ISSN: 1074-133X Vol 31 No. 6s (2024)

Bipolar Vague α Generalized Continuous Mappings in Topological Spaces

F. Prishka¹ and Dr. L. Mariapresenti²

¹Research Scholar, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.

²Assistant Professor, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.

Email¹: prishkamaths@gmail.com and Email²: presentimaria88@gmail.com

Article History: Abstract:

Received: 10-06-2024

Revised: 10-07-2024

Accepted: 30-07-2024

In this paper we have introduced bipolar vague α generalized continuous mappings in topological spaces and investigated some of their properties. Also, we have provided some characterization of bipolar vague α generalized continuous mappings in topological spaces.

Keywords: Bipolar vague sets, bipolar vague topology, bipolar vague α generalized closed sets, bipolar vague α generalized continuous mappings and bipolar vague α generalized irresolute mappings.

1. Introduction

Fuzzy set was introduced by L.A.Zadeh [11] in 1965. The concept of fuzzy topology was introduced by C.L.Chang [3] in 1968. The generalized closed sets in general topology were first introduced by N.Levine [9] in 1970. K.Atanassov [2] in 1986 introduced the concept of intuitionistic fuzzy sets. The notion of vague set theory was introduced by W.L.Gau and D.J.Buehrer [7] in 1993. D.Coker [6] in 1997 introduced intuitionistic fuzzy topological spaces. Bipolar- valued fuzzy sets, which was introduced by K.M.Lee [8] in 2000 is an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1,1]. A new class of generalized bipolar vague sets was introduced by S.Cicily Flora and I.Arockiarani [4] in 2016. F.Prishka and L.Mariapresenti [10] introduced bipolar vague α generalized closed sets in topological spaces. In continuation of our research work we have introduced bipolar vague α generalized continuous mappings in topological spaces, bipolar vague α generalized irresolute mappings in topological spaces and investigated continuous mappings in topological spaces.

2. Preliminaries

Here in this paper the bipolar vague topological spaces are denoted by (X, BV_τ) . Also, the bipolar vague interior, bipolar vague closure of a bipolar vague set A are denoted by BVInt(A) and BVCl(A). The complement of a bipolar vague set A is denoted by A^c and the empty set and whole sets are denoted by 0_{\sim} and 1_{\sim} respectively.

Definition 2.1: [8] Let X be the universe. Then a bipolar valued fuzzy sets, A on X is defined by positive membership function μ_A^+ , that is μ_A^+ : X \rightarrow [0,1], and a negative membership function μ_A^- , that

ISSN: 1074-133X Vol 31 No. 6s (2024)

is $\mu_A^-: X \to [-1,0]$. For the sake of simplicity, we shall use the symbol $= \{\langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X\}.$

Definition 2.2: [8] Let A and B be two bipolar valued fuzzy sets then their union, intersection and complement are defined as follows:

- (i) $\mu_{A \cup B}^+ = \max \{\mu_A^+(x), \mu_B^+ x\}$
- (ii) $\mu_{A \cup B}^- = \min \{ \mu_A^-(x), \mu_B^- x \}$
- (iii) $\mu_{A\cap B}^+ = \min \{ \mu_A^+(x), \mu_B^+ x \}$
- (iv) $\mu_{A \cap B}^- = \max \{ \mu_A^-(x), \mu_B^- x \}$
- (v) $\mu_{A^c}^+(x) = 1 \mu_A^+(x)$ and $\mu_{A^c}^-(x) = -1 \mu_A^-(x)$ for all $x \in X$.

Definition 2.3: [7] A vague set A in the universe of discourse U is a pair of (t_A, f_A) where t_A : U \rightarrow [0,1], f_A : U \rightarrow [0,1] are the mapping such that $t_A + f_A \le 1$ for all $u \in U$. The function t_A and f_A are called true membership function and false membership function respectively. The interval $[t_A, 1 - f_A]$ is called the vague value of u in A, and denoted by $v_A(u)$, that is $v_A(u) = [t_A(u), 1 - f(u)]$.

Definition 2.4: [7] Let A be a non-empty set and the vague set A and B in the form $A = \{\langle x, t_A(x), 1 - f_A(x) \rangle : x \in X \}$, $B = \{\langle x, t_B(x), 1 - f_B(x) \rangle : x \in X \}$. Then

- (i) $A \subseteq B$ if and only if $t_A(x) \le t_B(x)$ and $1 f_A(x) \le 1 f_B(x)$
- (ii) $A \cup B = \left\{ \left\langle \max\left(t_A(x), t_B(x)\right), \frac{\max\left(1 f_A(x), 1 f_B(x)\right)\right\rangle}{x} \in X \right\}.$
- (iii) $A \cap B = \left\{ \left\langle \min\left(t_A(x), t_B(x)\right), \frac{\min\left(1 f_A(x), 1 f_B(x)\right)\right\rangle}{x} \in X \right\}.$
- (iv) $A^c = \{ \langle x, f_A(x), 1 t_A(x) \rangle : x \in X \}$

Definition 2.5: [1] Let X be the universe of discourse. A bipolar-valued vague set A in X is an object having the form $A = \{\langle x, [t_A^+(x), 1 - f_A^+(x)], [-1 - f_A^-(x), t_A^-(x)] \rangle : x \in X \}$ where $[t_A^+, 1 - f_A^+] : X \rightarrow [0,1]$ and $[-1 - f_A^-, t_A^-] : X \rightarrow [-1,0]$ are the mapping such that $t_A^+(x) + f_A^+(x) \le 1$ and $-1 \le t_A^- + f_A^-$. The positive membership degree $[t_A^+(x), 1 - f_A^+(x)]$ denotes the satisfaction region of an element x to the property corresponding to a bipolar-valued set A and the negative membership degree $[-1 - f_A^-(x), t_A^-(x)]$ denotes the satisfaction region of x to some implicit counter property of A. For a sake of simplicity, we shall use the notion of bipolar vague set $v_A^+ = [t_A^+, 1 - f_A^+]$ and $v_A^- = [-1 - f_A^-, t_A^-]$.

