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Abstract: The effect of Thermophoresis and Brownian motion on the time-dependent 

(steady) magnetohydrodynamic boundary layer Jeffrey fluid flow of a nonlinearly 

stretching sheet in the existence of nanoparticles is investigated in this research. Non-

linear partial differential equations serve as the governing equations in the system. Then, 

applying appropriate similarity transformations, these equations are reduced into ordinary 

differential equations. To get numerical solutions to the resulting differential equations, 

the shooting method is employed. This article presents an in-velocity analysis of a variety 

of engineering parameters, including the Jeffrey fluid parameter, Brownian motion 

parameter, Thermophoresis parameter, Stretching sheet parameter, Prandtl number, 

Lewis number, Velocity slip parameter, and Thermal slip parameter, as well as numerical 

values for heat and mass transfer. Finally, it is established that the numerical findings are 

fully compatible with the published results. This kind of scientific study has a variety of 

applications, including energy conservation, microprocessor cooling, and equipment 

longevity. 

Keywords: Jeffrey fluid; Nanofluid; MHD; Non-linearly stretching sheet; Velocity and 

thermal wall slips. 

1. Introduction 

Non-Newtonian fluids are considered better than viscous fluids at present. Newtonian fluids are not 

(or non-Newtonian materials). Most lubricants, lacquers, oils, cosmetics, clay laminates and colloidal 

suspension solutions are examples. Due to its numerous uses in the industry, engineering, physiology 

and biosciences, non-Newtonian fluids have acquired popularity. No fluid model describes correctly 

the characteristics of all fluids. The results of this research have been directly related with non-

Newtonian fluids. The second, third, and fourth grade models as well as the general Burgers models 

are available. The Jeffrey model is one of these models [1]. The fluid of Jeffrey exhibits both relaxation 

and delays. Vajravelu et al. [2] examined the convective flow, heat transfer and mass transfer on a 

vertical stretching sheet using the Ostwald-de-Waele fluid. Naranjan and colleagues have been 

investigating the radiative heat and mass transport of a Jeffrey fluid over a stretch sheet[3]. Jena and 

her colleagues [4] investigated fluid flow over a stretch sheet including MHD processes, heat 

production and absorption. The homotopy for heat transfer on a radially stretching convective surface 

in an unstable flow employing Jeffrey nanofluid has been examined by Sreelakshmi et al. [5]. Das et 

al. [7] studied Jeffrey fluid and radiation-induced fusion heat transfer radiation MHD slip flow. As a 

consequence of binary chemical reaction and energy activation Shafique et al. [8] calculated the flow 
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of spinning Jeffrey fluid. Hayat et al. [9] have investigated the multi-dimensional (MHD), radially 

stretching, Jeffrey fluid flow. In the presence of convective border circumstances, Shehzad et al. [10] 

studied Jeffrey's stagnation point flow. In a range of thermal flux conditions Abbasi et al. [11] 

examined Jeffrey's Multi-dimensional (MHD) fluid flow. The Jeffrey fluid peristaltic flow was 

examined by Tripathi et al. [12]. When homogenous heterogeneous processes are present, Farooq et 

al. [13] examine the characteristics of Jeffrey fluid flow. Zin et al. [14] examined the transfer of heat 

using the Jeffrey nanofluid spinning MHD stream. Hayat et al. [15] explored a nonlinear expanded 

surface Jeffrey fluid for the use of MHD. The nanoflow generated by the angled stretching cylinders 

and the resultant temperature stratification was investigated by Ramzan et al. [16]. The continuing 

fluid flow of Jeffrey between spinning cylinders has been described by Shifang et al. [17]. Hayat et al. 

[18] studied fluid flow of Jeffery in homogenous heterogeneous processes between two stretchy 

spinning discs. The flow of Jeffrey fluid was studied using a stretching sheet by Narayana et al. [19]. 

Juohn's nanofluid flow was discovered in a laboratory environment by Hayat et al. [20]. Shehzad et al. 

[21] investigated the effects of convective heat and concentration conditions in magnetohydrodynamic 

flow of Jeffrey fluid with nanoparticles. 

