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nonlinear regression estimates dirt combined with contemporary image processing.
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1. Introduction

Recent years' developments in remote sensing technologies and machine learning algorithms have
transformed numerous fields including urban planning, environmental monitoring, and agricultural
[1]. Precision agriculture depends mostly on soil nutrient evaluation, hence proper soil information is
essential to maximize crop yields and control soil condition [2]. Labor-intensive and sometimes limited
in spatial resolution conventional soil sample techniques demand innovative solutions using remote
sensing data and advanced computer technologies [3].
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Remote sensing technologies' high-resolution spatial data—that of airborne surveys and satellite
images—allows one to assess soil parameters over large distances [ 4]. But occasionally raw remote
sensing data is noisy and complex, which makes it challenging to get meaningful soil nutrient
information [5]. Non-linear interactions between soil properties and image attributes need for
sophisticated data processing methods [6]. Learning complex patterns from data has enabled machine
learning techniques—especially deep learning models—show promise in addressing these challenges
[7]. Among these techniques for modeling non-linear connections, radial basis function (RBF)
networks have become a powerful tool because of their flexibility and ability to preserve intricate data
patterns [8].

Deep RBF networks applied to soil nutrient assessment still provide several challenges despite their
potential [9]. One of key challenges is efficient retrieval of relevant information from noisy and high-
dimensional remote sensing data. Conventional feature extraction methods may miss the complex,
non-linear interaction between picture elements and soil conditions. Moreover, the training of deep
RBF networks requires careful selection of parameters that could significantly influence the
performance of the model: the number of RBF units, centers, and widths. Moreover, the power of the
model to generalize properly to unprocessed data [10] determines its practical usefulness.

The fundamental problem this work tackles is the precise assessment of soil nutrients obtained from
processed advanced machine learning approaches based on remote sensing data. More especially, the
focus is on creating a deep RBF network able to control the non-linear correlations between distant
sensing properties and soil nutrient levels. By means of non-linear regression for feature extraction
and deep RBF networks for classification, one can enhance the scalability and precision of soil nutrient
estimate.

The objectives are given below:

1. By use of complex relationships between picture features and soil properties, one can develop
and implement a non-linear regression method to extract relevant data from remote sensing images.

2. The second is to develop and instruct a deep RBF network capable of very accurate soil nutrient
level forecasting and control of acquired properties.

3. Evaluate the proposed deep RBF network against current methods including Artificial Neural
Networks (ANN), Bi-directional Gated Recurrent Units with Dynamic Memory Network (Bi-GRU-
DMN), Random Forest Regression (RFR), and Recurrent Neural Network (RNN) by using several
performance criteria.

Novelty

In this work, the new combining of deep RBF networks for classification with non-linear regression
for feature extraction is presented. Although non-linear regression approaches have been applied
independently to feature extraction, their combined use with deep RBF networks has not been
examined in the framework of soil nutrient assessment. This approach allows one more precisely and
dependably record complex data links, so guiding soil nutrient estimations.

The main contribution of the proposed work involves the following:
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1. First by means of non-linear regression, the proposed method presents a sophisticated method
of feature extraction, therefore providing a more accurate representation of the fundamental soil
properties from remote sensing data.

2. The second is a robust classification system leveraging deep RBF networks that makes
advantage of the obtained knowledge to raise prediction accuracy.

3. The paper offers a comprehensive performance comparison of the deep RBF network with
current methods, therefore offering interesting study of the advantages and efficiency of the
recommended methodology.

2. Related Works

Estimating surface soil moisture using satellite photos on a large alluvial fan of the Kosi River in the
Himalayan Foreland, the research [11] proposed a unique design. One finds this fan in the Himalayan
Forest. An artificial neural network (ANN), completely coupled and feed-forward, is essential
component of the model. By means of linear data fusion and graphical indicators, we have efficiently
derived nine distinct features from the satellite products of Sentinel-1, Sentinel-2, and Shuttle Radar
Topographic Mission. These in that order consist of digital elevation model, red and near-infrared
bands, and dual-polarized radar backscatter. Using a calibrated TDR sensor, soil moisture was
monitored at 224 independent points dispersed around the fan. With a correlation coefficient (R) of
0.80, Root Mean Square Error (RMSE) of 0.040 m3/m3, and a bias of 0.004 m3/m3, we predicted soil
moisture and found that the ANN model exceeded all of the benchmark methodologies. Benchmark
technique comparison of the ANN model helped to achieve this.

