ISSN: 1074-133X Vol 31 No. 5s (2024)

A Common Fixed Point Result in Menger Space

*1 Ajay Kumar Chaudhary

¹Department of Mathematics, Trichandra Multiple Campus Tribhuvan University, Kathmandu, Nepal

* Corresponding author E-mail: akcsaurya81@gmail.com

Article History:

Abstract:

Received: 13-05-2024

Accepted: 10-07-2024

Revised: 23-06-2024

By using compatibility condition type (P) in probabilistic metric space, establish common fixed point results for four self-mappings with control function in [0,1]. The result of Chaudhary et. al [5] is a particular case of this new result and it extends and generalizes other similar results in the literature.

Keywords: Common fixed point, Menger Space, Compatible mappings, Compatible mappings of type (P).

Mathematics Subject Classification: 47H10, 54H25

1. Introduction:

Probabilistic metric space (PM space) is the idea of Karl's Menger [11], a significant generalization of M. Frechet's [3] metric space. If PM space includes Menger inequality, then it is called Menger space. This space becomes active after the significant work of B. Schweizer and A. Skalar [13], [16] and V.M. Sehgal and A.T. Barucha Reid [14].

In 1991, S. N. Mishra [12] introduced the notion of compatible mapping in the Menger space and then so many researchers worked in this space, defining weakly compatible mappings, different compatible mappings types like (A), (K), (P) etc. see references [[2], [6], [7], [8], [9], [10], [14], [16]]. Recently, Chaudhary et. al [5-6] have given notions of compatible mapping of type (P) and weakly compatible mappings of type (P).

This paper gives the new results in Menger space by using a control function $\phi: [0,1] \to [0,1]$ in four self-mappings and also deduces some consequences.

2. Preliminaries:

Definition 2.1 [16]: If a function $M: \mathbb{R} \to \mathbb{R}^+$ is

- (i) a non-decreasing function,
- (ii) left continuous and
- (iii) $\inf \{ F(x) : x \in \mathbb{R} \} = 0, \sup \{ F(x) : x \in \mathbb{R} \} = 1$

then *M* is said to be a *distribution function*.

Definition 2.2 [4]: Let $M: Y \times Y \to L$ be a distribution function, L be the set of all distribution functions and Y be a non-empty set. Then, a pair (Y, M) is said to be **probabilistic metric space** (abbreviated as pm-Space) if the distribution function M(p,q), where $(p,q) \in Y \times Y$, also denoted by $M_{p,q}$ satisfies following conditions:

(M1)
$$M_{p,q}(x) = 1$$
 for every $x > 0$ if and only if $p = q$,

ISSN: 1074-133X Vol 31 No. 5s (2024)

- (M2) $M_{p,q}(0) = 0$ for every $p, q \in K$,
- (M3) $M_{p,q}(x) = M_{q,p}(x)$ for every $p, q \in K$, and
- (M4) $M_{p,q}(x+y) = 1$ if and only if $M_{p,r}(x) = 1$ and $M_{r,q}(y) = 1$.

Here, $M_{p,q}(x)$ represents the value of distribution function $M_{p,q}$ at $x \in \mathbb{R}$.

Definition 2.3 [4]: A function $t: [0,1] \times [0,1] \rightarrow [0,1]$ is referred to as a *triangular norm* (shortly t-norm)

if it satisfies the following conditions:

$$T_1$$
: $t(0,0) = 0$,

T2:
$$t(a, 1) = a \text{ for all } a \in [0, 1],$$

T₃:
$$t(a,b) = t(b,a)$$
 for all $a,b \in [0,1]$,

T4: if
$$a \le c, b \le d$$
 then $t(a, b) \le t(c, d)$, and

T₅:
$$t(t(a,b),c) = t(a,t(b,c))$$
, where $a,b,c,d \in [0,1]$.

Definition 2.4 [2]: A probabilistic metric space (Y, M) is said to be Menger space (Y, M, t), where t is a t-norm satisfying the following conditions:

(M5)
$$M_{p,q}(x+y) \ge t\left(M_{p,r}(x), M_{r,q}(y)\right)$$
 for every $p, q, r \in Y$ and $x, y \in \mathbb{R} > 0$.

