025)

2. SOME RESULTS OF TOTAL DOMATIC NUMBER ON ANTI FUZZY GRAPH

2.1 Definition

Let $A_G = (N, A, \sigma, \mu)$ be an anti fuzzy graph. A partition DTP = {TD1, TD2,, TD_K} of N(A_G) is called total domatic partition of A_G if for each TD_i is a total dominating set [TDS] of anti fuzzy graph A_G and N(A_G) = UTD_i.

The maximum cardinality taken over all maximum number of classes with a minimal total domatic partition of A_G is called the total domatic number [TDTN] of A_G and it is denoted by $d_t(A_G)$.

The maximum number of classes with maximum fuzzy cardinality of a partition $TD_i(A_G)$ is called anti fuzzy total domatic number of anti fuzzy graph and it is denoted by $d_{ft}(A_G)$.

2.2 Example

Figure. 1. Anti Fuzzy Graph AG

From figure 1, the total dominating sets are

$$TD_1 = \{u_2, u_5\} = \{0.4, 0.6\} = 1$$

$$TD_2 = \{u_3, u_4\} = \{0.7, 0.3\} = 1$$

$$TD_3 = \{u_1, u_6\} = \{0.2, 0.5\} = 0.7$$

$$TDP = \{TD_1, TD_2, TD_3\}$$

TDT number of anti fuzzy graph A_G, $d_t(G_A) = 3$

Anti fuzzy total domatic number of anti fuzzy graph A_G , $d_{ft}(A_G) = \max\{1, 1, 0.7\} = 1$

2.3 Definition

Let $A_G = (N, A, \sigma, \mu)$ be an anti fuzzy graph. A partition $TDP = \{TD_1, TD_2,, TD_K\}$ of $N(A_G)$ is called partial total domatic partition of A_G if for every TD_i is a total dominating set of anti fuzzy graph A_G and at the minimum of single node does not in any one of TD_i and all TD_i 's are minimal total dominating sets.

The maximum fuzzy cardinality taken over all maximum number of classes with minimal partial total domatic partition of A_G is called the partial total domatic number [PTDTN] of A_G and it is denoted by $d_{pt}(A_G)$.

The maximum number of classes with maximum fuzzy cardinality of a partition $TD_i(A_G)$ is called the anti fuzzy partial total domatic number of A_G and it is denoted by $d_{fpt}(A_G)$.

ISSN: 1074-133X Vol 32 No. 1 (2025)

2.4 Example

Figure. 2. Anti Fuzzy Graph A_G

From figure 2, the total dominating set is

$$TD_1 = \{u_1, u_3\} = \{0.5, 0.7\}$$

$$d_{fpt}(A_G) = \{0.5, 0.7\} = 1.2$$

For finding TD_2 , u_5 is isolated node. So, it dominates itself and $\langle TD_2 \rangle$ is not a total dominating set. Since, TD_2 does not exist.

Therefore $TDP = \{TD_1\}$

Partial total domatic number of A_G domatic number of A_G , $d_{pt}(A_G) = 1$

Anti fuzzy partial total domatic number of A_G domatic number of A_G , $d_{fpt} = 1.2$

2.5 Theorem

Let A_G be a finite undirected AFG with n nodes of order ρ , and $\tau(A_G)$ be the minimum degrees of nodes of A_G . Then $d_{ft}(A_G) \geq [\rho/(\rho - \tau_f(A_G) + 1)]$ and each total dominating set consists $n - \tau(A_G) + 1$ nodes of A_G .

Proof

Let A_G be an AFG and $\overline{A_G}$ is complement of A_G . TD is a total dominating set of A_G which is a subset of the node set $N(A_G)$. For every $k \in N(A_G)$ there exists a node l which is not adjacent to k in $\overline{A_G}$. Suppose the node has degree r in A_G , then its degree is n-r-1 in $\overline{A_G}$.