In [12] a novel approach for retrieving soil moisture was applied. The first phase is the process of
acquiring images. Deriving VI indices with NDVI, GLAI, GNDVI, and WDRVI properties is one of
the processes that follows last one. The use of a better Water Cloud Model (WCM) is another element
of the attempt to fix the effects arising on the plants. Not least of all, a superior score level fusion
model under responsibility of soil moisture drainage provides the data. Deep max out network (DMN)
and bidirectional gated recurrent unit (Bi-GRU) are included into this model. Arriving at 0.9565, the
RMSE of the method combining Bi-GRU and DMN was found to be smaller than those of the hybrid
classifier approaches. These confirmed this.

In [13] utilizing UAV-based multimodal data, tracked the soil moisture content (SMC) of a maize crop
subjecting different degrees of irrigation over two years. The results revealed incorporating data from
various modalities—including thermal and multispectral data—among other modalities increases the
accuracy of SMC predictions. From the three SMC regression models produced, the RFR model
produced the best accurate SMC estimate for both growing seasons. This was true independent of the
combinations of sensors used. The RFR model using all three data sources generated the most accurate
and consistent SMC estimate in the vegetative stage. Its R2 was 0.68 for 10- and 20- cm soil depths
respectively; its rRMSE was 20.82% and 19.36%. The RFR model performed really wonderfully
applying these ideas. Using well-watered, mild to modest deficit irrigation treatments, it also produced
the best SMC estimation accuracy for both soil depths. This pertained to both treatments. The high
spatial-temporal maps produced by SMC—derived from multimodal data acquired by UAVs—have
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great potential to enhance decision-making in the scope of irrigation scheduling at the farmer-scale
based on the outcomes of the study.

One can acquire an initial approximation of its possible value in [14]. Geographic vulnerability in an
Iranian watershed with a history of considerable water erosion was produced by means of three deep

learning algorithms.

Reference | Method Algorithm Methodology Outcomes
[11] ANN for Soil | Fully Extracted nine features from | Correlation
Moisture Connected Sentinel-1, Sentinel-2, and | Coefficient  (R):
Feed- SRTM products; measured | 0.80
Forward soil moisture with TDR | RMSE: 0.040
ANN probes. m3/m3
Bias: 0.004 m3/m3
[12] Hybrid Soil | Deep  Max | Acquired images and derived | RMSE: 0.9565
Moisture Out Network | VI indices (NDVI, GLAI, | ME: 0.7287
Retrieval (DMN), Bi- | GNDVI, WDRVI); used | Lower errors
GRU Water Cloud Model (WCM) | compared to
for  vegetation  impact; | methods  without
combined DMN and Bi-GRU | vegetation  index
with score-level fusion. and standard WCM.
[13] UAV-based PLSR, KNN, | Used thermal and | R?2 for RFR: 0.68
Multimodal RFR multispectral data for soil | (10 cm), 0.78 (20
Data Fusion moisture  content (SMC) | cm)
estimation in maize fields; | rRMSE for RFR:
compared three ML | 20.82% (10 cm),
algorithms. 19.36% (20 cm)
[14] Deep Learning | CNN, RNN, | Used elevation and other geo- | RNN
for SWE | LSTM environmental factors; | Performance:
Susceptibility compared CNN, RNN, and | Marginally superior
LSTM for SWE | 40% of catchment
susceptibility prediction.

Although erosion prediction and soil moisture have gotten better, combining multi-source remote
sensing data with deep learning models for best accuracy still has challenges. Many times depending
on single data sources or simpler algorithms, present methods restrict their capacity to reflect complex
soil qualities and environmental interactions. Moreover, current models might not be able to extend
over many various geographical regions or soil types. Furthermore much needed are improved feature
extraction techniques able to control the non-linearity and large dimensionality of remote sensing data
and for new ways combining advanced feature extraction with deep learning models to address these
limitations.
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3. Proposed Method

Combining modern image processing techniques with a deep radial basis function (DRBF) network
helps to increase soil estimate accuracy. As Figure 1 shows, the approach comprises in several basic
phases:

| Load Dataset |

v

Preprocessing

v

Feature Extraction

v

Deep Radial Basis Function Network Training

v

Classified output

Figure 1: Proposed Framework

1. Image Acquisition and Preprocessing: Preprocessing high-resolution remote sensing images
helps to remove noise and enhance features relevant to soil conditions. Filtering and histogram
equalization among other methods improve image quality.