Definition 2.5 [2]: A mapping $A: Y \to Y$ in Menger Space (K, F, t), is said to be *continuous* at a point $p \in Y$ if for every $\varepsilon > 0$ and $\lambda > 0$, there exist $\varepsilon_1 > 0$ and $\lambda_1 > 0$ such that if $M_{p,q}(\varepsilon_1) > 1 - \lambda_1$ then $M_{Ap,Aq}(\varepsilon) > 1 - \lambda$.

Definition 2.6 [2]: Let (Y, M, t) be a Menger space and t be a continuous t-norm. Then,

- (a) A sequence $\{y_n\}$ in Y is said to *converge* to a point y in Y if and only if for every $\varepsilon > 0$ and $\lambda > 0$, there exist an integer $N = N(\varepsilon, \lambda)$ such that $M_{y_n,y}(\varepsilon) > 1 \lambda$ for all $n \ge N$. In this case, we write, $\lim_{n \to \infty} y_n = y$.
- (b) A sequence $\{y_n\}$ in Y is said to be a *Cauchy sequence* if for every $\varepsilon > 0$ and $\lambda > 0$, there exists an integer $N = N(\varepsilon, \lambda) > 0$ such that $M_{y_n, y_m}(\varepsilon) > 1 \lambda$ for all $m, n \geq N$.
- (c) A Menger space (Y, M, t) is said to be *complete* if every Cauchy sequence in Y converges to a point in Y.

Definition 2.7:[7] Common fixed point of self-mapping functions $A, B: Y \to Y$ is a point $y \in Y$ if A(y) = B(y) = y.

Example 2.1: Let $A, B: \mathbb{R} \to \mathbb{R}$ be functions such that $A(y) = \frac{y^2}{4}$ and B(y) = 2y - 4, then y = 4 is a common fixed point of A and B.

ISSN: 1074-133X Vol 31 No. 5s (2024)

Definition 2.8:[12] Two mappings $A, B: Y \to Y$ are said to be *compatible mappings* in Menger space (Y, M, t) iff $\lim_{n \to \infty} F_{ABx_n, BAx_n}(x) = 1$ for all x > 0, whenever sequence $\{x_n\}$ in Y such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = y$ for some y in Y.

Definition 2.10: [15] Two mappings $A, B: Y \to Y$ are said to be *weakly compatible* (*or coincidently commuting*) in Menger space (Y, F, t) if they commute at their coincidence points, that is, if Ax = Bx for some $x \in Y$ then ABx = BAx.

Definition 2.11:[6] Two mappings $A, B: Y \to Y$ are said to be *compatible mappings of type* (P) in Menger space (Y, M, t) iff $\lim_{n \to \infty} M_{AAx_n, BBx_n}(x) = 1 \ \forall \ x > 0$ whenever $\{x_n\}$ is a sequence in Y such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = y$ for some y in Y.

Definition 2.12: [5] Two mappings $A, B: Y \to Y$ are said to be *weakly compatible mapping of type*(P) in Menger Space (Y, M, t) iff $\lim_{n \to \infty} M_{AAx_n, BBx_n}(x) \ge M_{Ax_n, Bx_n}(x) \ \forall \ x > 0$,

whenever $\{x_n\}$ is a sequence in Y such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = y$ for some y in Y.

Example 2.2: Let (Y, d) be metric space where Y = [0, 2] with usual metric d(x, y) = |x - y| and (Y, M) be PM space with

$$M_{x,y}(t) = \begin{cases} e^{\frac{d(x,y)}{t}}, & \text{if } t > 0, \\ 0, & \text{if } t = 0. \end{cases} \text{ for all } x, y \in Y.$$

We define *A* and *B* as:

$$A(x) = \begin{cases} 1 - x, & \text{for } x \in [0, 1/2) \\ 1, & \text{for } x \in [\frac{1}{2}, 2] \end{cases} \text{ and } B(x) = \begin{cases} x, & \text{for } x \in [0, 1/2) \\ 1, & \text{for } x \in [\frac{1}{2}, 2]. \end{cases}$$

Taking sequence $\{x_n\}$ in Y where $x_n = \frac{1}{2} - \frac{1}{n}$, $n \in \mathbb{N}$. Then, (A, B) are weakly compatible mappings of type (P) and it is neither compatible mappings of type (P) nor compatible mappings.