Following that, the current work contributes to find the numerical simulations of Jeffery-nanofluid 

flow were performed using a non-linearly stretching sheet. Furthermore, Magnetic field, velocity and 

thermal wall slips effects are included. Differential equations are used to solve the flow issue (ODE’s). 

A system of ODE’s is rendered dimensionless (through appropriate variables). To resolve the system 

of ODE’s, the Runge-Kutta method is combined with the Shooting Method. The next sections 

demonstrate the findings of these ODE’s for velocity, temperature, and nanoparticle concentration 

profiles. Additionally, physical quantities are evaluated using tabular data. The structure of this 

research work is the mathematical solutions for the control equations are provided in Section 3. Section 

4 compares the current numerical results to those obtained in the absence of a Jeffrey fluid, Magnetic 

field, velocity and thermal wall slip effects by Rana and Bhargava et al. [22]. Section 5 explores flow 

parameter engineering parameter values utilising physical factors such as velocity, temperature, 

nanoparticle concentration, wall shear stress, rate of energy transfer and species transfers. Finally, the 

final arguments are presented in Section 6. 

2. Mathematical Analysis 

     Fig. 1 depicts a schematic depiction of the physical model and coordinates system, as well as a 

coordinates system. For this research work, the following assumptions are made.                  

1. Let us consider the flow of a nanofluid through a flat sheet that coincides with the plane 

0y =  and is restricted to the region 0y  .  

2. The flow is constant, incompressible, laminar, and two-dimensional boundary layer flow. It is 

produced as a result of non-linear stretching of the sheet, which is induced by the application of two 

equal and opposing pressures along the x− axis at the same time.  

3. When the origin is held constant, the sheet is then stretched with a velocity n

wu ax= , where a 

denotes constant, n denotes nonlinear stretching parameter, and x is the coordinate along the 

stretching surface, which varies nonlinearly with distance from the slit.  
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4. Normally, a variable magnetic field B (x) will be provided to the surface of the sheet while 

the magnetic field induced is minimal and may be justified for MHD flow at the small magnetic 

Reynolds number. 

5. The gradient of pressure and external forces are not taken into consideration.  

6. The temperature and concentration of the stretching surface, wT  and wC , are kept at constant 

values, and these values are considered to be higher than the temperature and concentration of the 

surrounding environment, T  and C , which are maintained at constant values. 

7. It is well known that the constitutive equations for a Jeffrey fluid are given by (Nadeem and 

Akbar [23]) 

pI S = − +                                                                                                              (1) 

Where 1
1 1 1.

1

R
S R V R

t






  
= + +   +   

                                                                                (2) 

In Eq. (2), 1R  is the Rivlin-Ericksen tensor defined by ( ) ( )1R V V =  +                             (3) 

Based on the above assumptions, the fundamental steady-state conservation of mass, momentum, 

thermal energy, and nanoparticles equations for Jeffrey-Nanofluids can be written in Cartesian 

coordinates x and y as: 

                          y                                           

                T C 
 

  

 a 

 b 

 

 c 

                                                              wu u=                   wT T=                  wC C=  

 

     Slit 

                                O                                                          Stretching sheet                               x  

                 Bo                                      v 

 

u 

                                             a ---- Momentum boundary layer,  

                                             b ---- Thermal boundary layer,   c ---- Concentration boundary layer 

 

Fig. 1.: Geometry representation of the fluid 

 

 

Continuity Equation: 

0
u v

x y

   
+ =  

    
                                                                                                                                (4) 

Jeffrey-Nanofluid 
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Momentum Equation: 

22 3 3 2 2

12 2 3 2

1

1

o

f

Bu u u u u u u u u
u v u v u

x y y x y y x y y x y


 

 

                        
+ = + + − + −                  +                          

  (5)      

Equation of thermal energy: 

( )

( )

22

2

p T
m B

f

C DT T T C T T
u v D

x y y C y y T y




 

                  
 + = + +          

                    

                                    (6)     

 Equation of nanoparticle concentration: 

2 2

2 2

T
B

DC C C T
u v D

x y y T y

         
+ = +       

           
                                                                                   (7) 

Where 
( )

m
m

f

k

C



= . 

