Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 7s (2024)

A Research in Bipolar Valued Vague Subfields of a Field

'K.Bala Bavithra, “M.Muthusamy & *K.Arjunan

! Department of Mathematics, Sonaimeenal Arts and Science College(Affiliated to Alagappa University, Karaikudi),
Mudukulathur — 623704, Tamilnadu, India. Email:kpavi94pk@gmail.com
2 Department of Mathematics, Dr.Zakir Husain College (Affiliated to Alagappa University, Karaikudi), llayangudi-
630702, Tamilnadu, India. Email: msamy0207@yahoo.com
3 Department of Mathematics, Alagappa Govt. Arts College, Karaikudi — 630003, Tamilnadu, India.

Email: arjunan.karmegam@gmail.com

Article History: Abstract:

. Certain properties of bipolar valued vague subfield of a field are introduced and
Received: 01-06-2024 discussed

Revised: 03-07-2024
evise Keywords: FS, VS, ByzS, ByyS, ByySF.

Accepted: 29-07-2024

INTRODUCTION. First, fuzzy set had been introduced by Zadeh [14]. Succeeding years, fuzzy
set was grown in different ways. The following are extension of fuzzy set, they are vague set,
intuitionistic fuzzy set, bipolar valued fuzzy set and etc.
Vague set by W. L. Gau and D.]. Buehrer [6]; Fuzzy group by Azriel Rosenfeld  [3];  Bipolar
valued fuzzy subset by W.R.Zhang[15]; Vague group by RanjitBiswas [11]; Bipolar vague set by
Cicily Flora. S and Arockiarani.l [5]; Bipolar valued fuzzy subgroup by Anitha.M.S., et.al.[2]; In
similar way, [1], [4], [7], [8], [9]., [10], [12] and [13] were useful to write this paper.

1.PRELIMINARIES.
Definition 1.1 [14] A map R: ® — [0,1] is called a fuzzy subset of ©.

Definition 1.2 [6] The ordered structure U = {(3,[07(3),1 —Ur(3)]):3 € W}is called a
vague set of w,where Ur:w — [0,1] is a truth membership map and Up:w — [0, 1] is a false
membership map, such that U;(3) + Uz(3) < 1, for all 3in W.

Definition 1.3 [6] The interval [U+(3),1 — Ur(3)] is called the vague value of 3inU
and it is denoted by U(3),i.e.,U(3) = [0U7(3),1 — Ur(3)].
Example 1.4. U = {< 3, [0.04, 0.07] >, < v, [0.02, 0.06] >, <1, [0.03, 0.08] >} is a vague set of R = {3, v, 1n}.

Definition 1.5 [15] The ordered structure ¥ = {(3, It (3),%‘(3)): 3 € W} is called a bipolar
valued fuzzy subset of w,where I*:w — [0,1] is a positive membership map and T™:w —
[—1,0] is a negative membership map.
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Definition 1.6 [5] The ordered structure U = {(3,[0+(3),1 - U 3)],[-1 - 0U7(’),07R3)]):3 €
W} is called a bipolar valued vague subset of w,where Uf:w - [0,1],0f:w -
[0,1], O7:w — [—1,0],and Uz:w — [—1,0] are mapping such that

U53)+0+(3) <1,-1 <073) + UzR), for all 3 in W. Bipolar valued vague subset

Uisdenotedas U = {(3,0"’(3),0_(3)):3 € W}, where Ut(3) =[0£(3),1-0+@3)] and U~ (3) =
[—1 —0U7(3),07@3)]. Itis denoted as ByyS.

Example 1.7. U = { < 3, [0.05, 0.07], [-0.05, —0.02] >, < v, [0.04, 0.08], [-0.06, —0.03] >, < m, [0.14, 0.19], |
—-0.25,-0.22] >}isa ByyS of R = {3,0,1}.

Definition 1.8 [5] Let U=(U*, U )and ® =(®*, &) be two By, Ss of a set W. Then
(()Uc G if and only if U*(3) < 6" (3) and U™ (z) = 6 (z), for all z € W.
(i) U N 6 = {(z, rmin(U* (z), 6* (2)), rmax(U(z), 6~ (2)) ) / z € W}.

