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1. Introduction

For U = {w € C; |w| < 1}, we let A to denote the class of functions analytic with normalization
@(0) =0 =¢'(0) — 1. We denote the classes of starlike and convex function by §*(y) and C(y)
respectively. It is well-known that $*(y) and C(y) satisfies the condition

. (wfp’(w)
o (w)

wp" (w)
¢'(w)
respectively. Let 2P signify the category of functions that are analytic in U with p(0) =1 and
Re{p(w)} > 0 forall w € U. Let S denote the class of functions ¢ € A which are univalentin U. The

class S is not preserved under even the most basic operations like addition or subtraction. However,
the class is preserved under k —root transformation. It is well known that if ¢ € A is in S, then

>>y andRe<1+ )>y,(w€ﬂ;0§y<1),

$[(p(a)k)]%, (k is a positive integer) is also in §. Refer to [9, pg. 18] for the formal definition of k-
symmetric function. For every integer k, let ¢,(w) be defined by the following equality

k-1
1 v
o =7y 2D e, (1)
v=0

From (1.1), we see that ¢, (w) satisfies the linearity conditions. Sakaguchi [22] defined the class
Ss (v), the class of function starlike with respect to symmetric points as follows
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Re( 20" (w)

S Ce) 7 @EWOSY<D)

The functions belonging to the class S; (y) are univalent (see [22]). Extending the Sakaguchi class of

starlike function, the class of starlike functions with respect to kK —symmetric points denoted by S¥(y)

was introduced and is known to satisfy the analytic characterization
2w¢’(w)>

Re|———=| >y, k=1,23,..), 1.2

< e (@) (12)

where ¢ (w) = %25;}) "’(Zvv‘”), (p € A). For developments and study of various subclasses of

analytic functions with respect to symmetric points, refer to [12, 13, 23, 24, 25, 26, 27, 28].

Bashirov, Kurpinar and 6zyapi in [5] (also see [6, 7, 21]) studied the properties of a calculus titled
Multiplicative calculus which has been a useful mathematical tool in economics and finance. For a
positive real valued function ¢: R — R, the multiplicative derivative ¢* is defined as follows

!

1
I3 @’ (x)
@*(x) = lim <M> =0 = pllne@)

where ¢’ (x) is the ordinary derivative. The *-derivative of ¢ at w belonging to a small neighbourhood
of a domain in a complex plane where ¢ is non-vanishing differentiable, is given by

o' (W) q)’(w)](”)

0 (w) = e?@ and p*™(w) =ele@]  n=12 ..

Influenced by the definition of multiplicative derivative, recently Karthikeyan and
Murugusundaramoorthy in [10] introduced and studied a class of analytic functions R(y) satisfying
the subordination condition
w?e'(w)
w e ¢(w)
¢(w)

where y € P and y(U) is symmetric with respect to the real axis which has a series expansion of the
form

< x(w) (1.3)

x(@) =1+ Liw+ Lw? + Lyw3 + -, (L > 0; w€W). (1.4)
The class is non-empty and possess good geometrical implications but it does not reduce to well-
known subclasses of §. For the detailed analysis and closure properties of the class R(y), refer to [10,
11].

Throughout this paper, we let

and

https://internationalpubls.com >4l



Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

Motivated by R (), here we will introduce and study a new subclass of starlike functions with respect
to symmetric points. The definition of the new function class are as follows.

Definition 1.1. Let k be chosen such that I’ , = (n — 1). A function ¢ € A is said to be in M} (x),
if it satisfies the following condition
w F*(w)
e @ (w)

wo' () v
where F*(w) = e ¢@ | ¢ (w) = %Z’J;é @, x €P and y(U) is defined as in (1.4).

<x(), (w€U; e=\exp(1)) (1.5)

The class M, (x) has been defined by replacing the classical derivative with a multiplicative derivative
in (1.2). Note that k = 1 is not admissible in M} (x), so the class of function ¢ € A satisfying

w F*(w) w0’ (w)

Re (—) >0, F*(w) = e @@
e p(w)

fails to exist. The reason for imposing k # 1 in M. () isthat we would be unable to work within the

existing framework, since the requirement of the condition of L, to be non-zero would be violated.

Alternatively, we will now define a class which would be defined for k = 1.
Definition 1.2. Let k be chosen such that I3, , # 0. A function ¢ € A is said to be in L (x), if it
satisfies the following condition

w?¢'(w)
we ¢

Pr(w)
where ¢ (w) is defined as in (1.1), y € P and y(U)$ is defined as in (1.4).