Definition 2.6: [5] A bipolar vague set $A = [v_A^+, v_A^-]$ of a set U with $v_A^+ = 0$ implies that $t_A^+ = 0$, $1 - f_A^+ = 0$ and $v_A^- = 0$ implies that $t_A^- = 0$, $-1 - f_A^- = 0$ for all $x \in U$ is called zero bipolar vague set and it is denoted by 0.

Definition 2.7: [5] A bipolar vague set $A = [v_A^+, v_A^-]$ of a set U with $v_A^+=1$ implies that $t_A^+=1$, $1-f_A^+=1$ and $v_A^-=-1$ implies that $t_A^-=-1$, $-1-f_A^-=-1$ for all $x \in U$ is called unit bipolar vague set and it is denoted by 1.

Definition 2.8: [4] Let $A = \langle x, [t_A^+, 1 - f_A^+], [-1 - f_A^-, t_A^-] \rangle$ and $\langle x, [t_B^+, 1 - f_B^+], [-1 - f_B^-, t_B^-] \rangle$ be two bipolar vague sets then their union, intersection and complement are defined as follows:

ISSN: 1074-133X Vol 31 No. 6s (2024)

(i)
$$A \cup B = \left\{ \langle x, [t_{A \cup B}^+(x), 1 - f_{A \cup B}^+(x)], \frac{[-1 - f_{A \cup B}^-(x), t_{A \cup B}^-(x)] \rangle}{x} \in X \right\} \text{ where }$$

$$t_{A \cup B}^+(x) = \max \left\{ t_A^+(x), t_B^+(x) \right\}, \ t_{A \cup B}^-(x) = \min \left\{ t_A^-(x), t_B^-(x) \right\} \text{ and }$$

$$1 - f_{A \cup B}^+(x) = \max \left\{ 1 - f_A^+(x), 1 - f_B^+(x) \right\},$$

$$-1 - f_{A \cup B}^-(x) = \min \left\{ -1 - f_A^-(x), -1 - f_B^-(x) \right\}.$$

(ii)
$$A \cap B = \left\{ \langle x, [t_{A \cap B}^+(x), 1 - f_{A \cap B}^+(x)], \frac{[-1 - f_{A \cap B}^-(x), t_{A \cap B}^-(x)] \rangle}{x} \in X \right\}$$
 where $t_{A \cap B}^+(x) = \min \{t_A^+(x), t_B^+(x)\}, t_{A \cap B}^-(x) = \max \{t_A^-(x), t_B^-(x)\}$ and $1 - f_{A \cap B}^+(x) = \min \{1 - f_A^+(x), 1 - f_B^+(x)\}, -1 - f_{A \cup B}^-(x) = \max \{-1 - f_A^-(x), -1 - f_B^-(x)\}.$

(iii)
$$A^c = \{ \langle x, [f_A^+(x), 1 - t_A^+(x)], [-1 - t_A^-(x), f_A^-(x)] \rangle / x \in X \}.$$

Definition 2.9: [4] Let A and B be two bipolar vague sets defined over a universe of discourse X. We say that $A \subseteq B$ if and only if $t_A^+(x) \le t_B^+(x)$, $1 - f_A^+(x) \le 1 - f_B^+(x)$ and $t_A^-(x) \ge t_B^-(x)$, $-1 - f_A^-(x) \ge 1 - f_B^-(x)$ for all $x \in X$.

Definition 2.10: [4] A bipolar vague topology (BVT) on a non-empty set X is a family BV_{τ} of bipolar vague set in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in BV_{\tau}$
- (ii) $G_1 \cap G_2 \in BV_{\tau}$, for any $G_1, G_2 \in BV_{\tau}$
- (iii) $\cup G_i \in BV_\tau$, for any arbitrary family $\{G_i : G_i \in BV_\tau, I \in I\}$.

In this case the pair (X, BV_{τ}) is called a bipolar vague topological space and any bipolar vague set (BVS) in BV_{τ} is known as bipolar vague open set in X. The complement A^{c} of a bipolar vague open set (BVOS) A in a bipolar vague topological space (X, BV_{τ}) is called a bipolar vague closed set (BVCS) in X.

Definition 2.11: [4] Let (X, BV_{τ}) be a bipolar vague topological space $A = \langle x, [t_A^+, 1 - f_A^+], [-1 - f_A^-, t_A^-] \rangle$ be a bipolar vague set in X. Then the bipolar vague interior and bipolar vague closure of A are defined by,

 $BVInt(A) = \bigcup \{G: G \text{ is a bipolar vague open set in } X \text{ and } G \subseteq A\},$

 $BVCl(A) = \bigcap \{K: K \text{ is a bipolar vague closed set in } X \text{ and } A \subseteq K\}.$

Note that BVCl(A) is a bipolar vague closed set and BVInt(A) is a bipolar vague open set in X. Further,

- (i) A is a bipolar vague closed set in X if and only if BVCl(A) = A,
- (ii) A is a bipolar vague open set in X if and only if BVInt(A) = A.

Definition 2.12: [4] Let (X, BV_τ) be a bipolar vague topological space. A bipolar vague set A in (X, BV_τ) is said to be a generalized bipolar vague closed set if $BVCl(A) \subseteq G$ whenever $A \subseteq G$ and G is bipolar vague open. The complement of a generalized bipolar vague closed set is generalized bipolar vague open set.