Subject to the boundary conditions for Jeffrey-nano fluid flow with velocity and thermal wall slip 

effects are 

, 0, , 0

0, 0, ,

n

w w w

u T
u u ax L v T T Z C C at y

y y

u v T T C C as y 

    
= = + = = + = =    

     


→ → → → → 

                                               (8) 

The following similarity variables are introduced for solving governing equations (5)-(7) as 

( )
( )

( )
( ) ( )

( ) ( )

1 1

2 2
1 1 1

, , ,
2 2 1

,

n n

n
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n
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
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   

− −

 

 

   + +  − 
    = = = − +       +       
− −

= = 
− − 

          (9)  

Using Eq. (9), the fundamental Eqs. (5) to (7) become 

( )   ( )2 22
1 1 0

1

n
f ff f f ff Mf

n
  
  

     + + − + − − + =  
+  

                                                    (10) 

2Pr Pr Pr 0f Nb Nt        + + + =                                                                                                (11) 

2 2 0Nb NbLef Nt    + + =                                                                                                           (12)          

and the corresponding boundary conditions (9) become 

( ) ( )0, 1 0 , 1 0 , 1 0

0, 0, 0

f f f at

f as

    

  

   = = + = + = = 


→ → → → 

                                                            (13)                                        

where the involved physical parameters are defined as  
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( )

( )
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 

 
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

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            (14) 

It is important to note that when n = 1 and Nb, Nt are equal to zero in Eqs. (11) and (12), this boundary 

value problem reduces to the classical problem of flow and heat and mass transfer due to a stretching 

surface in a viscous fluid (the boundary value problem reduces to the classical problem (The boundary 

value problem reduces to the classical problem for n = 1 and becomes ill-posed and is of no physical 

significance). It should be noted that Eq. (10) and the boundary conditions (13) with n = 0 are the 

traditional Blasius flat-plate flow issue, and that the author of this paper has carried out a thorough 

numerical analysis of that problem in his previous work. For the linearly stretching boundary problem 

(i.e., n = 1) the exact solution for f is ( ) 1f e  −= − , first obtained by Crane [22] and this exact solution 

is unique, while for the nonlinearly stretching boundary problem (i.e., 1n ) there is no exact solution. 

The parameters of engineering interest in heat and mass transport problems are the Skin-friction 

coefficient ( )Cf , local Nusselt number ( )xNu  and the Sherwood number ( )xSh  are defined as 

2

1

1

w

f

Cf
U



 

 
=  

+ 
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                                                (15) 
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3. Numerical Solutions by Runge-Kutta Method with Shooting Technique  

 

 

 

                                           Non-dimensionalization of boundary value problem 

 

 

 

 

 

 

 

 Guessing initial condition 

                                                                                        

 

 

R-K Method 

 

 

 

 

    Convergence criterion 10−8 

Fig. 2.: Flow diagram of the numerical procedure 

In order to solve the system of ordinary differential equations (10)-(12) with their corresponding initial 

and boundary conditions (13) numerically, the domain [0, ∞) has been substituted by the bounded 

domain  0,   where   is a suitable finite real number that should be chosen in such a way that the 

solution satisfies the domain. Also (10)-(12) form a highly nonlinear coupled initial boundary value 

problem of third and second order ODEs. For this reason, (10)-(12) have been reduced to a system of 

seven initial problems of the first order of seven unknowns from the following the supposition in  

1 2 3 4 5 6 7 8, , , , , , ,f y f y f y f y y y y y       = = = = = = = =                                                 (18) 

Thus, we develop the most effective numerical technique in line with the fourth order Runge-Kutta 

shooting technique. The symbolic software MAPLE is used to obtain the numerical solution. To solve 

Start

’ 

Boundary’ value’ 

problem’ 

Shooting’ technique’ 

Initial’ value’ problem’ 

Solving’ 
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this system, we require seven initial conditions whereas we have only four initial conditions for ( )0 ,f

( )0 ,f  ( )0  and ( )0 , while the other three ( )0 ,f   ( )0   and ( )0 were  not given; hence, we 

employ numerical shooting technique where these three initial conditions are guessed to produce the 

required three ending boundary conditions. During the mathematical simulation, the step size is to be 

  = 0.001 in order to acquire results. The criterion of convergence is 10−8. The subsequent procedure 

is visualized through Fig. 2. 