2. Feature Extraction: Edge detection and texture analysis among other advanced image
processing methods extract relevant information from the preprocessed images. As inputs, the RBF
network makes advantage of these characteristics—which could include color histograms and texture
patterns.

3. Deep Radial Basis Function Network Training: Comprising several hidden layers, each
using radial basis functions to replicate the complex, nonlinear interactions between soil parameters
and input variables, the training process lowers a loss function—typically mean squared error (MSE)
using optimization techniques like gradient descent.

Pseudocode:

# Step 1: Image Acquisition and Preprocessing

images = acquire_images() # Function to acquire remote sensing images
preprocessed_images = preprocess_images(images) # Apply preprocessing techniques

# Step 2: Feature Extraction

features =[]

for image in preprocessed_images:
feature_vector = extract_features(image) # Extract features from the image
features.append(feature_vector)

# Step 3: Deep Radial Basis Function Network Training
rbf_network = initialize_deep_rbf_network() # Initialize the deep RBF network
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features_train, soil_properties_train = split_data(features, soil_properties)
rbf_network.train(features_train, soil_properties_train) # Train the RBF network

# Step 4: Prediction and Evaluation
predictions = rbf_network.predict(features) # Predict soil properties using the trained model
evaluation_metrics = evaluate(predictions, soil_properties) # Evaluate the model’s performance

3.1.  Preprocessing

Preprocessing is crucial for preparing remote sensing images for accurate soil nutrient classification
with deep radial basis function (RBF) networks. Preprocessing generally seeks to enhance the image
quality and extract relevant features that could considerably boost the performance of next modeling.

. Image capture starts with compiling high-resolution remote sensing ground images. Many
times, these images are affected by several aberrations including noise, illumination variations, and
atmospheric conditions. Starting the preparation process are noise reduction techniques whereby
random changes are smooth out and significant visual properties are maintained using filters such as
Gaussian blur or median filtering. This stage helps to reduce the impact of extraneous noise on the
feature extraction process.

. After noise reduction, significant feature visibility inside the images is enhanced by histogram
equalization. This technique controls the contrast of the image, therefore improving the
distinguishability of the patterns and textures of the ground. More effective recording of important soil
parameters is guaranteed by improved feature extraction made possible by better contrast.

. Feature extraction then asks for among other methods texture analysis and edge identification.
Crucially for understanding of soil features, Canny edge detector finds transitions in soil textures and
borders. Texture analysis allows one to measure trends and variations in the surface of the soil, so
providing more knowledge of soil characteristics.

. The last stage in preprocessing is normalizing the acquired properties into a consistent range.
This ensures that every feature equally supports the model and maintains any one characteristic from
free from influence not dominating the prediction process. By means of normalizing the data, the deep
RBF network learns the correlations between image attributes and soil characteristics.

3.2. Non-Linear Regression for feature extraction

It is designed to capture complex relationships between soil characteristics and picture data, non-linear
regression for feature extraction is a sophisticated technique permitting more exact soil nutrient
classification. The process comprises in several crucial phases:

Model Development: The first stage in non-linear regression for feature extraction is developing a
model able to capture the intricate, non-linear interactions between the soil attributes depicted in the
images and the actual soil nutrient levels. Whereas linear regression models imply a straight-line
relationship, non-linear regression models can fit curves and more complex interactions. In this work
a non-linear regression model—such as Gaussian processes or polynomial regression—fits the data.
Using a dataset with known soil nutrient levels, the method learns how various image features connect
to soil parameters.
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Feature Mapping:

Once the non-linear regression model is developed, it is employed to move raw image data to a feature
space wherein more effectively links between picture features and soil attributes are communicated.
This creates a set of derived features from the original image data by means of non-linear functions.
Poisson regression, for instance, can generate new features dependent on poisson combinations of the
original features, therefore capturing interactions and higher-order effects lacking from the raw data.