Definition 2.13: [4] Let (X, BV_{τ}) be a bipolar vague topological space and A be a bipolar vague set in X. Then the generalized bipolar vague closure and generalized bipolar vague interior of A are defined by,

ISSN: 1074-133X Vol 31 No. 6s (2024)

 $GBVCl(A) = \bigcap \{G: G \text{ is a generalized bipolar vague closed set in } X \text{ and } A \subseteq G\},$

 $GBInt(A) = \bigcup \{G: G \text{ is a generalized bipolar vague open set in } X \text{ and } A \supseteq G\}.$

Definition 2.14: [10] A bipolar vague set A of a bipolar vague topological space X, is said to be

- (i) a bipolar vague α -open set if $A \subseteq BVInt(BVCl(BVInt(A)))$
- (ii) a bipolar vague pre-open set if $A \subseteq BVInt(BVCl(A))$
- (iii) a bipolar vague semi-open set if $A \subseteq BVCl(BVInt(A))$
- (iv) a bipolar vague semi- α -open set if $A \subseteq BVCl(\alpha BVInt(A))$
- (v) a bipolar vague regular-open set BVInt(BVCl(A)) = A
- (vi) a bipolar vague β -open set $A \subseteq BVCl(BVInt(BVCl(A)))$.

Definition 2.15: [10] A bipolar vague set A of a bipolar vague topological space X, is said to be

- (i) a bipolar vague α -closed set if BVCl(BVInt(BVCl(A))) \subseteq A
- (ii) a bipolar vague pre-closed set if $BVCl(BVInt(A)) \subseteq A$
- (iii) a bipolar vague semi-closed set if $BVInt(BVCl(A)) \subseteq A$
- (iv) a bipolar vague semi- α -closed set if BVInt(α BVCl(A)) \subseteq A
- (v) a bipolar vague regular-closed set if BVCl(BVInt(A)) = A
- (vi) a bipolar vague β -closed set if BVInt(BVCl(BVInt(A))) \subseteq A.

Definition 2.16: [10] Let A be a bipolar vague set of a bipolar vague topological space (X, BV_{τ}) . Then the bipolar vague α interior and bipolar vague α closure are defined as

```
BV_{\alpha}Int(A) = \bigcup \{G: G \text{ is a bipolar vague } \alpha\text{-open set in } X \text{ and } G \subseteq A\},
```

 $BV_{\alpha}Cl(A) = \bigcap \{K: K \text{ is a bipolar vague } \alpha\text{-closed set in } X \text{ and } A \subseteq K\}.$

Definition 2.17: [10] A bipolar vague set A in a bipolar vague topological space X, is said to be a bipolar vague α generalized closed set if $BV_{\alpha}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a bipolar vague open set in X. The complement A^c of a bipolar vague α generalized closed set A is a bipolar vague α generalized open set in X.

Definition 2.18: [4] Let (X, BV_{τ}) and (Y, BV_{σ}) be two bipolar vague topological spaces and $f: X \to Y$ be a function. Then φ is said to be bipolar vague continuous if and only if the preimage of each bipolar vague open set in Y is a bipolar vague open set in X.

Definition 2.19: [4] A map $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is said to be generalized bipolar vague continuous if the inverse image of every bipolar vague open set in (Y, BV_{σ}) is a generalized vague open set in (X, BV_{τ}) .

Definition 2.20: [4] Let f be a mapping from a bipolar vague topological space (X, BV_{τ}) into a bipolar vague topological space (Y, BV_{σ}) . Then f is said to be a bipolar vague generalized irresolute mapping if the inverse image of every bipolar vague generalized closed set in (Y, BV_{σ}) is a bipolar vague generalized closed set in (X, BV_{τ}) .

3. Bipolar Vague α Generalized Continuous Mappings in Topological Spaces

ISSN: 1074-133X Vol 31 No. 6s (2024)

In this section we have introduced bipolar vague α generalized continuous mappings and investigated some of their properties. Also, we have established the relation between the newly introduced mappings and already existing mappings.

Definition 3.1: Let (X, BV_{τ}) and (Y, BV_{σ}) be two bipolar vague topological spaces. Then the mapping $f: (X, BV_{\tau}) \to (Y, BV_{\sigma})$ is called

- (i) a bipolar vague α continuous if the inverse image of every bipolar vague closed set in (Y, BV_{σ}) is a bipolar vague α -closed set in (X, BV_{τ}) .
- (ii) a bipolar vague pre continuous if the inverse image of every bipolar vague closed set in (Y, BV_{σ}) is a bipolar vague pre-closed set in (X, BV_{τ}) .
- (iii) a bipolar vague semi continuous if the inverse image of every bipolar vague closed set in (Y, BV_{σ}) is a bipolar vague semi-closed set in (X, BV_{τ}) .

Definition 3.2: Let (X, BV_{τ}) and (Y, BV_{σ}) be two bipolar vague topological spaces. A mapping $f: (X, BV_{\tau}) \to (Y, BV_{\sigma})$ is called a bipolar vague α generalized continuous mapping if $f^{-1}(B)$ is a bipolar vague α generalized closed set in (X, BV_{τ}) for every bipolar vague closed set B of (Y, BV_{σ}) .