Therefore, the maximum degrees of $\overline{A_G}$ is $\rho - \tau_f(A_G) - 1$. Let TD be a subset of N(A_G) having at the minimum of n - $\tau(A_G)$ + 1 nodes. Then every node k ϵ N(A_G) can be contiguous to at most n - $\tau(A_G)$ + 1 nodes of TD in $\overline{A_G}$; although k ϵ TD, then \exists a node $l \epsilon$ TD which is not contiguous to k in $\overline{A_G}$ and thus is contiguous to k in $\overline{A_G}$. Which mean it every subset of N(A_G) with at the minimum of n - τ (A_G) + 1 nodes is a total dominating set in A_G. Consider a partition of N(A_G) into a class which having n - τ (A_G) + 1 nodes each, with the exception of at most one which would have more nodes. Evidently \exists such a partition having [n/ (n - $\tau(A_G)$ + 1)] classes with $d_{ft}(A_G) \geq [\rho/(\rho - \tau_f(A_G) + 1)]$ this is a total domatic partition.

ISSN: 1074-133X Vol 32 No. 1 (2025)

Hence $d_{ft}(A_G) \ge [\rho/(\rho - \tau_f(A_G) + 1)].$

2.6 Theorem

A_G is an AFG with n nodes, $3 \le n \le 7$ for which $\tau(A_G) = n - 3$ and

$$d_{ft}(A_G) = \begin{cases} \leq \left[\frac{\rho}{2}\right] ; for \ n = 4,7 \\ \geq \left[\frac{\rho}{2}\right] ; for \ n = 6 \end{cases}$$

$$does \ not \ exist \ ; for \ n = 3,5$$

Proof

For n = 3, A_G is an AFG with three isolated nodes. Since $\tau(A_G) = n - 3$.

Therefore, total dominating set does not exist. Hence $d_{ft}(A_G) = 0$.

For n = 4, A_G is a disconnected anti fuzzy graph with two components with two nodes each.

Therefore, there exist one partition of total dominating set. Therefore, $d_{ft}(A_G) = \left[\frac{\rho}{2}\right]$.

For n = 5, A_G is an anti fuzzy cycle. We know that, for any anti fuzzy cycle total domatic partition does not exist.

For n = 6, A_G is an anti fuzzy wheel with two TDS of at most $\frac{n}{2}$ nodes which has at the minimum of $\frac{\rho}{2}$. Therefore, $d_{ft}(A_G) \ge \left[\frac{\rho}{2}\right]$.

For n = 7, A_G is an AFG with $\Delta(A_G) = n - 2$. It forms three total dominating sets with at most $\frac{n}{2}$ nodes which has at most $\left[\frac{\rho}{2}\right]$ each. Therefore, $d_{ft}(A_G) \leq \left[\frac{\rho}{2}\right]$.

2.7 Theorem

If A_G is an AFG (n=5) with
$$\tau(A_G) = n - 3$$
 then $d_{fpt}(A_G) = \left[\frac{\rho}{2}\right]$.

Proof

If A_G is an AFG with n nodes and $\tau(A_G) = n - 3$ then A_G has an anti fuzzy cycle. Therefore, there exist one partial total dominating set exist with at most $\left\lceil \frac{\rho}{2} \right\rceil$.

Hence,
$$d_{fpt}(A_G) = \left[\frac{\rho}{2}\right]$$
.

2.8 Theorem

Let A_G be a complete bipartite AFG with 'n' nodes. N_1 and N_2 are node partition of $N(A_G)$. Then $d_t(A_G) = \left|\frac{n}{2}\right|$.

Proof

Let A_G be any complete bipartite AFG with disjoint node partitioned set N_1 , N_2 and $|N_1(A_G)| = n$, $|N_2(A_G)| = m$ consider $n < m \ (= n+1)$ There is no edge between the nodes in N_1 and

ISSN: 1074-133X Vol 32 No. 1 (2025)

also in N₂. Let $k_1 \in N_1(A_G)$ which dominates all the nodes in N₂. Let $k_1 \in N_2(A_G)$ which dominates all the nodes in N₁. Since there exist an edge between k_1 and l_1 . Therefore $\{k_1, l_1\}$ forms a minimal TDS of A_G. Similarly, $\{k_2, l_2\}$, $\{k_3, l_3\}$, ..., $\{k_{n-1}, l_{n-1}\}$ forms a minimal TDS of A_G. forms a minimal TDS of A_G and $\{k_n, l_n, l_{n+1}\}$ forms a TDS of A_G. Therefore, $d_t(A_G) = \left\lfloor \frac{n}{2} \right\rfloor$. Consider if n = m then $\{k_1, l_1\}$, $\{k_2, l_2\}$, $\{k_3, l_3\}$, ..., $\{k_n, l_n\}$ are classes of total domatic partition of A_G. Therefore, $d_t(A_G) = \left\lfloor \frac{n}{2} \right\rfloor$.