< y(w), (w e, (1.6)

From the study of [10], we find that classes involving the multiplicative derivative does not have any
well-known classes as its special cases. But these classes had very good geometric behaviour when
compared to various other subclasses of analytic functions.

Letting k = 2 and y(w) = i—z in (1.5), we get the following familiar analytic characterizations
we'(w) _

2we P
¢ (w)-p(-w)

> 0. (1.7)

Notice that the expression in (1.7) is similar to the analytic characterization of S5 (0). Also letting k =
1 in definition 1.2, the class L, (x) reduces to the class R(y) studied by Karthikeyan and
Murugusundaramoorthy in [10].

2. Coefficients Inequalities Of Functions In M, (x) And L, (x)

Now we will find the solution to the Fekete-Szegé problem for ¢ € M (x).

Lemma 2.1 [15] If d(w) = 1 + X, di 0* € P, and p is complex number, then
|d, — p dif| < 2max{1;[2p — 1]},
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and the result is sharp.

Theorem 2.1. If p(w) € My (x), then we have

ay] < 2 (2.1)
Q| S 77— .
2 |1 - lek|
1
1 L, (Fzz,k — ok — 7)
| as| < 7———max<1; |[——L; > (2.2)
|2 — T3] Ly (1-Typ)
and forall p € C
1
L L M3k — Dok —5) Lip(2-T
las — p a2| < ————max{ 1; —2—L1( : 22)— 1( 3§) (2.3)
|2 — Ty Ly (1- Ty (1T
The inequality is sharp for each p € C.
Proof. As ¢ € M (x), by (1.5) we have
w F*(w)
= ylw(w)]. 2.4
ooy = W@ 24)
Thus, let 9 € P be of the form 9(w) = 1 + Y5, 9, w* and defined by
1+ w(w)
19((1)) = 1_—14/(0)), w€eEU.
On computation, the right hand side of (2.4)
_ YL, Ly 07 ( Lz) 2
xwlw)] =1+ 5 w+2[192 5 1 L W+ . (2.5)

The left hand side of (2.4) will be of the form

w F*(w) 1
=14+a,|1-T a)+[(F2 -T ——>a2+ 2-T a]a)2+~--. 2.6
e 0 (@) z[ 2,k] 2k 2k 5|32 ( 3,k) 3 (2.6)
From (2.5) and (2.6), we obtain
1 9,L,
Q. = 2.7
2 (1 _ lek) [ 2 ( )
and
1
_ Lq 92 L, (Fzz,k — ok — j)
a3 =————|9% ——|1—-———-1L; 5 (2.8)
2(2 —-Tyy) 2 Ly (1-Ty)

Equations (2.1) can be obtained by applying the well-known result of |9;] < 2 in (2.7). Applying
Lemma 2.1 in (2.8), we get (2.2).
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Now to prove the Fekete-Szeg6 inequality for the class M, (), we consider

1
, L, 92 L, (Fzz,k — Ty — 7) p 9212
laz—pail =9 ~—5|1-7—-L1 5 - 3
2(2 —Tsy) 2 Ly (1-Ty) 4(1-Tyy)
1
L, 92 L, (Fzz,k — Ik — 7) Lip(2 —Tsy)
=9, ——[1-=-1, =2+ =
-7 2\ L (o) (-

Using the triangle inequality and Lemma 2.1 in the above equality, we can obtain (2.3).
Let k = 2 in Theorem 2.1, we have the following.

Corollary 2.1. Let ¢ € M,(x). Then,

Ly Ly
la,| < L, las | < leax{l; —+—}
Ly 2
and for a complex number p,
2 LZ Ll
la; —pas| < Ly max{l; L_+7(1 — 2p)|}
1

The inequality is sharp for each p € C.

Proof. By the definition of ¢y (w), we have

k-1 oo
1O o w)
P(w) = EZ e @ + Z Dok an @™,
v=0 n=2

N 1(n—-1)v
where Lok = %25;5 [exp (%) ] : It can be easily seen that
1

1
1 1
v=0

v=0
Substituting the above expression in (2.1), (2.2) and (2.3), we obtain the assertion of the corollary.

Fixing y(w) to be well-known conic regions, we can obtain several applications of our result. But here
we will restrict to pointing out the case when y(w) is known to be extremal.

Letting y(w) = 1’:—2 in Corollary 2.1, we get
Corollary 2.2. Let ¢ € A satisfy the condition

we' (W)
2we ¢

¢(w) — ¢p(—w)

> 0.