Example 3.3: Let $X = \{a,b\}$ and $Y = \{u,v\}$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are bipolar vague topologies on X and Y respectively, where $A = \langle x, [0.5, 0.5] [-0.5, -0.5], [0.5, 0.5]$ [-0.5, -0.5] \rangle and $B = \langle y, [0.7, 0.6] [-0.9, -0.9], [0.6, 0.6] [-0.5, -0.5]<math>\rangle$. Define a mapping $f : (X, BV_{\tau}) \to (Y, BV_{\sigma})$ by f(a) = u and f(b) = v. Here the bipolar vague set $B^c = \langle y, [0.4, 0.3] [-0.1, -0.1], [0.4, 0.4] [-0.5, -0.5]<math>\rangle$ is a bipolar vague closed set in Y. Then $f^{-1}(B^c) = \langle x, [0.4, 0.3] [-0.1, -0.1], [0.4, 0.4] [-0.5, -0.5]<math>\rangle$ is a bipolar vague α generalized closed set in (X, BV_{τ}) as $f^{-1}(B^c) \subseteq A$ and $BV_{\alpha}Cl(f^{-1}(B^c)) = f^{-1}(B^c) \cup BVCl(BVInt(BVCl(f^{-1}(B^c)))) = A^c \subseteq A$, where A is a bipolar vague open set in X. Therefore, f is a bipolar vague α generalized continuous mapping.

Proposition 3.4: Every bipolar vague continuous mapping is a bipolar vague α generalized continuous mapping but not conversely in general.

Proof: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague continuous mapping. Let A be a bipolar vague closed set in Y. Then $f^{-1}(A)$ is a bipolar vague closed set in X. Since every bipolar vague closed set is a bipolar vague α generalized closed set in X [10], $f^{-1}(A)$ is a bipolar vague α generalized closed set in X. Hence f is a bipolar vague α generalized continuous mapping.

Example 3.5: Let $X = \{a,b\}$ and $Y = \{u,v\}$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are bipolar vague topologies on X and Y respectively, where $A = \langle x, [0.2, 0.3] [-0.4, -0.4], [0.5, 0.5]$ [-0.4, -0.4] \rangle and $B = \langle y, [0.4, 0.4] [-0.4, -0.4], [0.6, 0.6] [-0.4, -0.4]<math>\rangle$. Define a mapping $f : (X, BV_{\tau}) \to (Y, BV_{\sigma})$ by f(a) = u and f(b) = v. Here the bipolar vague set $B^c = \langle y, [0.6, 0.6] [-0.6, -0.6], [0.4, 0.4] [-0.6, -0.6] \rangle$ is a bipolar vague closed set in Y. Then $f^{-1}(B^c) = \langle x, [0.6, 0.6] [-0.6, -0.6], [0.4, 0.4] [-0.6, -0.6] \rangle$ is a bipolar vague α generalized closed set in (X, BV_{τ}) as $f^{-1}(B^c) = (X, B^c) =$

ISSN: 1074-133X Vol 31 No. 6s (2024)

Proposition 3.6: Every bipolar vague α continuous mapping is a bipolar vague α generalized continuous mapping but not conversely in general.

Proof: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague α continuous mapping. Let A be a bipolar vague closed set in Y. Then $f^{-1}(A)$ is a bipolar vague α -closed set in X. Since every bipolar vague α -closed set is a bipolar vague α generalized closed set in X [10], $f^{-1}(A)$ is a bipolar vague α generalized closed set in X. Hence f is a bipolar vague α generalized continuous mapping.

Example 3.7: Let X = {a,b} and Y = {u,v}. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are bipolar vague topologies on X and Y respectively, where A = ⟨x, [0.2, 0.3] [-0.3, -0.3], [0.5, 0.5] [-0.4, -0.4]⟩ and B = ⟨y, [0.3, 0.3] [-0.3, -0.3], [0.7, 0.7] [-0.5, -0.5]⟩. Define a mapping f: (X, BV_τ) \rightarrow (Y, BV_σ) by f(a) = u and f(b) = v. Here the bipolar vague set B^c = ⟨y, [0.7, 0.7] [-0.7, -0.7], [0.3, 0.3] [-0.5, -0.5]⟩ is a bipolar vague closed set in Y. Then f^{-1} (B^c) = ⟨x, [0.7, 0.7] [-0.7, -0.7], [0.3, 0.3] [-0.5, -0.5]⟩ is a bipolar vague α generalized closed set in (X, BV_τ) as f^{-1} (B^c) ⊆ 1_~ and BV_αCl(f^{-1} (B^c)) = f^{-1} (B^c) ∪ BVCl(BVInt(BVCl(f^{-1} (B^c)))) = A^c ⊆ 1_~, where A^c is a bipolar vague closed set in X. Therefore, f is a bipolar vague α generalized continuous mapping but since BVCl (BVInt(BVCl(f^{-1} (B^c)))) = A^c ⊆ f⁻¹ (B^c). Hence f is not a bipolar vague α continuous mapping.

Remark 3.8: Every bipolar vague semi continuous mapping and bipolar vague α generalized continuous mapping are independent to each other in general.

Example 3.9: In Example 3.4, f is a bipolar vague α generalized continuous mapping but since $BVInt\left(BVCl(f^{-1}(B^c))\right) = BVInt(A^c) = A \not\subset f^{-1}(B^c) = \langle x, [0.4, 0.3] [-0.1, -0.1], [0.4, 0.4]$ [-0.5, -0.5] \rangle , $f^{-1}(B^c)$ is not a bipolar vague semi-closed set in X. Hence f is not a bipolar vague semi-continuous mapping.