Theorem 2.1[2]: Let (Y, M, t) be Menger space with the continuous t - norm t and $A: Y \to Y$. Then, A is continuous at a point $y \in Y$ if and only if for every sequence $\{y_n\}$ in Y converging to a point y, then sequence $\{Ay_n\}$ converges to the point Ay, i.e. if $\{y_n\} \to y$ then it implies $\{Ay_n\} \to Ay$.

Proposition 2.1[9]: In Menger Space (Y, M, t), if $t(k, k) \ge k$ for all $k \in [0, 1]$

then $t(a, b) = min \{a, b\}$ for all $a, b \in [0, 1]$.

Lemma 2.1[15]: Let (Y, M, t) be a Menger space. If there exists $k \in (0, 1)$ such that

for all $p, q \in Y$, $M_{p,q}(kx) \ge M_{p,q}(x)$ then p = q.

Proposition 2.2:[5] Let (Y, M, t) be a Menger space such that the t-norm t is continuous and $t(x, x) \ge x$ for all $x \in [0, 1]$ and $A, B: Y \to Y$ be continuous mappings. Then, A and B are weakly compatible mappings of type (P) if they are compatible mappings of type (P).

ISSN: 1074-133X Vol 31 No. 5s (2024)

Proposition 2.3: [5] Let (Y, M, t) be a Menger space such that the t-norm t is continuous and $t(x, x) \ge x$ for all $x \in [0, 1]$ and $A, B: Y \to Y$ be continuous mappings. Then, A and B are compatible mappings of type (P) if they are weakly compatible mappings of type (P).

Proposition 2.4: [5] Let (Y, M, t) be a Menger space such that the t-norm t is continuous and $t(x, x) \ge x$ for all $x \in [0, 1]$ and $A, B: Y \to Y$ be mappings. If A and B are weakly compatible mappings of type (P) and Ak = Bk for some $k \in K$, then, AAk = ABk = BAk = BBk.

Proposition 2.5:[5] Let (Y, M, t) be a Menger space such that the t-norm t is continuous and $t(x, x) \ge x$ for all $x \in [0, 1]$ and $A, B: Y \to Y$ be mappings. Let A and B be weakly compatible mappings of type (P) and $\lim_{n \to \infty} Ak_n = \lim_{n \to \infty} Bk_n = k$ for some $k \in Y$. Then

We have,

- (i) $\lim_{n\to\infty} BBk_n = Ak$ if A is continuous at k,
- (ii) $\lim_{n\to\infty} AAk_n = Bk$ if B is continuous at k,
- (iii) ABk = BAk and Ak = Bk if A and B are continuous at k.

The following lemma needs to prove the main theorem:

Lemma 2.2[15]: Let $\{x_n\}$ be a sequence in Menger space (Y, M, t), where t is continuous t –norm and $t(x, x) \ge x$ for all $x \in [0, 1]$. If there exists a constant $k \in [0, 1]$ such that

$$M_{x_{n,x_{n+1}}}(kx) \ge M_{x_{n-1,x_n}}(x)$$
 for all $x > 0$ and $n \in N$,

then $\{x_n\}$ is a Cauchy sequence in Y.