Definition 1.9 [5] ABy,S C=(C* GC) of afield3issaid to ba a bipolar valued
vague subfieldg of 3 (ByySF) if € has,

(i) € (» — w) = rmin{C*(y), C* (w)},

(i) €* (yw) = rmin{C* (y), C* (w)},

(i) € (y — w) < rmax{C (), € (w)},

(iv) € (yw) < rmax{C (v),C (w)}, for ally, w € 3,
MEO™H2C ), Vp+o €]

(Vi)ET (™) <C (m,Vyp+o€EJ,

where ¢ is an first operation identity element of 3,
rmin{[r, s], [t,u]} = [min{z, t}, min{s, u}] and
rmax{[x,s], [t, u]} = [max{r, t}, max{s, u}].

Example  1.10. $ = {<0,[0.36,0.38],[- 0.39,— 0.36] >,< 1,[0.35,0.37], [-0.38,-0.35] >, <
2,[0.35,0.37],[-0.38,—0.35] >} is a ByySF of the field Z3 = {0, 1, 2}.

Definition 1.11. [5] Let K = ( K*, K~) be Byy S of the set %, the strongest By, relation on %;, that
is a Byy relation on Kis W = {((a, ¢), U*(4, ¢), U~ (4, Q)) / for all &, {€%,}, where H*(4, ¢) =
rmin{K*(4), K*(0)} and = (3, ¢) = rmax{K~(a), K=(¢)}, for all 4, {%;.

Definition 1.12. [S]Let A = (A*, A~y and W = ( W*,W~) be By, Ss of the sets B, and B,
respectively. The productof Aand W, denoted by A x W, is defined as Ax W = {{(», {),
(AxW)* (o, §), (AxW) (3, )y / for all (2, {)eB,; x B}, where (AxW)*(x, {) = rmin{A" (), W*({)}
and (AxW) (x, ¢) = rmax{A (), W ({)}.

2— THEOREMS.

Theorem 2.1. If U =(U*, U~)isa By, SF ofafield §,, then
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DU (=8 =0, U7 (-89 =107(9,V3€eF;

@08 H =08, 0°(8") = 07(9),Vo # S€ Fy;

(iii) Ut (o) = U*(8), U= (o) < U7(8),V 3€ Fy;

(i(V)UTR) = 07(8), 073) < U7(8),Vo # 8€ F;;

where o, 3 are first, second operation identity elements of &;.

Proof. (i) Let € §,. Then U (8)= U (—(=8)= U" (=8> U (8.

Thatis U (8) = U (=8), ¥ 8€ §,. And U (8)= U (—(-8)< U (-8)< U (8).
Thus U (8 =U (-8),V S€F,.

(ii) Leto = 8€F,. Then U (8 = U ((8H™ ) 2 U (81 = U (8. That is
U@ =0 vox8eF. AdU (H=U (EH™)<U (EH<U (8.
Thatis U (8) =U (8 '),vo = € F,.

(iii) Also U (0) = U" (8= 8) = min{U" (8, U (8} = U (8), v B€ §,.

And U (0)=U (8= 8) <max{U (8),U (8}=U; (9,vS€F,.

(iv) Also U (3) = U (881) 2 min{U" (8), U (8} = U (8, v o = € F,.

AndU 3)=U (85")<max{U (8),U (}=U; (8),Vo = 3€F,.

Theorem 2.2. If R =(&*, K )and B = (B*,B~) are two By, SF of a field §,,

then their intersection & N B is also a By, SF of ;.

Proof. Let o,x be in &;. Let R NV = U. Then U (o—x) = rmin{&K* (0—=x), B* (0—x)}

rmin{rmin{&*(e), &*(x)}, rmin{B* (o), BVB*(x)}} = rmin{rmin{&K*(0), BV (o)}, rmin{K*(z),
Bt ()} = min{Ut (o), UT()}, V o, xe F;. And Ut (ox™ 1) = rmin{&K*(ox™1), BT (ox™1)}
rmin{rmin{&*(e), &*(x)}, rmin{B* (o), BVB*(x)}} = rmin{rmin{K*(0), BV*(0)},

B (x)}} = min{U* (), Ut (x)}, V 0, 0 # x€ F;. Also U (0—x)
rmax{S~(0—%), B~ (0—x)} < rmax{rmax{K~ (), K~ ()}, rmax{8 (e), B~ (x)}}

rmin{K*(x),

rmax{rmax{&~(e), B (o)}, rmax{K7(x), B~ (x)}} = rmax{U~(p), U (¥)}, V o, xeF;. And
U (ox™1) = rmax{K (ex™1), B~ (ox 1)} < rmax{rmax{&~ (o), K (x)}, rmax{B~ (o), B~ (x)}} =
rmax{rmax{&~(e), B~ (o)}, rmax{K~ (), B~ (x)}} = rmax{U (), U (x)}, V 0, 0 # xe F,. Hence

SKNW =Uis also a ByySF of F;.