Example 3.10: Let $X = \{a,b\}$ and $Y = \{u,v\}$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are bipolar vague topologies on X and Y respectively, where $A = \langle x, [0.4, 0.3] [-0.2, -0.2], [0.5, 0.5]$ [-0.5, -0.5] \rangle and $B = \langle y, [0.7, 0.6] [-0.8, -0.8], [0.5, 0.5] [-0.5, -0.5]<math>\rangle$. Define a mapping $f : (X, BV_{\tau}) \to (Y, BV_{\sigma})$ by f(a) = u and f(b) = v. Here the bipolar vague set $B^c = \langle y, [0.4, 0.3] [-0.2, -0.2], [0.5, 0.5] [-0.5, -0.5]<math>\rangle$ is a bipolar vague closed set in Y. But $f^{-1}(B^c) = \langle x, [0.4, 0.3] [-0.2, -0.2], [0.5, 0.5] [-0.5, -0.5]<math>\rangle$ is not a bipolar vague α generalized closed set in (X, BV_{τ}) as $f^{-1}(B^c) \subseteq A$ and $BV_{\alpha}Cl(f^{-1}(B^c)) = f^{-1}(B^c) \cup BVCl(BVInt(BVCl(f^{-1}(B^c)))) = A^c \not\subset A$, where A^c is a bipolar vague closed set in X. Therefore, f is not a bipolar vague α generalized continuous mapping but since $BVInt(BVCl(f^{-1}(B^c))) = A \subseteq f^{-1}(B^c)$ is a bipolar vague semi-closed set in X. Hence f is a bipolar vague semi continuous mapping.

Remark 3.11: Every bipolar vague pre continuous mapping and bipolar vague α generalized continuous mapping are independent to each other in general.

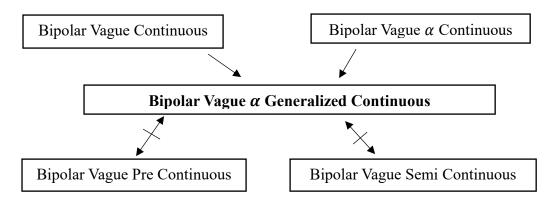
Example 3.12: Let $X = \{a,b\}$ and $Y = \{u,v\}$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are bipolar vague topologies on X and Y respectively, where $A = \langle x, [0.1, 0.1] [-0.4, -0.4], [0.6, 0.3]$ [-0.5, -0.5] \rangle and $B = \langle y, [0.2, 0.2] [-0.5, -0.5], [0.7, 0.3] [-0.5, -0.5]<math>\rangle$. Define a mapping f

ISSN: 1074-133X Vol 31 No. 6s (2024)

: $(X, BV_{\tau}) \rightarrow (Y, BV_{\sigma})$ by f(a) = u and f(b) = v. Here the bipolar vague set $B^c = \langle y, [0.8, 0.8]$ [-0.5, -0.5], [0.7, 0.3] [-0.5, -0.5] \rangle is a bipolar vague closed set in Y. Then $f^{-1}(B^c) = \langle x, [0.8, 0.8]$ [-0.5, -0.5], [0.7, 0.3] [-0.5, -0.5] \rangle is a bipolar vague α generalized closed set in (X, BV_{τ}) as $f^{-1}(B^c) \subseteq 1_{\sim}$ and $BV_{\alpha}Cl(f^{-1}(B^c)) = f^{-1}(B^c) \cup BVCl(BVInt(BVCl(f^{-1}(B^c)))) = A^c \subseteq 1_{\sim}$, where A^c is a bipolar vague closed set in X. Therefore, f is a bipolar vague α generalized continuous mapping. Since $BVCl(BVInt(f^{-1}(B^c))) = A^c \not\subset f^{-1}(B^c)$, $f^{-1}(B^c)$ is not a bipolar vague pre-closed set in X. Hence f is not a bipolar vague pre continuous mapping.

Example 3.13: Let $X = \{a,b\}$ and $Y = \{u,v\}$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are bipolar vague topologies on X and Y respectively, where $A = \langle x, [0.5, 0.4] [-0.3, -0.2], [0.5, 0.5]$ [-0.3, -0.2] \rangle and $B = \langle y, [0.8, 0.7] [-0.8, -0.8], [0.5, 0.5] [-0.8, -0.8]<math>\rangle$. Define a mapping $f : (X, BV_{\tau}) \to (Y, BV_{\sigma})$ by f(a) = u and f(b) = v. Here the bipolar vague set $B^c = \langle y, [0.3, 0.2] [-0.2, -0.2], [0.5, 0.5] [-0.2, -0.2] \rangle$ is a bipolar vague closed set in Y. Then $f^{-1}(B^c) = \langle x, [0.3, 0.2] [-0.2, -0.2], [0.5, 0.5] [-0.2, -0.2] \rangle$ is not a bipolar vague α generalized closed set in (X, BV_{τ}) as $f^{-1}(B^c) \subseteq A$ and $BV_{\alpha}Cl(f^{-1}(B^c)) = f^{-1}(B^c) \cup BVCl(BVInt(BVCl(f^{-1}(B^c)))) = A^c \not\subset A$, where A^c is a bipolar vague closed set in X. Therefore, f is not a bipolar vague α generalized continuous mapping. Since $BVCl(BVInt(f^{-1}(B^c))) = 0_{\sim} \subseteq f^{-1}(B^c)$, $f^{-1}(B^c)$ is a bipolar vague pre-closed set in X. Hence f is a bipolar vague pre continuous mapping.

The relation between various types of bipolar vague continuity is given in the following diagram:



Proposition 3.14: A mapping $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is a bipolar vague α generalized continuous if and only if the inverse image of each bipolar vague open set in Y is a bipolar vague α generalized open set in X.

Proof: Necessity: Let A be a bipolar vague open set in Y. This implies A^c is a bipolar vague closed set in Y. Since f is a bipolar vague α generalized continuous, $f^{-1}(A^c)$ is a bipolar vague α generalized closed set in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is a bipolar vague α generalized open set in X.

Sufficiency: Let A be a bipolar vague closed set in Y. This implies A^c is a bipolar vague open set in Y. By hypothesis, $f^{-1}(A^c)$ is a bipolar vague α generalized open set in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is a bipolar vague α generalized closed set in X. Hence f is a bipolar vague α generalized continuous mapping.

