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1. Introduction:

Probabilistic metric space (PM space) is the idea of Karl’s Menger [11], a significant generalization of
M. Frechet's [3] metric space. If PM space includes Menger inequality, then it is called Menger space.
This space becomes active after the significant work of B. Schweizer and A. Skalar [13], [16] and
V.M. Sehgal and A.T. Barucha Reid [14].

In 1991, S. N. Mishra [12] introduced the notion of compatible mapping in the Menger space and then
so many researchers worked in this space, defining weakly compatible mappings, different compatible
mappings types like (A), (K), (P) etc. see references [[2], [6], [7], [8], [9], [10], [14], [16]]. Recently,
Chaudhary et. al [5-6] have given notions of compatible mapping of type (P) and weakly compatible
mappings of type (P).

This paper gives the new results in Menger space by using a control function ¢:[0,1] — [0,1] in four
self-mappings and also deduces some consequences.

2. Preliminaries:
Definition 2.1 [16]: If a function M: R — R* is

Q) a non-decreasing function,
(i) left continuous and
@) inf{F(x):x € R} = 0,sup{F (x):x eR} =1

then M is said to be a distribution function.

Definition 2.2 [4]: Let M:Y xY — L be a distribution function, L be the set of all distribution
functions and Y be a non-empty set. Then, a pair (Y, M) is said to be probabilistic metric space
(abbreviated as pm-Space) if the distribution function M (p, q), where (p,q) € Y X Y, also denoted by
M, , satisfies following conditions:

(M1) M,,(x) =1foreveryx > Oifandonlyif p = gq,
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(M2) M,,(0) =0 forevery p,q €K,

(M3) M, ,(x)=M,,(x) foreveryp,q €K, and

(M4) M, ,(x+y)=1ifandonlyif M,,(x) = 1and M, ,(y) = 1.
Here, M,, ,(x) represents the value of distribution function M, , at x € R.

Definition 2.3 [4]: A function t: [0,1] X [0,1] — [0,1] is referred to as a triangular norm
(shortly t-norm)

if it satisfies the following conditions:

Ti: t(0,0) =0,

T2: t(a,1)=a foralla €[0,1],

Ts: t(a,b) = t(b,a)foralla,be [0,1],

Tsa: ifa < c,b < dthent(a,b) < t(cd),and

Ts:  t(t(ab),c)= t(at(bc)), wherea,b,c,d e [0,1].

Definition 2.4 [2]: A probabilistic metric space (Y, M) is said to be Menger space (Y, M, t),
where t is a t-norm satisfying the following conditions:

(M5) M, ,(x+y) =t (Mp,r(x),Mr,q(y)) foreveryp,q,r €Yandx,y € R > 0.
Definition 2.5 [2]: A mapping A: Y — Y in Menger Space (K, F, t), is said to be continuous
atapointp € Y if forevery ¢ > 0 and 4 > 0, there exist &1 > 0 and A > 0 such that
if My, (&) > 1- A4 then My, 0q(8) > 1 - A
Definition 2.6 [2]: Let (Y, M, t) be a Menger space and ¢ be a continuous t-norm. Then,

@ A sequence {y,} in Y is said to converge to a point y in Y if and only if for every
&> 0and A > 0, there exist an integer N = N (g A) suchthat M,, ,,(¢) > 1 — Aforall

n = N. In this case, we write, lim y, =y.
n—>oo

(b) A sequence {y,} inY is said to be a Cauchy sequence if forevery ¢ > 0 and 4 > 0, there exists
aninteger N = N (g 4) > OsuchthatM, , (¢)> 1— A forallm,n > N.

(c) A Menger space (Y, M, t) is said to be complete if every Cauchy sequence in Y converges to a
pointin Y.

Definition 2.7:[7] Common fixed point of self-mapping functions A,B:Y = Y isapointy €Y if
A(y) = B(y) = .
Example 2.1: Let A, B: R — R be functions such that A(y) = yTZ and B(y) = 2y —4,

then y = 4 isa common fixed point of 4 and B.
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Definition 2.8:[12] Two mappings 4, B: Y — Y are said to be compatible mappings in Menger

space (Y, M, t) iff lim Fupy  pax,(x) = 1 forall x > 0, whenever sequence {x,}inY
n—oo

such that limAx, = lim Bx,, = y forsome yinY.

n—oo n—-oo

Definition 2.10: [15] Two mappings 4, B:Y — Y are said to be weakly compatible (or coincidently
commuting) in Menger space (Y, F, t) if they commute at their coincidence points, that is, if Ax = Bx
for some x € Y then ABx = BAx.