Feature Extraction:

New images are fed the trained non-linear regression model in the feature extraction stage in order to
identify relevant features. Processing the raw visual data and using learnt non-linear mappings, the
model produces a set of characteristics underlining important patterns and connections. These
properties, which mirror soil nutrient levels, could combine complex combinations of basic image
components including color variations and texture patterns.

1. Polynomial Regression (Quadratic):
Y=, +BX+BX+e

This equation models the relationship between the predictor x and the response variable y as a quadratic
function.

2. Polynomial Regression (Cubic):
Y =B+ Bx+BX + Bx+ €
Extends the quadratic model by adding a cubic term to capture more complex relationships.
3. Exponential Regression:
y=pBe"+e
Models exponential growth or decay, where B1\beta 1B1 represents the growth rate.

4. Logarithmic Regression:
y=p0+pIn(x)+e€
Useful for modeling relationships where the effect of x diminishes as x increases.
5. Power Law Regression:
y =B X% +0
Models relationships where y is proportional to a power of x.
6. Rational Function Regression:

+ O, X
ZIBO 161 +(‘)

y 1+ B,x

Useful for modeling relationships that asymptotically approach a limit.
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7. Gaussian Process Regression:

y=p(xX)+0
where u(X) = f x (X, x)dx’

Uses a kernel function k\kappak to model the mean function p(x) and capture non-linear relationships.
8. Sigmoid Function Regression:

1 .
Y =1ie G 70

Models relationships with an S-shaped curve, useful for binary classification and probabilities.

9. Radial Basis Function (RBF) Regression:
y=> a(l x=x 1)+ S, +0
i=1

Where g(Il x—x II) =e 7" s the Gaussian radial basis function.

10. Piecewise Regression:

B+ P X forx<c
y: ' ' +0
By, +B,x forx>c

Dimensionality Reduction and Normalization:

Moreover, normalizing guarantees that the acquired features have a constant scale, which facilitates
better integration with the deep radial basis function (RBF) network for classification.

Non-linear regression for feature extraction translates raw image data into a meaningful set of features
by way of complex, non-linear connections between soil conditions and image attributes. More exact
estimates of soil nitrogen levels follow from this enhanced performance of the deep RBF network.

Table 2: Performance Metrics for Non-Linear Regression Models
Model Dataset MSE | Accuracy (%)
Polynomial Regression (Quadratic) | Training | 0.045 | 82.5
Testing 0.048 | 80.0
Validation | 0.050 | 78.5
Polynomial Regression (Cubic) Training | 0.040 | 85.0
Testing 0.042 | 83.0
Validation | 0.045 | 81.0
Exponential Regression Training | 0.048 | 80.0
Testing 0.050 | 78.0
Validation | 0.052 | 76.5
Logarithmic Regression Training | 0.042 | 83.0
Testing 0.045 | 81.0
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Validation | 0.047 | 79.5
Power Law Regression Training | 0.046 | 81.5
Testing 0.048 | 80.0
Validation | 0.050 | 78.0
Rational Function Regression Training | 0.043 | 82.0
Testing 0.045 | 80.5
Validation | 0.047 | 78.5
Gaussian Process Regression Training | 0.039 | 84.5
Testing 0.041 | 82.0
Validation | 0.043 | 80.0
Sigmoid Function Regression Training | 0.047 | 79.5
Testing 0.049 | 77.5
Validation | 0.051 | 75.0
RBF Regression Training | 0.038 | 85.5
Testing 0.040 | 83.5
Validation | 0.042 | 81.0
Piecewise Regression Training | 0.044 | 82.5
Testing 0.046 | 80.0
Validation | 0.048 | 78.5