3. Main Theorem:

Now, we prove our main theorem for weakly compatible mappings of type (P) in complete Menger space:

Theorem 3.1: Let (Y, M, t) be a complete Menger space with $t(x, y) = min\{x, y\}$ for all $x, y \in [0, 1]$ and $A, B, S, T: Y \rightarrow Y$ be mappings such that

- $(3.1.1) A(Y) \subset T(Y) and B(Y) \subset S(Y),$
- (3.1.2) the pairs (A, S) and (B, T) are weakly compatible mappings of type (P),
- (3.1.3) One of A, S, B, T be continuous, and
- (3.1.4) there exists a constant $\xi \in (0,1)$ such that

$$M(Ax, By, \xi q) \ge \varphi\{\min\{M(Sx, Ax, q), M(Ty, By, q), M(Ty, Ax, rq), \}$$

$$M(Sx, By(2-r)q, M(Sx, Ty, q))$$

for all $x, y \in Y, r \in (0, 2)$ and q > 0, where $\varphi: [0, 1] \to [0, 1]$ satisfies

- (i) φ is continuous and non-decreasing on [0,1]
- (ii) $\varphi(n) > n$ for all n in [0,1]

ISSN: 1074-133X Vol 31 No. 5s (2024)

noting that if $\phi \in \Phi$, class of all mappings $\phi: [0,1] \to [0,1]$ then $\phi(0) = 0$, $\phi(1) = 1$ and $\phi(n) \ge n$ for all n in [0,1].

Then, A, B, S, T have a unique common fixed point in Y.

Proof: Consider $u_0 \in Y$. Since $A(Y) \subset T(Y)$, so there exists a point $u_1 in Y$ such that $Au_0 = Tu_1 = v_0$. Again, since $B(Y) \subset S(Y)$, so for u_1 , we may choose u_2 in Y such that $Bu_1 = Su_2 = v_1$ and so on.

And inductively, we may construct sequence $\{u_n\}$ and $\{v_n\}$ in Y such that

$$Au_{2n} = Tu_{2n+1} = v_{2n}$$
, and $Bu_{2n+1} = Su_{2n+2} = v_{2n+1}$, for $n = 0, 1, 2, ...$

Putting $x = u_{2n}$ and $y = u_{2n+1}$ for all q > 0 and r = 1 - p with $p \in (0, 1)$ in (3.1.4), we get

 $M(Au_{2n}, Bu_{2n+1}, \xi q) \ge \varphi\{\min\{M(Su_{2n}, Au_{2n}, q), M(Tu_{2n+1}, Bu_{2n+1}, q), M(Tu_{2n+1}, Au_{2n}, ((1-p))q), M(Su_{2n}, Bu_{2n+1}, ((1+p)q), M(Su_{2n}, Tu_{2n+1}, q)\}\}$

or, $M(v_{2n}, v_{2n+1}, \xi q) \ge$

 $\varphi\{\min\{M(v_{2n-1},v_{2n},q),M(v_{2n},v_{2n+1},q),M(v_{2n},v_{2n},((1-p))q),M(v_{2n-1},v_{2n+1},((1+p)q),M(v_{2n-1},v_{2n},q))\}\}$

 $\geq \varphi\{\min\{M(v_{2n-1},v_{2n},q),M(v_{2n},v_{2n+1},q),M(v_{2n-1},v_{2n+1},(1+p)q),M(v_{2n-1},v_{2n},q)\}\}$

 $\geq \varphi\{\min\{M(v_{2n-1},v_{2n},q),M(v_{2n},v_{2n+1},q),\ M(v_{2n-1},v_{2n},q),M(v_{2n},v_{2n+1},pq),$

$$M(v_{2n-1}, v_{2n}, q)$$
 $\geq \varphi\{\min\{M(v_{2n-1}, v_{2n}, q), M(v_{2n}, v_{2n+1}, q), M(v_{2n}, v_{2n+1}, pq)\}\}$

As $p \rightarrow 1$, we obtain

$$\begin{split} M(v_{2n}, v_{2n+1,} & \xi q) \geq & \phi\{\min\{M(v_{2n-1}, v_{2n,} q), M(v_{2n}, v_{2n+1,} q), M(v_{2n}, v_{2n+1,} q)\}\}\\ & \geq & \phi\{\min\{M(v_{2n-1}, v_{2n,} q), M(v_{2n}, v_{2n+1,} q)\} \end{split}$$