Definition 2.11:[6] Two mappings 4, B:Y — Y are said to be compatible mappings of type (P) in
Menger space (Y, M, t) iff lim My, ppx,(x) = 1V x > 0whenever {x,} is a sequence in Y such
n—->oo

that lim Ax, = lim Bx, =y forsomeyinY.
n—>oo

n—oo

Definition 2.12: [5]Two mappings 4, B: Y — Y are said to be weakly compatible mapping of type(P)
in Menger Space (Y, M, t) iff lim Myuy = ppx, (X) = My, gy, (x) Vx>0,
n—-oo

whenever {x,} is asequence inY such that lim Ax, = lim Bx, =y forsomeyinY.
n—-oo

n—-oo

Example 2.2: Let (Y, d) be metric space where Y = [0, 2]with usual metric d(x,y) = |x — y|
and (Y, M) be PM space with

axy)
M (t)={e £, it >0, forallx,yev.
Y 0, ift =0.

We define A and B as:

1—x, for x€[0,1/2)
1, forxe[l 2] and B(x)={

E;

x, for x €[0,1/2)

A(x) = { 1, forx e E,Z].

Taking sequence {x,} inY where x,, = % — % n € N. Then, (4, B) are weakly compatible mappings
of type (P) and it is neither compatible mappings of type (P) nor compatible mappings.

Theorem 2.1[2]: Let (Y, M, t) be Menger space with the continuous t —norm t and A: Y — Y. Then,
A is continuous at a point y € Y if and only if for every sequence {y,,} in Y converging to a point y,
then sequence {Ay,} converges to the point Ay, i.e. if {y,} — ythenitimplies {Ay,} — Ay.

Proposition 2.1[9]: In Menger Space(Y, M, t), if t (k,k) = k forall k € [0,1]
thent(a,b) = min{a,b}foralla,b € [0,1].

Lemma 2.1[15]: Let (Y, M, t) be a Menger space. If there exists k € (0,1) such that
forall p,q € Y, M, ,(kx) = M, ;(x) thenp = q.

Proposition 2.2:[5] Let (Y, M, t) be a Menger space such that the t-norm ¢ is continuousand t (x, x) >
x forall x € [0,1] and A4,B:Y — Y be continuous mappings. Then, A and B are weakly compatible
mappings of type (P) if they are compatible mappings of type(P).
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Proposition 2.3: [5]Let (Y, M, t) be a Menger space such that the t-norm ¢ is continuousand t (x, x) =
x forall x € [0,1]and 4, B:Y — Y be continuous mappings. Then, A and B are compatible mappings
of type (P) if they are weakly compatible mappings of type (P).

Proposition 2.4: [5]Let (Y, M, t) be a Menger space such that the t-norm ¢ is continuousand t (x,x) >
x forall x € [0,1]and A, B:Y — Y be mappings. If A and B are weakly compatible mappings of type
(P)and Ak = Bk forsome k € K, then, AAk = ABk = BAk = BBk.

Proposition 2.5:[5] Let (Y, M, t) be a Menger space such that the t-norm t is continuous and
t (x,x) =xforall x €[0,1] and 4,B:Y — Y be mappings. Let A and B be weakly compatible
mappings of type (P) and lim Ak, = lim Bk, = kforsome k € Y. Then

n—-oo

n—-oo

We have,

(i) ,ll‘l?o BBk,, = Ak if A is continuous at k,
(i) ill?o AAk, = Bk if B is continuous at k,

(iii) ABk = BAk and Ak = Bk if A and B are continuous at k.
The following lemma needs to prove the main theorem:

Lemma 2.2[15]: Let {x,,} be a sequence in Menger space (Y, M, t), where t is continuous t —norm
and t (x,x) = x forall x € [0,1]. If there exists a constant k € [0, 1] such that

My, o, (kx) = My, _, . (x) forallx > 0Oandn €N,

then {x,,} is a Cauchy sequence in Y.
3. Main Theorem:

Now, we prove our main theorem for weakly compatible mappings of type (P) in complete Menger
space:

Theorem 3.1: Let (Y, M, t) be a complete Menger space with t (x,y) = min {x, y} for all
x,y € [0,1]and A,B,S,T:Y — Y be mappings such that
(3.1.1) AY)cT¥)and B ((Y)c S(V),
(3.1.2) the pairs (4,S) and (B, T) are weakly compatible mappings of type (P),
(3.1.3) Oneof 4, S, B, T be continuous, and
(3.1.4) there exists a constant & € (0, 1) such that
M(Ax, By, § q) = ¢{min{M (Sx, Ax, q), M(Ty, By, @), M(Ty, Ax,q),
M(Sx,By(2 —1)q, M(Sx, Ty, q)}}
forall x,y €Y,r € (0,2)andq > 0, where ¢:[0,1] - [0,1] satisfies