Among the non-linear regression models evaluated in Table 2, Radial Basis Function (RBF)
Regression consistently demonstrates the lowest mean squared error (MSE) and highest accuracy
throughout all datasets. With an MSE of 0.038 in training and 0.040 in testing and accuracy of 85.5%
and 83.5% respective, the RBF model fares remarkably well in identifying complex relationships in
the data. This implies rather good feature extraction quality. Gaussian Process Regression likewise
performs rather well with second lowest MSE of 0.039 in training and 0.041 in testing and accuracy
of 84.5% and 82.0%, respectively. Since this model provides flexibility in non-linear relationship
modeling, its probabilistic approach is what gives it strength. Polynom Regression (Cubic) shows good
performance demonstrating its efficacy in caputreing more complex patterns than quadratic regression
with accuracy of 85.0% and 83.0% with MSE values of 0.040 in training and 0.042 in testing.
Particularly in validation datasets, models such Sigmoid Function Regression and Exponential
Regression show lower accuracy and increased MSE, which reflects their constraints in handling
distinct non-linear patterns compared to more flexible models like RBF and Gaussian Processes.

3.3.  Deep Radial Basis Function (RBF) Classification

Deep Radial Basis Function (RBF) Networks are a specialized type of neural network meant to control
complex, non-linear interactions throughout a sequence of radial basis functions. RBF units layered
several times allow the deep RBF network to effectively mimic intricate data patterns. It goes like this:

A deep RBF network consists in an input layer, numerous hidden layers applying radial basis functions,
and an output layer. Every layer gradually alters the data; the RBF units in the buried layers document
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certain aspects of the input properties. The following formulas enable one to define the overall
structure:

1. Input Layer: Receiving the raw features x, the input layer transmits them to the first hidden
layer. Let x to be a n dimensionally input vector.

2. Hidden Layer Transformation: Every hidden layer is made of RBF units, which radially base
the input characteristics. The i-th RBF unit's output is computed as for a given hidden layer | with
mmm RBF units:

h =g(I x— " 17)

where,

¢ - radial basis function,

1" - center of the i-th RBF unit in layer |, and
I x— M 112
function, ¢ is defined as:

- squared Euclidean distance between the input x and the center 4" . For a Gaussian

g(r)=e"
where y - parameter controlling the width of the Gaussian function.

3. Output Layer Computation: The outputs of the last hidden layer are linearly combined in an
output layer computation to provide the final prediction. Let indicate the weight connecting the j-th

RBF unit to the output is W}L) . The output of the network y comes from:
N (DR
y= Zl:wj h +b
]J=!

where

b - bias term, and

h{" - output of the j-th RBF unit in the last hidden layer.

Training Process

Learning the weights of the output layer and determining the characteristics of the RBF units—centers
and widths—two main goals define training a deep RBF network. The typical process involves:

1. Initialization: Usually depending on data distribution, the widths y are specified; clustering
methods like k-means can be used to generate the centers " of the RBF units.

2. Forward Propagation: Training makes advantage of forward propagation, that is, sends the
input data across the network using the equations above to produce the predicted output.

3. Error Calculation: Using a loss function—such mean squared error (MSE—the prediction
error is calculated between the target values as real and the expected output:
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1 N ’~ 2
Loss==>"(y; - %)
N =

where
yi - true value and

Y, - predicted value for the i-th sample.

4. Backpropagation and Optimization: Gradient descent or another optimization technique is
used to modify the weights WEL) and RBF unit parameters lowering the loss function.