Or, $M(v_{2n}, v_{2n+1}, \xi q) \ge \varphi\{M(v_{2n-1}, v_{2n}, q)\} > M(v_{2n-1}, v_{2n}, q)$, by property of φ

Hence, we get $M(v_{2n}, v_{2n+1}, \xi q) \ge M(v_{2n-1}, v_{2n}, q)$

Similarly, we obtain

$$M(v_{2n+1}, v_{2n+2}, \xi q) \ge M(v_{2n}, v_{2n+1}, q)$$

Therefore, for every $n \in N$, $M(v_n, v_{n+1}, \xi q) \ge M(v_{n-1}, v_n, q)$

So, using Lemma (2.2), $\{v_n\}$ is a Cauchy sequence in K.

Since the Menger space (Y, M, t) is complete, so $\{v_n\}$ converges to a point z in Y and consequently the subsequences $\{A_{u_{2n}}\}$, $\{B_{u_{2n+1}}\}$, $\{S_{u_{2n}}\}$, $\{T_{u_{2n+1}}\}$ of $\{v_n\}$ also converges to z.

```
Communications on Applied Nonlinear Analysis
```

ISSN: 1074-133X Vol 31 No. 5s (2024)

Now, suppose that T is continuous. Then, since B & T are weakly compatible mappings of type (P) then by proposition 2.5, $BB_{u_{2n+1}}$, $TB_{u_{2n+1}} \to Tz$ as $n \to \infty$. Putting $x = u_{2n}$ and $y = B_{u_{2n+1}}$ in relation (3.1.4), we get

 $M(Au_{2n}, BBu_{2n+1}, \xi q) \ge$ $\phi\{\min\{M(Su_{2n}, Au_{2n}, q), M(TBu_{2n+1}, BBu_{2n+1}, q), M(TBu_{2n+1}, Au_{2n}, rq), M(Su_{2n}, BBu_{2n+1}, 2-r)q\}, M(Su_{2n}, TBu_{2n+1}, q)\}\}$

Taking $n \to \infty$, we have

 $M(z, Tz, \xi q) \ge \varphi\{\min\{M(z, z, q), M(Tz, Tz, q), M(Tz, z, rq), M(z, Tz(2 - r)q), M(z, Tz, q)\}\}$

Letting r = 1 - p with $p \in (0, 1)$ then

 $M(z,Tz,\xi q) \ge \varphi\{\min\{M(Tz,z,(1-p)q),M(z,Tz(2-(1-p)q),M(z,Tz,q)\}\}$

Or, $M(z, Tz, \xi q) \ge \varphi \{ \min \{ M(Tz, z, (1-p)q), M(z, Tz(1+p)q), M(z, Tz, q) \} \}$

 $\geq \varphi\{\min\{M(Tz,z,(1-p+1+p)q),M(z,Tz,q)\}\}$

 $\geq \varphi\{\min\{M(Tz,z,2q),M(z,Tz,q)\}\}$

 $\geq \varphi\{\min\{M(z,Tz,q)\}\}$

Therefore, $M(z, Tz, \xi q) \ge \varphi\{M(z, Tz, q)\}$

Or, $M(z, Tz, \xi q) \ge M(z, Tz, q)$, by property of φ

which implies z = Tz by Lemma 2.1.

Similarly, replacing x by u_{2n} and y by z in relation (3.1.4), we have

 $M(Au_{2n}, Bz, \xi q) \ge \varphi\{\min\{M(Su_{2n}, Au_{2n}, q), M(Tz, Bz, q), M(Tz, Au_{2n}, rq), M(Su_{2n}, Bz, (2-r)q), M(Su_{2n}, Tz, q)\}\}$

Taking $n \to \infty$, we get

 $M(z,Bz,\xi\,q)\geq \phi\{\min\{M(z,z,q),M(z,Bz,q),M(z,z,rq),M(z,Bz(2-r)q),M(z,z,q)\}\}$