0] @ is continuous and non-decreasing on [0,1]
(i) @(n) >nforall nin [0,1]
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noting that if @ € &, class of all mappings ¢: [0,1] — [0,1] then ¢(0) = 0, (1) = 1 and @(n) = n
for all n in [0,1].
Then, 4, B, S, T have a unique common fixed pointinY.
Proof: Consider u, € Y.Since A(Y) < T (Y), so there exists a point u,in Y such that
Auy - Tu ; = v,. Again, since B(Y) c S (Y), so for u;, we may choose u, in Y such that
Bu, = Su, = v; and so on.
And inductively, we may construct sequence {u,} and {v,,} inY such that
Auzy = TU y3p41 = Van,aNd Buypiq = SUopip = Vppyy for n=0,1,2, ..
Putting x = uy, and y = Uypyq forallg>0andr =1—pwithpe (0,1) in (3.1.4),
we get

M (Auzn, Buzns1, §9) = @{min{M(suZn'AuZn, CI), M(Tu2n+1, Bujypy, Q),
M(Tu2n+1;Au2n ) ((1 - p))CI); M(5u2n: Bu2n+1,((1 + P)CI)' M(SuZn' Tuzpyq, Q)}}

or, M(”Zn' v2n+1, Z Q) =

cp{min{M(vZn_l, Van, q), M(UZn, Van+1, q), M(VZn' Uon» ((1 - P))CI): M(VZn—ll Vons1, (1 +
P)Q)»M(UZn—1»V2n, CI)}}

> {min{M(vzn-1,V2n, @), M(V2n, Vans1, @); M(Van-1,V2ns1, (1 + P)), M(V2n-1, V20, @)1}
> @(min{M(van-1,Van, @), M(Van,Vans1, 4), M(Van-1,V2n, @), M(Van, Vans1, PQ),
M(Vzn-1.v2n, )} = @min{M(van_1,v2n, ), MV, Vansr, 4), M(V2n, Vans, pa)}}
As p — 1, we obtain
M(Van, Vant1, §Q) 2 @(Min{M(van_1,V2n, q),M(Van, Vans1, @), M(Van, Vanss, @)1}
> (p{min{M(vZn_l,UZn, Q)JM(UZn’U2n+1, q)}
O, M(Van, Vani1, §9) = @{M(Van_1,V2n, q)} > M(van_1,v2n, q), by property of ¢
Hence, we get M (Van, Vant1, §@) = M(Van_1,Van, q)
Similarly, we obtain
M(Vzni1,Vansz, §9) 2 M(Van, Vania, q)
Therefore, foreveryn € N, M(vy, vpyq, §q) = M(vn_l, U, q)
So, using Lemma (2.2), {v,,} is a Cauchy sequence in K.

Since the Menger space (Y, M, t) is complete, so {v,,} converges to a point z in Y and consequently
the subsequences {Ay, .} , {Bu,,., b {Supnds {Tuy,,, JOf {vn}  also converges to z.

2n+1
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Now, suppose that T is continuous. Then, since B & T are weakly compatible mappings of type (P)
then by proposition 2.5, BB, TBy,,., 2> Tzasn - o, Puttingx =u,, andy = B,, . in
relation (3.1.4) , we get

2n+1’

M(Auzp, BBusni1, §q) 2

(P{min{M(SUZn» Augy, Q)' M(TBu2n+1, BBusn+1, Q)' M(TBugny1, Atgy , 7q), M(Suan BBuyn41,(2 -
T)Q); M(SUZn» TBuzn41, CI)}}

Takingn — oo, we have

M(z,Tz,§q) = @{min{M(z,2,q),M(Tz,Tz,q),M(Tz,z,vq),M(z,Tz(2 —1r)q),M(2,Tz,q)}}
Lettingr = 1 —p withp € (0,1) then

M(z,Tz,8q) = {min{ M(Tz,z, (1 = p)q),M(z,Tz(2 — (1 —p)q),M(z,Tz q)}}

Or, M(z,Tz, ¢q) = @{min{ M(Tz,z,(1 —p)q), M(z,Tz(1 + p)q),M(z,Tz,q)}}

> @{min{ M(Tz,z, 1 —p+1+p)q),M(2,Tz,q)}}
> @{min{ M(Tz,z,2q),M(z,Tz,q)}}

= @{min{ M(z,Tz q)}}
Therefore, M(z,Tz,§q) = ¢{M(z,Tz q)}
Or,M(z,Tz,§q) = M(z,Tz, q), by property of ¢
which implies z = Tz by Lemma 2.1.
Similarly, replacing x by u,, and y by z in relation ( 3.1.4), we have