Then,

lasl < 2, as| < 4
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and for a complex number p,
las — p a5| < 2max{1; 2|1 —pl}
Theorem 2.2. If p(w) € L (x), then we have

1
la,| < —|L; +1]. (2.9)
Tz
| |<L1{ {1 L L}+ 1+1‘+ } (2.10)
az| < ——imaxy1,|[—— —_— .
T Ly 7 T 2|L4]
and forall p € C
Ly
las—pad| <=
|Ts ]
L, pPLiTs } 1 2pTl3 1 2pT5 l
maxil,|-——-L; +——| ¢+ |[—+1- ' 3—— - 2.11
[ { L, ' T T,k rZ, | 2IL4l IZ 21D
The inequality is sharp for each p € C.
Proof. Expanding the left hand side of (1.6) and simplifying the expansion we get
w?e'(w)
we ¢ 1
——— =1+ (1 -y )w+ (— +a; — ayly ) + a2lZ, — a3I‘3,k> w?+ - (2.12)
i (w) 2 ’

Given ¢ € L, (), so the right hand side of the expansion of (1.6) is the same as (2.5).
From (2.12) and (2.5), we obtain

__ 1 [ﬂlLl 1] 2.13
and
1 (L, 92 L, 9.L, [ 1 3
——— 11y ——(1—— L ) — 41| =2t 2.14
@3 rg,k{z lz 2 PR ) A ] R (2.14)

Equations (2.9) can be obtained by applying the well-known result of [9;] < 2 in (2.13) Applying

Lemma 2.1 in (2.14), we get (2.10).

Now to prove the Fekete-Szeg6 inequality for the class £, (), we consider

1 (L, 9?2 L, 9L, [ 1 3
——19——(1—— L) — 41| -=
r3,k{2 lz 2 L1+ o rz,k+ 2

p [9F 14
LA 9, +1
+1_‘22’kl 1 1Lq +

|a3—pa%| =

Using the triangle inequality and Lemma 2.1 in the above equality, we can obtain (2.11).
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Corollary 2.3. [10] If ¢(w) € L;(x), then we have

|a2| <1 +L1
L, 3
|a3| < L1 [max{l, L_l_Ll }+m+2]

and forall p € C

1
2|L]

lag —p a3l < Ly [max{l,

L
L—Z—Ll(l—p>]}+ |3—2p|+2|1—p|].
1

The inequality is sharp for each p € C.
Letting x(w) = i—z in Corollary 2.3, we get

Corollary 2.4 Let ¢ € A satisfy the condition

w?p'(w)
we ¢Ww)
Re| —— | > 0.
¢(w)

Then,

and for a complex number p,
1
las = p a3l < 2|max{1,12p - 11} + 211 - p| + 513 - 201,

The inequality is sharp for each p € C.
3. Coefficient Estimates For The Inverse Functions.

In this section, we will find the coefficient estimates for the inverse functions of ¢ belonging to the
classes M, (x) and L, (x). Refer to [14 18] for its relevance and application in the field of univalent
function theory. The following result would help us to obtain the coefficient estimates for ¢!
(provided it exists), form the coefficient estimates of ¢.

Lemma 3.1. [9, p. 56] If the function ¢ € A and ¢~! = g(w) given by

gw)=w+ ) b wk (3.1
kZz 3

are inverse functions, then for k > 2
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by
ka, 1 0 0
(—1)k+1 2kas (k + Da, 2 0
=T 3kay 2k + 1)as (k+Da, - 0 (3.2)
' : : s : (k—2)
(k= Dkay [k(k—2)+1lag_1 [k(k—3)+2]lax_, - Qk-—2)a,

The elements of the determinant in (3.2) are given by

0 _Fﬁ—j+Dk+j—ﬂaﬂ”, if i+1>]
o, if i+1<j°

The functions in M; () need not be univalent, but since ¢’'(0) =1 # 0 for all ¢ € M} (x) and
@(0) = 0, there exist an inverse function in some small disk with center atw = 0.

Theorem 3.1. Let ¢ € M (x) and let ¢~ be the inverse of ¢ defined by
- 1
<p‘1(w)=w+2bkwk, (lw| <T; rZZ),
k=2
then

L
| by| < ———
| 1— Ty

1
Li(T =Tk —5 _
|b3|SLmax 1; E— 1( 2k Z’kz 2)_2L1(2 F3,;c)
e O N R (R

and for a complex number t,

1
L (T2, - T, —5 _ _
|lb; —Taj| < Lmax 1; L_Z _t ( 2k 2,k2 2) _ (T 2)L1(2 2F3,k)
| 2 — F3,k| Ly (1 — 1"2’,{) (1 —_ Fz,k)

Proof. From ¢(w) = w + X.;7-, a,w™ and (3.1), we have

bz = _az and b3 = Za% - a3.
The estimate for | b,| = | a,| follows immediately from (2.7). Letting p = 2 in (2.3), we get the
estimate |bs|.