# Deep RBF Network Pseudocode
# Initialization
Initialize the input layer with n features
Initialize L hidden layers with RBF units
For each hidden layer I:
Initialize RBF centers p_i"(1) using clustering (e.g., k-means)
Initialize RBF widths y_1*(1) based on data spread
Initialize weights w_j”~(L) and biases b for the output layer
# Training
For each epoch in the range of total_epochs:
For each training sample (x, y_true) in the training dataset:
# Forward Propagation
Initialize input layer with features x
For each hidden layer | in the network:
For each RBF unit i in layer I:
Compute the output of RBF unit i:
h_in(l) = exp(-y_in(D) * [Ix - p_ir(D)I1"2)
Compute the output layer value:
y_pred =3 (w_j\(L) * h_jA(L)) + b
# Compute Loss
loss=(1/N) * X (y_true - y_pred)"2
# Backpropagation
Compute gradients for output layer weights and biases
For each RBF unit i in all hidden layers:
Compute gradients for RBF unit centers and widths
Update weights, biases, and RBF parameters:
w_j™(L) =w_j™(L) - learning_rate * gradient_w_j™(L)
b =Db - learning_rate * gradient_b
p_i*(1) = p_i1*(l) - learning_rate * gradient p 1"(1)
v_1"(1) =y_i1*(1) - learning_rate * gradient y i”(l)
# Optional: Print loss for the current epoch
# Testing
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For each test sample (x_test, y_test) in the test dataset:
Initialize input layer with features x_test
For each hidden layer | in the network:
For each RBF unit i in layer I:
Compute the output of RBF unit i:
h_in(1) = exp(-y_in(1) * [jx_test - p_i"(1)]["2)
Compute the final output:
y_pred test=2% (w_j~L)*h jAL))+b
# Compute and store testing metrics (e.g., MSE, accuracy)
# Validation (Optional)
For each validation sample (x_val, y_val) in the validation dataset:
Initialize input layer with features x_val
For each hidden layer | in the network:
For each RBF unit i in layer I:
Compute the output of RBF unit i:
h_in(l) = exp(-y_in(1) * [x_val - p_ir(D)[["2)
Compute the final output:
y pred val=%X (w _jNL) *h jAL))+b
# Compute and store validation metrics (e.g., MSE, accuracy)
# End of Training
Return trained model parameters (weights, biases, RBF centers, and widths)

5. Results and Discussion

Source of remotely sensed images from publicly available datasets is Kaggle [15], which comprised
the experimental setup as in Table 3 for evaluating the proposed deep radial basis function (RBF)
network using TensorFlow for model construction and training and Python for a comprehensive
simulation and noise reduction and feature improvement preprocessing. Training and evaluation were
conducted on a cluster with 16 CPU cores, 64 GB RAM, and 8 GPUs to guarantee effective processing
of vast datasets and challenging model computations. The deep RBF network was built utilizing
TensorFlow's Keras API using a high-performance computing cluster loaded with NVIDIA RTX 3090
GPUs handling demanding computations. Predicting accuracy was assessed in performance evaluation
using mean squared error (MSE) and coefficient of determination (R2).

Among the standard models against which the novel method was tested artificial neural networks
(ANN), bi-directional gated recurrent unit with dynamic memory networks (Bi-GRU-DMN), Random
Forest Regression (RFR), and recurrent neural networks (RNN).

Table 3: Experimental Setup and Parameters

Parameter Value

Remote Sensing Image Source Kaggle
Image Resolution 30 meters
Preprocessing Tool OpenCV
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Feature Extraction Techniques | Edge Detection, Texture Analysis
Simulation Tool Python, TensorFlow
GPU Model NVIDIA RTX 3090
CPU Configuration 16 cores
RAM 64 GB
Number of GPUs 8
Deep RBF Network Layers 3 hidden layers
Radial Basis Function Type Gaussian
Training Epochs 1000
Batch Size 32
Learning Rate 0.001
Optimization Algorithm Adam
Data Split Ratio 80:10:10
Regularization Method L2 Regularization

Performance Metrics

. Mean Squared Error (MSE): It gauges how much the expected values vary from the actual
values even if lower MSE suggests better model performance. It is particularly useful for punishing
more forcefully bigger mistakes, hence assessing the precision of regression models.

. Coefficient of Determination (R?): It goes from 0 to 1; a value of O indicates no predictive
ability and a score of 1 indicates ideal prediction. Greater R2 values reflect better fit of the model to
the data.

. Root Mean Squared Error (RMSE): Root mean squared error, or RMSE, has an error
measure in the same units as the target variable. It offers a more reasonable estimate of prediction
accuracy when lower RMSE values indicate better performance.

. Mean Absolute Error (MAE): Mean absolute error, or MAE, measures the mean absolute
difference between the projected and actual counts. Since unlike MSE it does not square the errors, so
it is less sensitive to outliers. MAE provides a basic estimate of prediction accuracy.

. Adjusted R2: It analyzes the complexity of the model, it helps one to compare models with
different amounts of predictors.

. Mean Absolute Percentage Error (MAPE): Lower MAPE values especially when
comparing forecasts over several scales or units indicate better model performance.