M(Auyn, Bz,€q) = cp{min{M(SuZn, Auyy, q), M(Tz,Bz,q), M(TZ, Auyy, rq),
M (Stizn, Bz, (2 = 1)q), M(Stzn, Tz, )}

Takingn — oo, we get
M(z,Bz,¢q) = @{min{M(z,z,q),M(z,Bz,q),M(z,2,7q),M(z,Bz(2 —r)q),M(z,2,q)}}
= @{min{ M(z, Bz,q),M(z,Bz(2 — (1 - p))q)}}
= @{min{ M(z, Bz,q), M(z,Bz(1 + p))q)}}
> @{min{ M(z,Bz,q), M(z,z,q),M(z, Bz, pq)}}
= @{min{ M(z, Bz,q), M(z,z,q),M(z, Bz,pq)}}
> @{min{ M(z,Bz,q),M(z,Bz,q)}},asp - 1
So that M(z,Bz,§q) = ¢{M(z,Bz,q)}
Or, M(z,Bz,§q) = M(z,Bz,q), by property of ¢
which implies z = Bz by Lemma 2.1.
Since, B(Y) c S (Y), so there exists a point w in Y such that Bz = Sw = z.
By using relation ( 3.1.4) with x = w,y = z, we have
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M(Aw, z,€q) = @{min{M (Sw, Aw, q),M(Tz,Bz,q),M(Tz, Az,rq), M(Sw,Bz(2 —

r)q, M(Sw, Tz, q)}}

> @{min{M(z,Aw, q),M(Tz,z,q),M(z, Aw, (1 — p)q), M(Sw,z(1 +
P)q, M(z,Tz q)}}

> o{min{M(z,Aw,q),M(Tz,z,q), M(Aw, z, (1 — p)q), M(Sw, z(1 +
P)q, M(z,Tz q)}}

> e{min{M(z,Aw,q),M(z,z,q), M(Aw,Sw, (1 —p + 1+ p)q)}}

> @{min{M(z, Aw,q),M(Aw, z,2q) }}

Therefore, M(Aw, z,§ q) = @{M(z, Aw, q)}
Or, M(Aw, z,§ q) = M(z, Aw, q), by property of ¢
which implies Aw = z by Lemma 2.1.

Again, since A and S are weakly compatible mappings of type (P) and Aw = Sw = z, by
proposition 2.4, we have for every ¢ > 0

1= M(AAw,SSw,€) = M(Aw, Sw, €)
Hence Aw = AAw = SSw = Sw
Finally, by relation (3.1.4) with x = z,y = Bz = z, we have

M(Az,z,§q) = M(Az,Bz,¢q) = @{min{M(Sz,Az,q),M(Tz,z,q),M(Tz, Az,rq),
M(Sz,z(2 —1)q,M(Sz,Tz, q)}

> @{min{M (Az,Az,q),M(z,z,q),M(z, Az,rq), M(Az,z(2 —
r)q,M(Az, z,q)}
> @{min{ M(Az,z,rq), M(z,Az(2 —r)q,M(Az,z,q)}
> @{min{ M(Az,Az,rq + (2 —1r)q,M(Az,2,q)}
> @{min{ M(Az,z,q)}
= @{M(Az,2,q)}

Or, M(Az,z,5q) = M(Az, z, q), by property of ¢
..~ Az = z,by Lemma 2.1.

Hence, Az = Bz = Sz =Tz = z.
That is, z is a common fixed point of given mappings 4,B,S & T.
Uniqueness: Suppose z, is another point in Y such that
z, = Azy = Bzy = Sz = Tz,.
Then, puttingx = zandy = z;, r = 1in(3.1.4), we get

M(Az,Bz,§q) = M(z,21,§q) = @{min{M(Sz,Az,q),M(Tz,,Bz;,q),M(Tz,,Az,q),
M(Sz,Tzy,q)}
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Or, M(z,21,§£q) = @{min{M(z,21,q),M(z2,2,q)}
OI’, M(Z' ZliEq) 2 (P{M(Z, Zl! Q)}

M(z,21,§q) = M(z, 2, q), by property of ¢
©z = zy,by Lemma 2.1.

Hence,z = Az = Bz = Sz = Tz and z is a unique common fixed point for A, B, S,and T in Y.
This completes the proof.

4. Conclusion: In conclusion, the result of Chaudhary et. al. [5] is a particular case of this
theorem. Also, this theorem may apply to consequences results in metric space in four self-mappings
and generalizes and improves other similar results in the literature.
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