To find the Fekete-Szego inequality for o1, consider
|b; — 7 b3| = |2a5 — a3 — T a3| = |az — (7 — 2)dj|.
Changing p = (7 — 2) in the (2.3), we get the desired result.

Analogous to the results obtained in Theorem 3.2, we can easily get the following result.

Theorem 3.2 Let ¢ € L, (x)$ and let ¢~ be the inverse of ¢ defined by

1 N 1
@~ (w)=w+2bkwk, (|W|<r;r21),
k=2
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then$$
1
| b2| < —[L1 + 1],
| Do
L L 2L,T 1 4T 1 4T
|bs| < — [max{l; 2L+ 123”‘}4_‘1_,___ EXd _ 23kl
| F3,k| Ly I‘Z,k I‘Z,k Fz,k 2| L1| Fz,k

and for a complex number T,

L (t — 2)L T3 1 2(t—2)a,
|b; — T a3| < Im {1; L—Z— 1 TH}+‘1+F__T3
| 3,k| 1 2,k 2,k 2,k
N 1 2(t — 2)T5 l
2| L1| 1"22'k .

4. Logarithmic Coefficients

Milin in [16] studied the properties of the logarithmic coefficients to obtain the bounds of the Taylor
coefficients of univalent functions. The Milin conjuncture about the inequalities of the logarithmic
coefficients garnered the attention several researchers in those period of time, because proving Milin
conjuncture would imply proving Robertson conjecture and the Bieberbach conjecture. Refer to
Ponnusamy et al. [18, 19 20] and [1, 2, 3, 4, 17] for the detailed study on properties and significance
of the logarithmic coefficients.

o(w)
w

The logarithmic coefficients d,, of a function ¢ € A such that # 0 for all w € U is defined by

logp(w) =2 Z d,w™.
n=1

Note that for all functions ¢ (w) € M} (x) and L, (x), the relation (4.1) is well-defined.
Theorem 4.1. If p(w) € M. (x), with the logarithmic coefficients given by (4.1), then,

|d |<L
' _2|1_F2,k|
1
L (T2 — T —5 _
|d2|SL—1maX 1; L_Z_ 1(2’k 2,k2 2)_L1(2 l—‘3,1(2 .
2|2 — Ty Ly (1-Ty) 2(1-Tyy)

For u € C, we have

1
. L, Li (F22,k — Ly — 7) Ly(1+u)(2—Tsy)
—max y I— — -
2[2 sy L (1-D) 2(1-Tpp)’

|d; — pdf| < (4.2)
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Proof. From ¢(w) = w + Y7, a,0™ and equating the first two coefficients of the relation (4.1), we

get
a, 1 a2
d1:_ d2:§<a3_72>.

Using (2.1) and (2.3) in the above expression, we can find the estimates for d, and d,. To find the

estimate (4.2), consider

1+u
2

a3

) 1
|d, — pdil :E[%—

(1+\mu)

Changing p = in (2.3) and simplifying, we get the desired result.

For completeness, we just state the following.

Theorem 4.2. If p(w) € L, (x), with the logarithmic coefficients given by (4.1), then,

dqi| < L+1
S T ke
LT 1 4T 1 4T,
lde| < [max{ L1+21—3'k}+‘1+—— S 4 —- 3k ]
2| 3k| Py Lx Tl 2Ll [y

For u € C, we have

L L 1+ wL,T 1 1+ wrl
|d2—,udf|s E max{l; —2—L1+—( ,uz ! 3'k}+‘1+———( g) 3K
2| Ty Ly I3k ok I3k
+ 1 _ 1+ Ik ]
2| Lq| 7k '

Conclusions: The function class M, (x) was defined by replacing the classical derivative with a
multiplicative derivative in the well-known class of starlike functions with respect to symmetric points.
The definition M, (x) is not defined for all integers k. In fact the class exist only for the integers values
of k, for which I}, , # (n — 1). Hence we defined a class £, (x), influenced by the multiplicative
derivative which will be defined for I, , = (n — 1).

Letting y to be a specific conic region and varying parameters involved in the Definitions 1.1 and 1.2,
the function classes M, (x) and £, (x) will reduce to classes having good geometry. Our main results
have wide applications. The classical starlike functions with respect to k-symmetric points are known
to be univalent. But the classes M} (x) and L, (x) are neither a subclass nor a generalized class of
univalent functions. So, the scope of further research of this paper are to explore the relationship and
closure properties with the known classes like spirallike, starlike, and convex.
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