Theorem 2.3. If B, =(B,", B, B =(B,", B, ... and B, =(B," B,
are ByySFs of afield §,, then their intersection B; NP, N...N P, isalso a By SF of §;.

Proof. By Theorem 2.2, it can be easily shown.
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Theorem 2.4, If B, =(B,", B, B2=(B,", B,7), ... are ByySFsofafield
&1, then their intersection B, NP, N... isalso a ByySF of F;.

Proof. By Theorem 2.3, it can be easily shown.

Theorem 2.5. If R =(&*, K )and B = (B*,B~) are two By, SFs of a field F,, then
their union & U 8 need not be a By, SF of ¥;.

Proof. It can be easily shown.

Theorem 2.6. If R =(&*, K )and B = (B*,B~) are two By, SFs of a field F; and one
one is contained other, then their union & U B is the By, SF of &;.

Proof. It can be easily shown.
Theorem 2.7. If * =(N*, N")and B = (B*,BV~) are By, SFs of the fields Fand F,
respectively, then 9t X B isa By, SF of the field ; X &,.

Proof. Let o, be; and {, &€ F». Then (o, ), (b, &) €F1xF2. Then (NxBV) [(o, {)—(d, &)] =
(9xB)"(0-d, {~¢) = rmin{IN"(0-b), B(¢~ &)}> rmin{rmin{N" (), N’ (v)}, rMiIn{B" (), B"(§)}} =
rmin{rmin{9"(¢), B ()}, rmin{I*(d), B*(£)}} = rmin{(NxV)" (o, ¢), (MxB)'(d, )} V (o, 9),
(0, §)e F1xFa. And (xB) [0, )(d,§) '] = (MxV)"(ed~1, {&71) = rmin{N"(ed ™), B (¢~} >
rmin{rmin{9t*(0), ' (d)}, rmin{B*( ), B*(&)}} = rmin{rmin{9* (o), B*(O)},
min{9N°(d), BV (£)}} = rmin {NxB)'(e, ¢), OxBV)'(0, &)}, ¥V (o, ), (0,8)eFxF2. Also
(MxB) [(o, )-(0,8)] = (MxB) (¢-bd, {—¢&) = rmax{I (¢-b), B ({-¢)} < rmax{rmax{9t (o),
()} max{B(¢), B(&} = mmax{rmax{N(¢), B ()}, mMmax{N (d), BV($)}} =
rmax{(NxB) (e, ¢), MxBV) (0,8} V (0, O, (0 §eFxF2. And (NxB)[(o, ) (d,8)7] =
(MxB) (ed7F, ¢&71) = rmax{N (ed7"), T({E~H} < rmax {rmax{< (o), N(®)}, rmax{B(7),
B(£)}} = rmax{rmax{"(¢), B ({)}, rmax{I"(d), B"($)}} = rmax{(9xB) (e, {), (NxB) (d, §)},
v (0, ), (b, &) eF1xF2. Hence NxVis a By, SF of F1xFo.

Theorem 28. If O, =(O;", D7) 90,=(D,", 9,7, ... and 9O, =(0,", O,
are ByySFsofafields§,,&,,.. &, then O; X O, X...X O, isalsoa ByySF of § X &, X..X F, .
Proof. By Theorem 2.7, it can be easily shown.

Theorem 29. LetD; =(O;", O;7), 0,=(0,", 0;7) be two ByySsofafields
&1, Fa, respectively. If O X O, is a By SF of the field §F, X §,, then atleast the following one holds,
where o, f are identity elements of &, b, d are identity elements of &,

D)0, () =0,7(8),VEEF, 0, (0) =0,7(8),VE#p€EF, 0, (h) <O, (8),V e
Fand O, (0) <O; (8),V3+0 € F,,

()97 (0) = 0,"(8),V3€F, 0.7 (H) =2 0,"(8), V8% h€eF, O, (0) <O, (J),V3€
F,and O; ) <O, (8),V3+heF,,

Proof. Let O, X O, is a By SF of the field &, X &,. Assume that (i) and (ii) are not
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true. Let 8# 0 €F and w # h € §, and (8, w) eF1xFo. Then (D, x 0,) (8, w) =
rmin{O;"(8), O, (w)} > rmin{ O;7(0), O,7(H)} = (D1 X D,)*(0, H), which is =« to D; x O, is
a By, SF of the field &, X &,. Hence atleast one of the two (i) and (ii) are true.