4. Program Code Validation  

Table-1.: Comparison of present Nusselt number results with published Nusselt number results of 

Rana and Bhargava [22] for various values of n, Nt and Nb when 1, 0   → = = =
 

n 
Nt 

Present  ( )0 −  results 
Published ( )0 − results of  

Rana and Bhargava [22] 

0.2 

Nb = 0.5 Nb = 1.0 Nb = 2.5 Nb = 0.5 Nb = 1.0 Nb = 2.5 

0.1 0.50966231 0.26684112 0.03025587 0.5160 0.2775 0.0303 

0.3 0.44863001 0.23516647 0.02644721 0.4533 0.2427 0.0265 

0.5 0.38223112 0.20966466 0.02336222 0.3999 0.2135 0.0234 

3.0 

0.1 0.47223568 0.41995033 0.36854178 0.4864 0.4282 0.3786 

0.3 0.41882014 0.21988745 0.02493226 0.4282 0.2293 0.0251 

0.5 0.36488201 0.20199556 0.02198852 0.3786 0.2020 0.0221 

10.0 

0.1 0.46930277 0.24833147 0.02826659 0.4799 0.2581 0.0283 

0.3 0.41996203 0.21996442 0.02463327 0.4227 0.2263 0.0247 

0.5 0.36952214 0.19954482 0.02135865 0.3739 0.1996 0.0214 

 

Table-2.: Comparison of present Sherwood number results with published Sherwood number results 

of Rana and Bhargava [22] for various values of n, Nt and Nb when 1, 0   → = = =
 

n 
Nt 

Present  ( )0−  results 
Published ( )0− results of 

Rana and Bhargava [22] 

0.2 

Nb = 0.5 Nb = 1.0 Nb = 2.5 Nb = 0.5 Nb = 1.0 Nb = 2.5 

0.1 0.89912546 0.94111527 0.94226578 0.9012 0.9413 0.9493 

0.3 0.82951324 0.93855402 0.94982201 0.8395 0.9394 0.9571 

0.5 0.80472362 0.93300124 0.96221555 0.8048 0.9429 0.9642 

3.0 

0.1 0.84443015 0.76992488 0.73200184 0.8445 0.7785 0.7379 

0.3 0.77806695 0.86992031 0.89233478 0.7785 0.8792 0.8997 

0.5 0.72285621 0.86993211 0.89331751 0.7379 0.8793 0.9056 

10.0 

0.1 0.82459970 0.86953144 0.87855213 0.8323 0.8722 0.8812 

0.3 0.75582314 0.86011788 0.87844121 0.7654 0.8662 0.8873 

0.5 0.71993022 0.86234487 0.88930015 0.7238 0.8656 0.8930 
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Table-3.: Comparison of present Nusselt number results with published Nusselt number results of 

Rana and Bhargava [22] for various values of Pr, n and Le when 1, 0   → = = =  

Pr 
n 

Present  ( )0 −  results 
Published ( )0 − results of  

Rana and Bhargava [22] 

0.7 

Le = 2.0 Le = 10.0 Le = 25.0 Le = 2.0 Le = 10.0 Le = 25.0 

0.2 0.31889234 0.29863314 0.28922154 0.3299 0.3042 0.2982 

0.5 0.31986624 0.28996031 0.28922130 0.3216 0.2965 0.2906 

3.0 0.29844215 0.27995124 0.26844102 0.3053 0.2812 0.2757 

2.0 

0.2 0.38751637 0.27933164 0.24866230 0.3999 0.2835 0.2569 

0.5 0.38952261 0.26933157 0.24770547 0.3930 0.2778 0.2517 

3.0 0.36844201 0.25633647 0.23822014 0.3786 0.2661 0.2410 

7.0 

0.2 0.21885421 0.04996321 0.03385147 0.2248 0.0547 0.0345 

0.5 0.21998674 0.04963117 0.03178412 0.2261 0.0546 0.0328 

3.0 0.21988542 0.04886233 0.03086215 0.2288 0.0537 0.0319 

 

For checking of program code validation, the present the results of Nusselt and Sherwood numbers are 

compared with the published results of Rana and Bhargava [22] in tables 1, 2, 3 and 4 respectively for 

various values of Pr, n, Le, Nb and Nt at 1, 0   → = = = . From these tables it is observed that, 

there is an excellent correlation has been achieved with the earlier results of Rana and Bhargava [22]. 