 $\geq \varphi\{\min\{M(z,Bz,q),M(z,Bz(2-(1-p))q)\}\}$

 $\geq \varphi\{\min\{M(z,Bz,q),M(z,Bz(1+p))q)\}\}$

 $\geq \varphi\{\min\{M(z,Bz,q), M(z,z,q),M(z,Bz,pq)\}\}$

 $\geq \phi\{\min\{\,M(z,Bz,q),\,\,M(z,z,q),M(z,Bz,pq)\}\}$

 $\geq \phi\{\min\{M(z,Bz,q),M(z,Bz,q)\}\}, \text{ as } p \to 1$

So that $M(z, Bz, \xi q) \ge \varphi\{M(z, Bz, q)\}$

Or, $M(z, Bz, \xi q) \ge M(z, Bz, q)$, by property of φ

which implies z = Bz by Lemma 2.1.

Since, $B(Y) \subset S(Y)$, so there exists a point w in Y such that Bz = Sw = z.

By using relation (3.1.4) with x = w, y = z, we have

ISSN: 1074-133X Vol 31 No. 5s (2024)

 $M(Aw, z, \xi q) \ge \varphi\{\min\{M(Sw, Aw, q), M(Tz, Bz, q), M(Tz, Az, rq), M(Sw, Bz(2 - r)q, M(Sw, Tz, q)\}\}$

 $\geq \phi\{\min\{M(z,Aw,q),M(Tz,z,q),M(z,Aw,(1-p)q),M(Sw,z(1+p)q,M(z,Tz,q))\}\}$

 $\geq \phi\{\min\{M(z,Aw,q),M(Tz,z,q),M(Aw,z,(1-p)q),M(Sw,z(1+p)q,M(z,Tz,q))\}$

$$\geq \phi\{\min\{M(z, Aw, q), M(z, z, q), M(Aw, Sw, (1 - p + 1 + p)q)\}\}$$

$$\geq \phi\{\min\{M(z, Aw, q), M(Aw, z, 2q)\}\}$$

Therefore, $M(Aw, z, \xi q) \ge \varphi\{M(z, Aw, q)\}$

Or, $M(Aw, z, \xi q) \ge M(z, Aw, q)$, by property of φ

which implies Aw = z by Lemma 2.1.

Again, since A and S are weakly compatible mappings of type (P) and Aw = Sw = z, by proposition 2.4, we have for every $\varepsilon > 0$

 $1 = M(AAw, SSw, \epsilon) \ge M(Aw, Sw, \epsilon)$

Hence Aw = AAw = SSw = Sw

r)q, M(Az, z, q)

Finally, by relation (3.1.4) with x = z, y = Bz = z, we have

 $M(Az, z, \xi q) = M(Az, Bz, \xi q) \ge \varphi\{\min\{M(Sz, Az, q), M(Tz, z, q), M(Tz, Az, rq), M(Sz, z(2-r)q, M(Sz, Tz, q)\}\}$

 $\geq \varphi\{\min\{M(Az,Az,q),M(z,z,q),M(z,Az,rq),M(Az,z(2-$

$$\geq \varphi\{\min\{M(Az,z,rq),M(z,Az(2-r)q,M(Az,z,q)\}\}$$

$$\geq \varphi\{\min\{M(Az,Az,rq+(2-r)q,M(Az,z,q)\}\}$$

$$\geq \varphi\{\min\{M(Az,z,q)\}\}$$

$$\geq \varphi\{M(Az,z,q)\}$$

Or, $M(Az, z, \xi q) \ge M(Az, z, q)$, by property of φ $\therefore Az = z$, by Lemma 2.1.

Hence,
$$Az = Bz = Sz = Tz = z$$
.

That is, z is a common fixed point of given mappings A, B, S & T.