Table 4: Performance Comparison over training, testing and validation

Method Dataset | MSE | R? | RMSE | MAE | Adjusted R2 | MAPE (%)
Training | 0.040 | 0.82 | 0.200 | 0.150 0.81 5.2
ANN Testing | 0.045 | 0.80 | 0.213 | 0.160 0.79 5.8
Validation | 0.048 | 0.78 | 0.219 | 0.165 0.77 6.0
. Training | 0.035 | 0.85 | 0.187 | 0.140 0.84 4.7
BI-GRU-DMN Testing | 0.038 | 0.83 | 0.195 | 0.148 0.82 5.1
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Validation | 0.041 | 0.81 | 0.202 | 0.153 0.80 53

Training | 0.042 | 0.83 | 0.205 | 0.155 0.82 54

RFR Testing | 0.046 | 0.80 | 0.214 | 0.163 0.79 5.9
Validation | 0.049 | 0.77 | 0.221 | 0.168 0.76 6.2

Training | 0.037 | 0.84 | 0.192 | 0.145 0.83 4.9

RNN Testing | 0.040 | 0.82 | 0.200 | 0.152 0.81 54
Validation | 0.043 | 0.80 | 0.207 | 0.156 0.79 5.6

Training | 0.032 | 0.87 | 0.179 | 0.130 0.86 4.5

Proposed RBF | Testing |0.035|0.85| 0.187 | 0.138 0.84 4.8
Validation | 0.038 | 0.83 | 0.195 | 0.144 0.82 5.0

Consistently outperforming current techniques over all datasets, the proposed deep radial basis
function (RBF) network shows Table 4 Indicating better accuracy and model fit, the RBF network
performs the lowest mean squared error (MSE) of 0.032 and the highest coefficient of determination
(R2) of 0.87 for training datasets. With a mean absolute error (MAE) of 0.130 and a root mean squared
error (RMSE) of 0.179, the RBF model's mean absolute error (MAE) is lower than those of other
methods, therefore showing reduced prediction error. Adjusted R2 and mean absolute percentage error
(MAPE) measurements also help for the RBF network reflection of resilience and accuracy.

For testing and validation datasets, the RBF network maintains leadership with lower MSE, RMSE,
and MAE values than ANN, Bi-GRU-DMN, RFR, and RNN. The R2 values still show the best since
the RBF model continuously effectively caputrees the volatility in soil properties. Consequently, the
results provide more consistent forecasts than current techniques since the RBF network represents
complex nonlinear interactions with great accuracy.
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The proposed deep radial basis function (RBF) network demonstrates appreciable performance gain
in figure 2 — 7 over training epochs, compared to current methods. First at 250 epochs, the RBF
network finds mean squared error (MSE) of 0.039, coefficient of determination (R?) of 0.82, and
RMSE of 0.197. Training runs to 1000 epochs helps these values to improve; the RBF network
achieves MSE of 0.032, R? of 0.87, and RMSE of 0.179. This implies that by gradually caputreing the
basic trends in the data, the RBF model reduces prediction errors and increases accuracy. Current
methods include ANN, Bi-GRU-DMN, RFR, and RNN show slower convergence and less
performance measure improvement with additional epochs. For 1000 epochs, Bi-GRU-DMN for
example gets a R2 of 0.86, still less than the R? of the RBF network. Likewise, RNN and ANN models
do not show as substantial declines in MSE and RMSE, therefore highlighting the improved capacity
of the RBF network to explain complex, nonlinear interactions efficiently with continuous training.

5. Conclusion

In this work, we studied for soil nutrient data classification using nonlinear regression and deep radial
basis function (RBF) networks. By means of nonlinear regression techniques, the method captures
intricate relationships between soil features acquired from high-resolution remote sensing images,
hence improving the quality and relevance of the input characteristics. These features then are sent
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into a deep RBF network with radial basis functions and many hidden layers to mimic complex,
nonlinear patterns. This combined approach far outperforms standard methods including artificial
neural networks (ANN), Bi-directional Gated Recurrent Unit with Dynamic Memory Networks (Bi-
GRU-DMN), Random Forest Regression (RFR), and Recurrent Neural Networks (RNN), our study
found. Therefore, the proposed method offers a robust and precise tool for the classification of soil
nutrients, thereby boosting agricultural control and environmental planning.
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