 

Table-4.: Comparison of present Sherwood number results with published Sherwood number results 

of Rana and Bhargava [22] for various values of Pr, n and Le when 1, 0   → = = =  

Pr 
n 

Present  ( )0−  results 
Published ( )0− results of 

Rana and Bhargava [22] 

0.7 

Le = 2.0 Le = 10.0 Le = 25.0 Le = 2.0 Le = 10.0 Le = 25.0 

0.2 0.80592231 2.30885322 3.81877245 0.8132 2.3198 3.8262 

0.5 0.78662487 2.28995417 3.79885412 0.7965 2.2959 3.8005 

3.0 0.75930014 2.23966521 3.73985524 0.7630 2.2464 3.7471 

2.0 

0.2 0.79966548 2.41889230 3.94778221 0.8048 2.4207 3.9547 

0.5 0.77855301 2.26844512 3.91872234 0.7826 2.2778 3.9245 

3.0 0.72999314 2.32998555 3.85944751 0.7379 2.3324 3.8616 

7.0 

0.2 1.01025513 2.61955402 4.11823345 1.0114 2.6202 4.1223 

0.5 0.97744102 2.57955418 4.08895223 0.9808 2.5871 4.0909 

3.0 0.90899523 2.50988314 4.01855234 0.9185 2.5194 4.0224 

 

5. Results and Discussion 

This section is prepared to study the impact of pertinent parameters namely Magnetic field parameter 

(M), Prandtl number (Pr), Jeffrey fluid material parameter (γ), Stretching sheet parameter (n), Velocity 

slip parameter (λ), Brownian motion parameter (Nb), Thermophoresis parameter (Nt), Thermal slip 

parameter (δ), Deborah number (β) and Lewis parameter (Le) on velocity field components, 

temperature distributions and nanoparticle concentration profiles which are displayed graphically in 

Figs.: Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14 and 
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the numerical values of Skin-friction, Nusselt and Sherwood number coefficients for the different 

values of the above said parameters are offered in tables: Table-5, Table-6 and Table-7. 

➔ The impact of γ on velocity profiles is shown in Fig. 3. When the increase in γ is significant, it 

can be seen that the fluid velocity and boundary layer thickness both drop significantly. This is done 

in order to prevent things from speeding up since a slower recovery process leads in a longer relaxing 

period, which results in a thicker border layer. 

➔ Fig. 4 depicts the difference in the stretching parameter (n) values for various non-linear 

stretching parameters as shown by the velocity profiles in this figure. The conclusion that can be taken 

from this result is that the velocity profiles get flatter as the quantity of n rises. In other words, when 

the non-linear stretching parameter n is increased, the thickness of the momentum barrier layer will 

decrease as well. 

 

Fig. 3. γ influence on velocity profiles ( )f   

 

Fig. 4. n influence on velocity profiles ( )f   

➔ The intensity of the magnetic field in Fig. 5 has an impact on the velocity profiles of the 

particles. It has been observed that the magnetic parameter has an inverse relationship with the velocity 

parameter. A force known as the Lorentz force is generated when one increases the value of the 

magnetic parameter. In contrast to the fluid particle's mobility, the production of this force results in 

the generation of a resistive force. As a consequence, the velocity of the vehicle drops. 

➔ As the fluid travels through an area of lower-than-average velocity, the streamwise velocity of 

the fluid (which is represented by the velocity slip parameter (λ)) is shown in Fig. 6. The relative 

velocity of the fluid falls as the stretched sheet travels at a quicker rate. As a result of the fact that the 

velocity slip parameter decreases with regard to the nanofluid velocity, this is true. 