ISSN: 1074-133X Vol 31 No. 6s (2024)

Proposition 3.15: If $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is a bipolar vague α generalized continuous mapping and $g:(Y, BV_{\sigma}) \to (Z, BV_{\delta})$ is a bipolar vague continuous mapping, then $g \circ f:(X, BV_{\tau}) \to (Z, BV_{\delta})$ is a bipolar vague α generalized continuous mapping.

Proof: Let A be a bipolar vague closed set in Z. Then $g^{-1}(A)$ be a bipolar vague closed set in Y, by hypothesis. Since f is a bipolar vague α generalized continuous mapping, $f^{-1}(g^{-1}(A))$ is a bipolar vague α generalized closed set in X. Hence $g \circ f$ is a bipolar vague α generalized continuous mapping.

Definition 3.16: Let (X, BV_{τ}) be a bipolar vague topological space. The bipolar vague alpha generalized closure $(BV_{\alpha q}Cl(A))$ for any bipolar vague set A is defined as follows:

 $BV_{\alpha}Cl(A) = \bigcap \{K: K \text{ is a bipolar vague } \alpha \text{ generalized closed set in } X \text{ and } A \subseteq K\}.$ If A is a bipolar vague α generalized closed set, then $BV_{\alpha q}Cl(A) = A$.

Proposition 3.17: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague α generalized continuous mapping. Then the following conditions are hold:

- (i) $f(BV_{\alpha\alpha}Cl(A)) \subseteq BVCl(f(A))$, for every bipolar vague set A in X.
- (ii) $BV_{\alpha q}Cl(f^{-1}(B)) \subseteq f^{-1}(BVCl(B))$, for every bipolar vague set B in Y.

Proof: (i) Since BVCl(f(A)) is a bipolar vague closed set in Y and f is a bipolar vague α generalized continuous mapping, then $f^{-1}(BVCl(f(A)))$ is a bipolar vague α generalized closed set in X. That is $BV_{\alpha g}Cl(f^{-1}(BVCl(f(A)))) = f^{-1}(BVCl(f(A)))$. Now, $f(BV_{\alpha g}Cl(f^{-1}(BVCl(f(A)))) = ff^{-1}(BVCl(f(A))) \subseteq BVCl(f(A))$. Then $f(BV_{\alpha g}Cl(A)) \subseteq f(BV_{\alpha g}Cl(f^{-1}(BVCl(f(A)))) \subseteq f(BV_{\alpha g}Cl(f^{-1}(BVCl(f(A)))) \subseteq gVCl(f(A))$. Therefore $f(BV_{\alpha g}Cl(A)) \subseteq gVCl(f(A))$, for every bipolar vague set A in X.

(ii) Replacing A by $f^{-1}(B)$ in (i), we get $f(BV_{\alpha g}Cl(f^{-1}(B))) \subseteq BVCl(f(f^{-1}(B))) \subseteq BVCl(B)$. Hence $BV_{\alpha g}Cl(f^{-1}(B)) \subseteq f^{-1}(f(BV_{\alpha g}Cl(f^{-1}(B)))) \subseteq f^{-1}(BVCl(B))$, for every bipolar vague set B in Y.

Definition 3.18: A bipolar vague topological space (X, BV_{τ}) is said to be bipolar vague $\alpha a T_{1/2}(BV_{\alpha a}T_{1/2})$ space if every bipolar vague α generalized closed set in X is a bipolar vague closed set in X.

Definition 3.19: A bipolar vague topological space (X, BV_{τ}) is said to be bipolar vague $\alpha b T_{1/2}(BV_{\alpha b}T_{1/2})$ space if every bipolar vague α generalized closed set in X is a bipolar vague generalized closed set in X.

Proposition 3.20: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague α generalized continuous mapping, then f is a bipolar vague continuous mapping, if X is a $BV_{\alpha\alpha}T_{1/2}$ space.

Proof: Let A be a bipolar vague closed set in Y. Then $f^{-1}(A)$ is a bipolar vague α generalized closed set in X, by hypothesis. Since X is a $BV_{\alpha\alpha}T_{1/2}$ space, $f^{-1}(A)$ is a bipolar vague closed set in X. Hence f is a bipolar vague continuous mapping.

Proposition 3.21: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague α generalized continuous mapping, then f is a bipolar vague generalized continuous mapping, if X is a $BV_{\alpha b}T_{1/2}$ space.

ISSN: 1074-133X Vol 31 No. 6s (2024)

Proof: Let A be a bipolar vague closed set in Y. Then $f^{-1}(A)$ is a bipolar vague α generalized closed set in X, by hypothesis. Since X is a $BV_{\alpha b}T_{1/2}$ space, $f^{-1}(A)$ is a bipolar vague generalized closed set in X. Hence f is a bipolar vague generalized continuous mapping.

Proposition 3.22: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a mapping from a bipolar vague topological space X into a bipolar vague topological space Y. Then the following conditions are equivalent if X is a $BV_{\alpha\alpha}T_{1/2}$ space:

- (i) f is a bipolar vague α generalized continuous mapping.
- (ii) If B is a bipolar vague open set in Y, $f^{-1}(B)$ is a bipolar vague α generalized closed set in X.
- (iii) $f^{-1}(BVInt(B)) \subseteq BVInt(BVCl(BVInt(f^{-1}(B))))$ for every bipolar vague set B in Y.

Proof: (i) \Longrightarrow (ii) is obviously true.