2.9 Proposition

For AFG A_G, $d_{ft}(A_G) \leq \frac{2\rho}{3}$ where A_G is a not an anti fuzzy cycle.

Proof

Let A_G is an AFG and consider that A_G is not an anti fuzzy cycle with n nodes and its order ρ . Since every node in A_G has adjacent to at the minimum of two nodes and does not have any pendent node. So, each node of A_G dominates at the minimum of two. Therefore, it frames at most three minimal total dominating sets of TDTP of A_G . Hence $d_{ft}(A_G) \leq \frac{2\rho}{3}$.

2.10 Theorem

Let A_G be a simple connected AFG and $\overline{A_G}$ be an anti-complement of A_G then $d_{ft}(A_G) + d_{ft}(\overline{A_G}) \leq \frac{5\rho}{3}$.

Proof

 A_G is a simple connected AFG without isolated nodes then $\overline{A_G}$ does not have any isolated nodes then $d_{ft}(A_G) \leq \frac{2\rho}{3} \& d_{ft}(\overline{A_G}) \leq \rho$.

$$d_{ft}(A_G) + d_{ft}(\overline{A_G}) \le \frac{2\rho}{3} + \rho$$
$$\le \frac{5\rho}{3}.$$

2.11 Theorem

For any complete uninodal AFG A_G with n nodes, $d_{ft}(A_G) = \begin{cases} 2\sigma(u_1); & \text{if } n \text{ is even} \\ 3\sigma(u_1); & \text{if } n \text{ is odd} \end{cases}$ for all $k_1 \in N(A_G)$.

Proof

Consider A_G is a complete uninodal AFG and TD is a total domatic partition of A_G which has TD_1 , TD_2 , ..., are its classes. Which yields the classes TD_1 , TD_2 , ..., $TD_{n/2}$ are total dominating sets with same cardinality. Let $k_1 \in TD_1$ and has adjacent to n-1 nodes with degree (n-1) k_1 . $l_1 \in N(A_G)$ and k_1 , $l_1 \in TD_1$. Since, k_1 , l_1 are also adjacent and dominates all other nodes in A_G . If n is an even number, we get TD_1 , TD_2 , ..., $TD_{n/2}$ classes in total domatic partition of A_G . Hence, $d_{ft}(A_G) = 2\sigma(k_1)$.

If n is odd then A_G has TD_1 , $TD_{2,...,}TD_{\frac{n}{2}-1}$ classes have equal number of nodes which forms a TDS classes in total domatic partition of G_A . But k_n does not belongs to any other classes of total

ISSN: 1074-133X Vol 32 No. 1 (2025)

domatic partitions of A_G. Therefore, the node k_n adding into the total dominating set $\left|TD_{\frac{n}{2}}\right| = 2\sigma(k_1) + \sigma(k_n)$

=
$$2\sigma(k_1) + \sigma(k_1)$$
 {since A_G is uninodal anti fuzzy graph}
= $3\sigma(k_1)$

Hence $d_{ft}(A_G) = 3\sigma(k_1)$.

2.12 Theorem

If A_G is an AF path, then $d_{ft}(A_G) \leq \rho - \tau$, where τ is minimum degree of A_G .

Proof

Consider A_G is an AF path with order ' ρ ' and has minimum degree τ . Let TD be minimal TDS of A_G . Let k and l are the initial and end node of an anti fuzzy path A_G . Since, it has the degree as one and the remaining nodes of A_G has degree two. Therefore, alternative pair of nodes consist in TDS. Hence, $d_{ft}(A_G) \leq \rho - \tau$

2.13 Theorem

For any two anti fuzzy graphs A_{G} and A_{H} without an isolated node, then the following conditions holds.

(i)
$$d_{ft}(A_G \times A_H) \ge d(A_G) \vee d(A_H)$$

(ii)
$$d(A_G \times A_H) \ge d_t(A_G \times A_H)$$
.