➔ The temperature change induced by the Prandtl number (Pr) on the fluid is shown in Fig. 7. As 

the value of Pr increases, the gradient of the fluid's temperature becomes less pronounced. The 

momentum diffusivity grows as Pr increases, while the thermal diffusivity becomes less important as 

Pr increases, as seen in the graph below. The fluid velocity must be sufficiently high in order to allow 

heat transfer to occur. A faster heat dissipation rate and smaller boundary layer thicknesses are 

produced as a consequence of this phenomenon. 
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Fig. 5. M influence on velocity profiles ( )f   

➔ From Figs. 8 and 9, it can be seen that the effect of the Brownian motion parameter, Nb, on 

temperature (θ) and concentration is shown (ϕ). As predicted, regular heat transfer fluid boundary layer 

profiles have the same form as non-regular heat transfer fluid boundary layer profiles. A rise in the 

boundary layer temperature occurs as a result of an increase in the Brownian motion parameter (Nb). 

In general, increasing the Nb parameter raises the nanoparticle volume fraction profile, as indicated by 

the symbol. Particle deposition onto the surface is thought to contribute to the drop in concentrations 

observed in Fig. 9, but it is also believed that Brownian motion has a warming effect on the boundary 

layer. Thermal conduction may be enhanced by either the Brownian motion of nanoparticles or micro-

convection of fluid that surrounds individual nanoparticles. The direct impact is more frequent. This 

is an excellent point. It seems that for smaller particles, Brownian motion is strong, and the parameter 

Nb will have high values. However, it is also obvious that Brownian motion has a large impact on both 

the temperature and concentration profiles of the particles. 

 

 
Fig. 6. λ influence on velocity profiles 

 
Fig. 7. Pr influence on temperature profiles 

➔ Fig. 10 and Fig. 11 show typical patterns for temperature and concentration depending on the 

Thermophoretic parameter (Nt) values. Using the Thermophoretic parameter (Nt) in this research, it 

was found that raising both fluid temperature and nanoparticle concentration is possible. In instances 

when the Prandtl number (Pr) and Lewis number (Le) are low, thermal conductivity (Thermophoresis) 

is used to warm the boundary layer (Le). When Nt rises, heat transmission and mass transfer both 

decreases. 
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Fig. 8. Nb influence on temperature profiles 

 
Fig. 9. Nb influence on nanoparticle 

concentration profiles 

Fig. 12 depicts the correlation between nanoparticle concentration and the nanofluid Lewis number 

(Le). This is a Lewis number, and the Lewis number describes the ratio of the heat and mass diffusivity 

for a dimensionless nanofluid. Increasing the value of Le results in a substantial reduction in the 

nanoparticle volume percentage 

Table-5.: Numerical values of skin-friction coefficient (Cf) for variations of  

M, γ, n, β, Pr, Nb, Nt, Le, δ and λ 

M γ n β Pr Nb Nt Le δ λ Cf 

0.5 0.1 2.0 0.1 0.71 0.1 0.1 0.1 0.1 0.1 1.6802214567 

0.8 

 

 

 

 

 

 

 

 

 

1.4503362154 

1.0 1.3260012457 

1.2 1.3053310214 

 

0.5 1.6235542389 

0.8 1.5831124512 

1.0 1.5586632112 

 

2.5 1.6132045887 

3.0 1.5862344512 

3.5 1.5563021247 

 

0.5 1.7236554879 

0.8 1.7560322478 

1.0 1.7782204421 

 

3.0 1.4863324451 

5.0 1.3587702121 

7.0 1.3069234457 

 

0.5 1.7130026584 

0.8 1.7320622583 

1.0 1.7782100215 

 

0.5 1.7236544852 

0.8 1.7403264558 

1.0 1.7830265514 

 

0.5 1.6325002137 

0.8 1.5930726454 

1.0 1.5763002984 

 
0.5 1.6230059125 

0.8 1.5930222365 
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1.0 1.5603448752 

 

0.5 1.6035995249 

0.8 1.5630221548 

1.0 1.5463229532 

 

 

Fig. 10. Nt influence on temperature profiles 

 

Fig. 11. Nt influence on nanoparticle 

concentration profiles 

➔ The curve variations in the dimensionless temperature profiles are seen in Fig. 13 is 

demonstrated by the effect of the thermal slip parameter (δ) on the thermodynamic cycle. The 

temperature profiles have been clearly demonstrated to increase when rewards for outcomes are 

increased. As the value of the thermal slip parameter increases, the thermal boundary layer thickness 

decreases. 