- (ii) \Rightarrow (iii). Let B be any bipolar vague open set in Y. The BVInt(B) is a bipolar vague open set in Y. Then $f^{-1}(BVInt(B))$ is a bipolar vague α generalized open set in X. Since X is a $BV_{\alpha\alpha}T_{1/2}$ space, $f^{-1}(BVInt(B))$ is a bipolar vague open set in X. Therefore, $f^{-1}(BVInt(B)) = BVInt(f^{-1}(BVInt(B)))$ $\subseteq BVInt(BVCl(BVInt(f^{-1}(B))))$.
- (iii) \Rightarrow (i). Let B be a bipolar vague closed set in Y. Then its complement B° is a bipolar vague open set in Y. By hypothesis, $f^{-1}(BVInt(B^c)) \subseteq BVInt(BVCl(BVInt(f^{-1}(B^c))))$. This implies $f^{-1}(B^c) \subseteq BVInt(BVCl(BVInt(f^{-1}(B^c))))$. Hence $f^{-1}(B^c)$ is a bipolar vague α -open set in X. Since every bipolar vague α -open set is a bipolar vague α generalized open set, $f^{-1}(B^c)$ is a bipolar vague α generalized open set in X. Therefore, $f^{-1}(B)$ is a bipolar vague α generalized closed set in X. Hence f is a bipolar vague α generalized continuous mapping.

Proposition 3.23: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a mapping from a bipolar vague topological space X into a bipolar vague topological space Y. Then the following conditions are equivalent if X is a $BV_{\alpha\alpha}T_{1/2}$ space:

- (i) f is a bipolar vague α generalized continuous mapping.
- (ii) If $f^{-1}(B)$ is a bipolar vague α generalized closed set in X, for every bipolar vague closed set B in Y.
- (iii) BVCl(BVInt(BVCl($f^{-1}(A)$))) $\subseteq f^{-1}(BVCl(A))$ for every bipolar vague set B in Y.

Proof: (i) \Longrightarrow (ii) is obviously true.

- $(ii) \Rightarrow (iii)$. Let A be any bipolar vague set in Y. Then BVCl(A) is a bipolar vague closed set in Y. By hypothesis, $f^{-1}(BVCl(A))$ is a bipolar vague α generalized closed set in X. Since X is a $BV_{\alpha\alpha}T_{1/2}$ $f^{-1}(BVCl(A))$ bipolar space, is vague closed X. Therefore, $BVCl(f^{-1}(BVCl(A)))$ = $f^{-1}(BVCl(A)).$ Now $BVCl(BVInt(BVCl((f^{-1}(A))))$ $BVCl(BVInt(BVCl((f^{-1}(BVCl(A)))) \subseteq f^{-1}(BVCl(A)).$
- (iii) \Rightarrow (i). Let A be a bipolar vague closed set in Y. Then by hypothesis, BVCl(BVInt(BVCl(f^{-1} (BVCl(A))))) $\subseteq f^{-1}$ (BVCl(A)) = f^{-1} (A). This implies f^{-1} (A) is a bipolar vague α -closed set in X and hence it is a bipolar vague α generalized closed set in X. Therefore, f is a bipolar vague α generalized continuous mapping.

ISSN: 1074-133X Vol 31 No. 6s (2024)

4. Bipolar Vague α Generalized Irresolute Mappings in Topological Spaces

In this section we have introduced bipolar vague α generalized irresolute mappings and studied some of their properties.

Definition 4.1: A mapping $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is called a bipolar vague α generalized irresolute mapping if $f^{-1}(A)$ is a bipolar vague α generalized closed set in (X, BV_{τ}) for every bipolar vague α generalized closed set A of (Y, BV_{σ}) .

Proposition 4.2: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague α generalized irresolute mapping, then f is a bipolar vague α generalized continuous mapping but not conversely.

Proof: Let f be a bipolar vague α generalized irresolute mapping. Let A be any bipolar vague closed set in Y. Since every bipolar vague closed set is a bipolar vague α generalized closed set [10], A is a bipolar vague α generalized closed set in Y. By hypothesis, $f^{-1}(A)$ is a bipolar vague α generalized closed set in Y. Hence Y is a bipolar vague Y generalized continuous mapping.

Example 4.3: Let $X = \{a,b\}$ and $Y = \{u,v\}$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are bipolar vague topologies on X and Y respectively, where $A = \langle x, [0.1, 0.3] [-0.3, -0.3], [0.6, 0.3]$ [-0.3, -0.3] \rangle and $B = \langle y, [0.3, 0.1] [-0.1, -0.1], [0.5, 0.6] [-0.1, -0.1]<math>\rangle$. Define a mapping f: $(X, BV_{\tau}) \to (Y, BV_{\sigma})$ by f(a) = u and f(b) = v. Then f is a bipolar vague α generalized continuous mapping but not a bipolar vague α generalized irresolute mapping. Since the bipolar vague set $M = \langle y, [0.1, 0.3] [-0.2, -0.2], [0.6, 0.2] [-0.2, -0.2] \rangle$ is a bipolar vague α generalized closed set in Y but f^{-1} (M) is not a bipolar vague α generalized closed set in X as f^{-1} (M) = $\langle x, [0.1, 0.3] [-0.2, -0.2], [0.6, 0.2] [-0.2, -0.2] \rangle \subseteq A$ but $BV_{\alpha}Cl(f^{-1}(M)) = f^{-1}(M) \cup BVCl(BVInt(BVCl(f^{-1}(M)))) = A^{c} \not\subset A$. Hence f is not a bipolar vague α generalized irresolute mapping.

Proposition 4.4: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ and $g:(Y, BV_{\sigma}) \to (Z, BV_{\delta})$ be any two bipolar vague α generalized irresolute mappings, then $g \circ f:(X, BV_{\tau}) \to (Z, BV_{\delta})$ is a bipolar vague α generalized irresolute mapping.

Proof: Let A be a bipolar vague α generalized closed set in Z. Then g^{-1} (A) is a bipolar vague α generalized closed set in Y. Since f is a bipolar vague α generalized irresolute mapping, $f^{-1}(g^{-1}(A))$ is a bipolar vague α generalized closed set in X. Hence $g \circ f$ is a bipolar vague α generalized irresolute mapping.