Proof

(i) Consider A_G and A_H are anti fuzzy graphs with order ρ_1 and ρ_2 respectively. Let $\rho_1 \ge \rho_2$ with $n_1 \ge n_2$ where n_1 and n_2 are number of nodes of A_G and A_H . Let TD be a total domatic partition of $A_G \times A_H$ which having at most n_2 classes. Let ρ_1 , ρ_2 be the domatic numbers of A_G and A_H respectively. If $\rho_1 \ge \rho_2$ then TD₁, TD₂,, TDn₁ be the domatic partition of N(G_A) for $1 \le i \le n_1$, any node $u_1 \in TD_i$ and $v_1 \in N(H_A)$ then the node $(u_1, v_1) \in A_G \times A_H$ dominates at most four nodes in N $(A_G \times A_H)$. Since H_A does not have any isolated node then TD is a total domatic partition of $A_G \times A_H$ with ρ_1 ,

Hence,
$$d_{ft}(A_G \times A_H) \ge d(A_G) \vee d(A_H)$$
.

(ii) Since DP is a domatic partition of A_G which have at most n_1 classes. Since, a single node can dominate all other nodes in $A_G \times A_H$. But to form a total dominating set we need at the minimum of two nodes in each domatic partition of $A_G \times A_H$. Therefore, $d(A_G \times A_H) \ge d_t(A_G \times A_H)$.

3. CONCLUSION

Total and partial total domatic number on an anti fuzzy graph A_G , and they are applied to different types of anti-fuzzy graphs to produce bounds. The bounds on them were established by applying the total domatic number concept to the anti-cartesian product of anti-fuzzy graphs such as path, anti-fuzzy cycle, and full anti-fuzzy graph. A few theorems and propositions are produced for the results once they have been analysed.

ISSN: 1074-133X Vol 32 No. 1 (2025)

References

- [1] Akram, M., 2012. Anti fuzzy structures on graphs. Middle-East Journal of Scientific Research, 11(12), pp.1641-1648. Available from: DOI: 10.5829/idosi.mejsr.2012.11.12.131012
- [2] Cockayne, E.J. and Hedetniemi, S.T., 1977. Towards a theory of domination in graphs. Networks, 7(3), pp.247-261. Available from: http://dx.doi.org/10.1002/net.3230070305
- [3] Dash, S.P., 2020. Vertex-Domatic, Edge-Domatic and Total Domatic Number of Uniform Hypergraphs. arXiv preprint arXiv:2009.02783. Available from: https://doi.org/10.48550/arXiv.2009.02783
- [4] Francis, P. and Rajendraprasad, D., 2021. On domatic and total domatic numbers of a product graphs. arXiv preprint arXiv:2103.10713. Available from:https://doi.org/10.48550/arXiv.2103.10713
- [5] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., 1998. Fundamentals of domination in graphs Marcel Dekker. Inc., New York. Available from: https://doi.org/10.1201/9781482246582
- [6] Muthuraj, R. and Sasireka, A., 2018. Domination on anti fuzzy graph. International Journal of Mathematical Archive, 9(5), pp.82-92. Available from: http://dx.doi.org/10.20852/ntmsci.2018.312
- [7] Muthuraj, R. and Sasireka, A., 2018. Total domination on anti fuzzy graph. New Trends in Mathematical Sciences, 6(4), pp.28-39. Available from: http://dx.doi.org/10.20852/ntmsci.2018.312
- [8] Muthuraj. R., and Sasireka. A., 2017, On Anti Fuzzy Graph, Advances in Fuzzy Mathematics, 12(5), pp: 1123-1135. Available from: https://www.ripublication.com/afm17/afmv12n5_06.pdf
- [9] Muthuraj, R., Vijayalakshmi, P., and Sasireka, A., Domatic Number On Anti Fuzzy Graph, AIP conference proceeding. [Accepted]
- [10] Somasundaram, A. and Somasundaram, S., 1998. Domination in fuzzy graphs—I. Pattern Recognition Letters, 19(9), pp.787-791. Available from: https://doi.org/10.1016/S0167-8655(98)00064-6
- [11] Zadeh, L.A., 1996. Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 394-432). Available from: https://doi.org/10.1142/9789814261302_0021
- [12] Zelinka, B., 1989. Total domatic number and degrees of vertices of a graph. Mathematica Slovaca, 39(1), pp.7-11. Available from: https://dml.cz/bitstream/handle/10338.dmlcz/133187/MathSlov_39-1989-1_2.pdf
- [13] Zelinka, B., 1997. Antidomatic number of a graph. Archivum Mathematicum, 33(2), pp.191-195. Available from: https://dml.cz/bitstream/handle/10338.dmlcz/107610/ArchMathRetro_033-1997-2_2.pdf