Theorem 2.10. LetD; =(9O;", O;7), 9D,=(0,", D,7) be twoBySFsofa fields
&1, &2, respectively. If ©; X O, is a By SF of the field §, X &,

O if O;7(H) 2 0,7(8),VSEF,, 0, (0) 20,7 (9),V 8# 0 € §;, 0,7 (h) < 01 (I), v 8e
Frand O, (®) < O, (I),V 8+ 0 € §,,then O; isa ByySF of &, where o, T are identity
elements of &4, h, b are identity elements of &,;

(ii)91+(0) = Dz+(§);v ¢E $2’91+(f) = Dz+(§);v ¢#FHEF,O (0) <D, (5), V¢E

Frand O, () <O, (¢), V¢ #h € F,, then O, is a ByySF of .
Proof. Let 8 sbein &;. Then (8, p) and (s, b) are in F,xF,. Then

(i) O1°(8-5) = Min{O;"(8-5), D" (H-D)} = (D:1xD,)" (8-, b-b)= (0:x0,)[(8, h)—(s. H)] =
rmin{(D;x0,)"(8, 1), (D1xD;) (s, h)}=rmin{rmin{O;"(8), O,"(H)}, rmin{O;"(s), O, (H)}}=
min{0,"(8), O:"(®} ¥8s in F. And O,"(& ') = min{O, (&), O, (HH} =
(0:x0,) (&1, Bh) = (D:x02)[(8, D)D) = Min{(D:x02)"(8, h), (D:x0,)"(s,h)} =
rmin{rmin{O;"(8), O, ()}, rmin{O;"(s), O, (H)}} = rmin{ O, (8, O:7(5)}, ¥ 8 s=o in F,. Also
D1 (88 = Mmax{O; (3-5), O, (h-DH)} = (D1x03) (&, h-Dh) = (O1x0;) [(8, H)—(s,h)] <
rmax{(D:x0;) (3, ), (D1xD2) (s, h)} = rmax {rmax{O, (J), O, ()}, rmax{O; (s), O (b)}}=
rmax{O; (8), 01 (9}, VEs in F. And O; (&™) =rmax{O; (&), O (hh)} = (D;1xD,)
(&7 bh) = (01xDz) U8 D(EH™H] < max{(D:x0;) (8 h), (D1xD;) (s, h)}=
rmax{rmax{O; (8), O, (h)}, rmax{O; (s), O, (H)}}= Max{DO; (I, O, (9} VI s#oed;.
Hence O, is a ByySF of &;.

Let ¢,s be in &,. Then (o,¢) and (o, s) are in &, XF,. Then

(i) O;7(c-8) = Min{D;"(s-8), O1'(0-0)} = (D1%xD;)"(0-0,6-8) = (D1%D;)"[(0,6)~(v,9)]
min{(9,x0,)(0,¢), (D1%D;)"(0,9)}= rmin{rmin{O,"(v), O;"(¢)}, MIN{O;"(0), O"(9}}
min{ 9,°(5), O,"(®} V¢seF,. And D;(¢sh) = rmin{O,"(ss™Y), Oy (o0)}
(D1%D2)"(00,657") = (D1%D2) [(v,6)(0,9) ™11 2 rMIn{(D, xD,)"(0,6), (D1%0,)"(0,9)} =
rmin{rmin{,"(0), O,"(c)}, MIn{D,"(0), O, (}}= MIN{ O,"(5), O, ()}, V5, 5% HeF,. Also
D2 (¢8) = mMmax{D; (¢-9).01 (0-0)}= (D1xD;) (0-0,6-8) = (D1x0z) (o, ¢)-(0,8)] <
rmax{(D;1x0z) (0,6), (D1x0z) (0,8)}= rmax{rmax{O; (v), O (¢)}, rmax{D; (0), Oz (I}}=
rmax{ O, (c), Oz (9}, V¢, s€F,. And O, (ss7) = rmax{D, (¢s™*), O, (00)} =
(D1%0;) (00,657 = (D1%D;) [(0,6)(0, 971 < rmax{(D:xD;) (v,¢), (D1%Dz) (0,9}
=rmax{rmax{D; (0),D (¢)}, rmax{D; (0),0; (9)}}= rmax{ O (5).0, (8)}, V'¢,s#heF,.