Proposition 4.5: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague α generalized irresolute mapping and $g:(Y, BV_{\sigma}) \to (Z, BV_{\delta})$ be a bipolar vague α generalized continuous mapping, then $g \circ f:(X, BV_{\tau}) \to (Z, BV_{\delta})$ is a bipolar vague α generalized continuous mapping.

Proof: Let A be a bipolar vague closed set in Z. Then $g^{-1}(A)$ is a bipolar vague α generalized closed set in Y, by hypothesis. Since f is a bipolar vague α generalized irresolute mapping, $f^{-1}(g^{-1}(A))$ is a bipolar vague α generalized closed set in X. Hence $g \circ f$ is a bipolar vague α generalized continuous mapping.

Proposition 4.6: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a bipolar vague α generalized irresolute mapping and $g:(Y, BV_{\sigma}) \to (Z, BV_{\delta})$ be a bipolar vague continuous mapping, then $g \circ f:(X, BV_{\tau}) \to (Z, BV_{\delta})$ is a bipolar vague α generalized continuous mapping.

ISSN: 1074-133X Vol 31 No. 6s (2024)

Proof: Let A be a bipolar vague closed set in Z. Then g^{-1} (A) is a bipolar vague closed set in Y. Since every bipolar vague closed set is a bipolar vague α generalized closed set [10], g^{-1} (A) is a bipolar vague α generalized closed set in Y. Therefore $f^{-1}(g^{-1}(A))$ is a bipolar vague α generalized closed set in X, by hypothesis. Hence $g \circ f$ is a bipolar vague α generalized continuous mapping.

Proposition 4.7: A mapping $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is a bipolar vague α generalized irresolute mapping if and only if the inverse image of each bipolar vague α generalized open set in Y is a bipolar vague α generalized open set in X.

Proof: Necessity: Let A be a bipolar vague α generalized open set in Y. Then A^c is a bipolar vague α generalized closed set in Y. Since f is a bipolar vague α generalized irresolute, $f^{-1}(A^c)$ is a bipolar vague α generalized closed set in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is a bipolar vague α generalized open set in X.

Sufficiency: Let A be a bipolar vague α generalized closed set in Y. This implies A^c is a bipolar vague α generalized open set in Y. By hypothesis, $f^{-1}(A^c)$ is a bipolar vague α generalized open set in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is a bipolar vague α generalized closed set in X. Hence f is a bipolar vague α generalized irresolute mapping.

Proposition 4.8: Let $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ be a mapping from a bipolar vague topological space X into a bipolar vague topological space Y. Then the following conditions are equivalent if X and Y are $BV_{\alpha\alpha}T_{1/2}$ spaces:

- (i) f is a bipolar vague α generalized irresolute mapping.
- (ii) f^{-1} (B) is a bipolar vague α generalized open set in X for each bipolar vague α generalized open set in Y.
- (iii) BVCl $(f^{-1}(B)) \subseteq f^{-1}(BVCl(B))$ for each bipolar vague set B of Y.

Proof: (i) \Rightarrow (ii) is obviously true from the Proposition 4.7.

- (ii) \Rightarrow (iii). Let B be any bipolar vague set in Y and B \subseteq BVCl(B). Then f^{-1} (B) \subseteq f^{-1} (BVCl(B)). Since BVCl(B) is a bipolar vague closed set in Y, f^{-1} (BVCl(B)) is a bipolar vague α generalized closed set in X, by hypothesis. Since X is a BV $_{\alpha\alpha}T_{1/2}$ space, f^{-1} (BVCl(B)) is a bipolar vague closed set in X. Hence BVCl(f^{-1} (B)) \subseteq BVCl(f^{-1} (BVCl(B))) = f^{-1} (BVCl(B)).
- (iii) \Rightarrow (i). Let B be a bipolar vague α generalized closed set in Y. Since Y is a $BV_{\alpha\alpha}T_{1/2}$ space, B is a bipolar vague closed set in Y and BVCl(B) = B. Hence $f^{-1}(B) = f^{-1}(BVCl(B)) \supseteq BVCl(f^{-1}(B))$. But $f^{-1}(B) \subseteq BVCl(f^{-1}(B))$. Therefore, $BVCl(f^{-1}(B)) = f^{-1}(B)$. This implies $f^{-1}(B)$ is a bipolar vague closed set and hence it is a bipolar vague α generalized closed set in X. Thus f is a bipolar vague α generalized irresolute mapping.

References:

[1] Arockiarani.I and Cicily Flora.S., Positive Implicative bipolar vague ideals in BCK-algebras, International research journal of pure algebra, 2016, 1-7.

ISSN: 1074-133X Vol 31 No. 6s (2024)

- [2] Atanassov.K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.
- [3] Chang.C.L., Fuzzy topological spaces, J Math. Anal. Appl, 1968, 182-190.
- [4] Cicily Flora.S and Arockiarani.I., A new class of Generalized bipolar vague sets, International journal of information research and review, 2016, 3058-3065.
- [5] Cicily Flora.S and Arockiarani.I., On bipolar vague ring in baire spaces, Bulletin of mathematics and statistics research, 2017, 1-9.
- [6] Coker.D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81-89.
- [7] Gau.W.L and D.J.Buehrer., Vague sets, IEEE Trans. Systems Man and Cybernet, 1993, 610-614.
- [8] Lee.K.M., Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent technologies, Bangkok, Thailand, 2000, 307-312.
- [9] Levine.N., Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 1970, 89-96.
- [10] Prishka. F and Mariapresenti. L., Bipolar vague α generalized closed sets in topological spaces, Journal of Basic Science and Engineering, 1390-1398.
- [11] Zadeh.L.A., Fuzzy sets, Information and control, 1965, 338-335.