➔ In Fig. 14, you can see how the Deborah number (β) may affect the velocity profiles in different 

directions. The boundary layer thickness and fluid velocity will both rise when β is increased. It is 

because increasing the number of fewer increases the surface's resistance to fluid motion, which causes 

more fluid flow in the area where the surface is stretched. 

➔ Table-5 shows the numerical values of Skin-friction coefficient (Cf) for variations in values of 

the engineering parameters such as, M, γ, n, β, Pr, Nb, Nt, Le, δ and λ. From this table, it is observed 

that the Skin-friction coefficient is increasing with rising values of Nb, Nt, β while it is decreasing with 

increasing values of M, γ, Pr, Le, n, δ and λ.  

 
Fig. 12. Le influence on nanoparticle 

concentration profiles 

 
Fig. 13. δ influence on temperature profiles 
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➔ The numerical values of rate of heat transfer coefficient in terms of Nusselt number are 

displayed in Table-6 for different values of Pr, Nb, Nt and δ. The rate of heat transfer coefficient is 

gradually rising with increasing values of Nb, Nt, while the reverse effect is observed in increasing 

values of Pr and δ.  

➔ The effects of Nb, Nt and Le on the rate of mass transfer coefficient or in terms Sherwood 

number coefficient are discussed in Table-7. From this table, it is observed that the rate of mass transfer 

coefficient is increasing with increasing values of Nb and decreasing with increasing values of Nt and 

Le.  

 
Fig. 14. β influence on velocity profiles 

Table-6.: Numerical values of rate of heat transfer coefficient for  

different values of Pr, Nb, Nt and δ 

Pr Nb Nt δ rate of heat transfer coefficient 

0.71 0.1 0.1 0.1 0.8633215448 

3.00    0.6533294125 

5.00 0.6022451213 

7.00 0.5863314552 

 0.5 0.9032655487 

0.8 0.9352215626 

1.0 0.9532214578 

 0.5 0.9133562487 

0.8 0.9402315486 

1.0 0.9603226545 

 0.5 0.8031542232 

0.8 0.7621432120 

1.0 0.7432659124 

 

Table-7.: Numerical values of rate of mass transfer coefficient for various values of Nb, Nt and Le 

Nb Nt Le rate of mass transfer coefficient 

0.1 0.1 0.1 0.9532114651 

0.5   0.9130026587 

0.8 0.8923145466 

1.0 0.8736620145 

 0.5 0.9823100126 

0.8 1.0532240216 

1.0 1.0860322145 

 0.5 0.9023665120 

0.8 0.8823001546 

1.0 0.8532261457 
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6. Conclusions: 

In this research, a viscous, incompressible MHD boundary layer with Brownian motion and 

Thermophoresis are being studied on a non-linearly stretched sheet for a stable and viscous boundary 

layer in a compressible medium. For the most part, this study is dedicated to solving nonlinear coupled 

ordinary differential equations using numerical techniques. Variables that are examined include many 

factors, and numerical data is provided in graphs and tables based on these results. The following 

details are also available: 

• Velocity profile rises with the increment in the Thermophoresis (Nt), Brownian motion (Nb) 

and Deborah number (β).  

• The velocity distribution is decreasing function of Magnetic field parameter (M), Jeffrey fluid 

material parameter (γ) and Stretching sheet parameter (n). 

• Temperature profiles are decrease for increasing Thermophoresis (Nt) and Brownian motion 

(Nb). 

• The concentration reduces with increase in Brownian motion (Nb) and Lewis number (Le). 

• In this study, the mathematical techniques utilised to solve the current physical model exhibit 

good agreement with prior existing research, indicating that the present physical findings are 

legitimate. In order to ensure validity, the findings are also compared with previously published results, 

which are found to be in fairly good agreement. 
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