Uniqueness: Suppose z_1 is another point in Y such that

$$z_1 = Az_1 = Bz_1 = Sz_1 = Tz_1.$$

Then, putting x = z and $y = z_1$, r = 1 in (3.1.4), we get

$$M(Az, Bz_1, \xi q) = M(z, z_1, \xi q) \ge \varphi \{\min\{M(Sz, Az, q), M(Tz_1, Bz_1, q), M(Tz_1, Az, q), M(Sz, Tz_1, q)\}$$

ISSN: 1074-133X Vol 31 No. 5s (2024)

Or,
$$M(z, z_1, \xi q) \ge \varphi\{\min\{M(z, z_1, q), M(z, z, q)\}$$

Or,
$$M(z, z_1, \xi q) \ge \phi\{M(z, z_1, q)\}$$

$$M(z, z_1, \xi q) \ge M(z, z_1, q)$$
, by property of φ

 $\therefore z = z_1$, by Lemma 2.1.

Hence, z = Az = Bz = Sz = Tz, and z is a unique common fixed point for A, B, S, and T in Y.

This completes the proof.

4. Conclusion: In conclusion, the result of Chaudhary et. al. [5] is a particular case of this theorem. Also, this theorem may apply to consequences results in metric space in four self-mappings and generalizes and improves other similar results in the literature.

5. Acknowledgments:

I am very thankful to the editor and to the anonymous reviewers for their careful suggestions, and also thanks to the University Grant Commission, Nepal for their financial contribution for my research publication.

REFERENCES

- [1] Banach, S., Sur les Operations dans les ensembles abstraits et leur applications aux equations integral, Fund Math. 3(1922), 133-181.
- [2] Cho Y. J., Murthy P. P., and Stojakovic M., Compatible Mappings of type (A) and Common fixed point in Menger space, Comm. Korean Math. Soc. 7(2) (1992), 325-339.
- [3] Frechet, M., Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo (1906),1-74
- [4] Hadzic O and Pap E, Probabilistic Fixed-Point Theory in Probabilistic Metric Space, Kluwer Academic Publisher, London. 536, 2010.
- [5] Chaudhary A.K., Manandhar K.B., Jha K., and Pathak, H. K., A common fixed point theorem in Menger space with weakly compatible mapping of type (P), Advances in Mathematics: Scientific Journal, 11(11) (2022), 1019-1031.
- [6] Chaudhary A.K., Manandhar K.B., and Jha K., A common fixed point theorem in Menger space with compatible mapping of type (P), International Journal of Math. Sci. & Engg. Appls., 15(2) (2021), 59-70.
- [7] Chaudhary A.K., Manandhar K.B., and Jha K., A common fixed point theorem in Menger space with compatible mapping of type (K), Advances in Mathematics: Scientific Journal, 11(10) (2022), 883-892.
- [8] Jungck, G., Compatible Mapping and common fixed points, Internat. J. Math. Sci., 9(4) (1986),771-779.
- [9] Jungck, G., Murthy P. P., and Cho Y. J., Compatible mappings of type (A) and common fixed points, Math. Japonica, 38(1993), 381–390.
- [10] Jha K., Popa V., and Manandhar K.B., A common fixed point theorem for compatible mappings of type (K) in metric space, International Journal of Math. Sci. & Engg. Appls., 8(1) (2014),383-391.
- [11] Menger, K., Statistical Matrices, Proceedings of National Academy of Sciences of USA, 28 (1942), 535-537.
- [12] Mishra S.N., Common fixed points of Compatible Mappings in probabilistic Metric Space, Math. Japon.,36 (1991) 283-289.
- [13] Schweizer B., and Sklar A. Statistical metric space, Pacific J. of Math., 10 (1960) 314-334.
- [14] Sehgal, V.M. and Bharucha-Reid A.T., Fixed Point contraction mapping in Probabilistic Metric Space. *Math System Theory*, 6 (1972), 97-102.
- [15] Singh B. and Jain S. Common Fixed Point theorem in Menger Space through Weak Compatibility, J. Math. Anal. Appl., 301(2005), 439-448.
- [16] Sklar A. and Schweizer B. Probabilistic Metric space. *Dover Publications*, INC, Mineola, New York (2005).
- [17] Sessa, S., On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.), 32(46) (1982), 149–153.