Hence O, is a ByySF of &,.

mn 1mn v

Theorem 2.11. Let O; =(O;%, O:7), 0, =(0;", 0,7, ., O =(O", Op7) be ByySFs
of the fields &1, %z, ..., Fm, respectively. If O X O, X ... X Oy, is a By SF of the field F, X F, X ... X
&, foreach Oy, if ©;7(b;) = 0,7 (8),VS€ &, 0,7 (b)) = 0,7 (8),V 8% 0; € Fy,
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O;7(5;) <O, (8, Ve Fiand O, (v;) < O; (8),V 8+ 0; € F;, then O; is a ByySF of
&i, where o;, T; are identity elements of ;,h;, d; are identity elements of ;.
Proof. By Theorem 2.10, it can be easily shown.

Theorem 2.12. Let Jl be a ByyS of a field €; and I be the stronget By, relation of €,. Then JI is a
ByySF of €, if and only if I is a By, SF of €, XC,.

Proof. Let »,® be in €; and ¢,¢ be in €. Then (», {) and (&, &) are in €, xC;. If 1 isa By, SF of
€y, then Th*[(x, )—(®,&)] = Th* (e=®, {~&) = rmin{/I"(e=®), J"({- )} > rmin{rmin{/I"(x),
(@)}, rmin{J1°( ), A"(§)}}= mmin{rmin{/1" (), ()}, rmin{/1"(®), J"($)}}= rmin{Ih* (x, {),
H*(®, §)}, ¥ (¢, ), (®,§)eC;xC;. And Ih*[(x, {)(®,§)71)] =Th* (e, {§71) =
rmin{J1" (=), 17 (¢€~1)} = rmin{rmin{J1" (), JI" (@)}, rmin{J1"( ), J1"(£)}} = rmin{rmin{J/I" (),
()}, min{JT (@), T°(£)}} = min{Ib* (x, ), Ib*(®, )}, ¥ (¢, §), (&, §)e€;xE;. Also Th~[(,
O-(®,8)] = Ih(x-®, ¢-§) = max{/l (x-®), (-8} < rmax{rmax{/] (»), J (®)},
rmax{/1 (¢), A ($)}} = rmax{rmax{/l (), J({)}, rmax{/I (&), J(&)}}= rmax{lb~(x, J),

H)_((I), f)}l v (%! ()v ((I)! f)ecngG"l' And H:)_[(}{, ()(G), E)_l)] = H:)_(%a)_l! (’S_l) =
max{/] (x&~"), J(¢EN} < max{rmax{/I (x), A (@} rmax{I({), T} =
rmax{rmax{J1"(»), J1 ({)}, rmax{/I (®), 1 ($)}} = rmax{Ih~(x, ¢), Th~(&®, §)}, for

all (s, 0), (®, &) in €, xE,. Hence Ih is a By, SF of €, xC;.
Conversely, assume Ih is a By, SF of €, xC;.

rmin{J1"(pe-®), (- &)} = Ih* (=&, {-¢) = Th*[(, O)~(®, §)] > min{Ib* (x, ), Ih*(®, §)} =
rmin{rmin{J1"(»), JI"(Q)}, rmin{JT"(&), 1" (£)}}, put { = o and & = o, where o is an first operation
identity element of €, then JT"(3—@®) > rmin{JI"(»), T' (&)}, V x, ® €C,.

And min{/I"(x@™"), (&N} = (@~ {§71) = Ih*[(¢, ¢) (@)1= rmin{lh* (¢, J),
Ih* (&, &)} = rmin{rmin{J1*(>), 17 (Q)}, rmin{JT* (&), JI"(£)}}, put { = o and & = o, where o is an
first operation identity element of ©;, then JI'(#&~1) > rmin{JI" (%), JI'(®)}, V », ®<C,. Also
rmax{/I" (»—®), JI (- $)} = Tb™ (=&, {— &) = Ih[(¢, {)—(®, §)] < rmax{Ib~(x, {), Ih™(®, §)} =
rmax{rmax{J1 (), J1 ({)}, rmax{JI (&®), J1 (£)}}, put { = o and & = o, where o is an first operation
identity element of G, then JI (3—®) < max{Jl (%), 1 (®)}, V », ®<C;. And rmax{/] (x&®~1),
NN = o™t ¢67Y) = e (@87 < max{lh (¢, ), Ih7 (& &} =
rmax{rmax{J1"(»), JI ()}, rmax{/I (&), J1 (£)}}, put { = o and & = o, where o is an first operation
identity element of €, then JT_(>x&~1) < rmax{J1 (%), 1 (®)}, V x, & C;.

CONCLUSION

Using the above theorems, we can find more results. It can be extended into different types of
BVYV algebra.
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