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1. Introduction

The unconstrained Problem for an optimization defended by:
Min f(x) X € R™,

1)

We have f:R™ — R is smooth and it’s Vf is available Conjugate gradient(CG) method For Solving
(1)is Iterative methods of the from

X1 = Xg + g dy 2
Where a;, > 0 is step size and d,, is search direction, the d,, is recursively known as:

_(—9k for k=1,
=gt s for k2 ©
Jr means Vf(x)and B, is a parameter, if f(x) is a strictly convex quadratic function and «a; is an
exact one-dimension min .(1)-(3) is knows (CG) method, Also, (1)-(2) is knows the nonlinear (CG)
method. There are different general unconstrained optimization problems, Famous prescription for
are the (LS) [1]. (PR) [2] and (HS) [3] which are as:

T

LS _ Bk+1Yk 4

k dicgk ( )
T

PR _ 8k Yk-1 5

K iggqll? ©®)
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T
HS — BkYk-1 6
k dR-1Yk-1 ( )

To prove the convergence of this approach, it is often needed that the step-size a_k satisfies the
strong Wolfe condition, where y,_, is defined as g, minus g,_4, and ||.|| represents the Euclidean
norm.

f(xy) — f(xx + o dy) = Soygidye [4] (7)
lg(xk + ogdi)di|T < —odidy [4] (8)
Where0 < § <05<o0<1

Each method comes with its own advantages and disadvantages. see[5], [3] The Polak-Ribiere and
Hestenes-Stiefel (HS) methods have comparable theoretical properties. Both of these methods are
favored over the Liu-Storey (LS) method in terms of numerical performance. This is because they
both restart after encountering a bad direction. However, the Yabe-Takano (YT) method, derived by
Zhang et al in 2004, stands out .[6] and Zhang[7]and Xu [8] proposed by Yabe-Takano (YT)[9] we
propose a three news formulas for g&*and BR2and B3 by exploiting the modified secant condition
in this paper is organized as follows ,in section2 we state a conjugacy condition and the formulas In
section3,the modified secant condition is described In Section 4, We suggest a fresh requirement for
conjugacy and develop novel equations for B. In Section 5, we demonstrate the worldwide
convergence of the latest conjugate gradient techniques under specific assumptions. Section 6
includes the presentation of a few numerical trials.

1.2 Yabe-Takano (YT)

Conjugate gradient algorithm generates a direction search such that the conjugacy condition holds,
as,

dfQd; =0, Vi # j (9)
The matrix Q is positive definite for the quadratic objective function. For general nonlinear

functions, the mean value theorem (M.V.T.) guarantees the existence of a value 1 in the interval
t€(0,1) such that

dE Yk-1 = O(k—1dlzvzf(xk—1 + tog_1dy—1)
Hence, it is acceptable to substitute (9) with the subsequent condition:
diyk-1 =0 (10)

Recently, extension of the CG has been studied Yabe-Takano. [10] using the secant condition of
Quasi-Newton (QN) methods,

Hgyx—1 = Sk-1. (11)

where Hjy is an inverse approximate for the Hessian and S,_; = x; — x,_;. For quasi_Newton
methods, the search direction d;, can be calculated by:

dy = —Hggx (12)
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By (11) and (12). We have that

diyi-1 = —(Higi) i1 = =gk (Hii-1) = —8kSk—1 (13)
By this relation, Dai and Liao replaced the conjugacy condition by the condition
diYk-1 = —tgrSk-1 (14)

Where t > 0 is a scalar. In the scenario where t=0, equation (11) simplifies to the standard
conjugacy condition (10). Conversely, when t=1, equation (11) becomes equivalent to (10). In order
to guarantee that the search direction dx meets this requirement, we can substitute equation (3) into
(14) to obtain:

—g1Yk-1 + Brdi_1¥k-1 = —tgESk—1 [10] (15)
2.New formulas for gN*, BN, g3

We are developed a new conjugate gradient (CG) method in this part based on the work of Yabe-
Takano [10]. To achieve this work, we apply a modified secant condition (3.2) instead of the usual
one (6). Let z,_4 be defined with a scalar parameter p > 0:

- k-1
k“‘_y“1+pﬁhb) [11],[12] (16)
Ok-1 = 6(fke1 — fi) + 3(8k-1 + 81 TSk-1

Building upon the same reasoning as in part 2, we examine the adjusted secant condition involving
with Zx—1

Hyzy_1 = Sx—1 (17)

when p = 0 and p = 1,[6] This situation aligns with the typical secant condition (6) and the revised
secant condition (3.2) individually. It follows from (7) and (12) that:

drzi_y = —(Hegi) " zx—1 = —gp (Hizg—1) = —gp Sk-1 (18)

Considering this relationship, we substitute the conjugacy requirement with the updated condition.:
dizp—1 = —tglfsk_l, (19)
dp = =gk + Brdy-1

Hygzy_1 = Sk—1

Hgyi-1 = Sk-1 (20)

diZx = —gkSk-1

dizy = —tGkSk-1

wme4=m+ﬁﬁ% (21)

Ok = 6(fx — fi-1) +3(gk — gk-1)si fort = 0 (22)

d = —Hy gk (23)
374
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dly, = 0 (Perry), this condition is true for all liner functions

diYr = —Hpgryk (24)
dlyx = —gr_,sk—1, this condition is true for all nonlinear functions

diYr = —tgrSk-1 (25)
Multiply the equation(25)by z,We get

dizx = —9kZk + Brdr-12k (26)
~tgkSk = —JiZk + Brdi-12x (27)
—tgisk = —JkZk + Brdi-1Vx (28)
(9k 2k = t9kSk)= Brdk V-1 (29)
g =t (30)

In the next section ,we proved the global convergence of the new methods (30) , following the Lio-
story methods , we are get by using (30)
T T
N1 _ 9k Zk _ Ik Sk
o = Max {—d£_13/k—1’0} t {dly:(—l'o} (31)
this case, if (ELS) then we have 8,_; = 0, z;_; = yx_; the new parameters becomegy y_1/dkvi-1

. Thus, our equation (30) simplifies to the Hestenes-Stiefel formula when considering linear
conjugate gradient techniques. .

Similarly we have derive , BR?, pR°
T
N2 _ 9k (Zr—tsg)
KT gkl (32)
10
where z, = y, + EWS,( [13] (33)
and
Ok = 2(fi — fre+1) + (Gr+1 + 9) sk (34)
and
T
N3 _ 8k(Zx—tsk)
k B _g’]£_1dk—1 (35)
2 6y
where z, = y; + 3 o2 5K [14] (36)
Ok = 4(fie1 — fi) + 2(gx + Grs1)"sk-1 [14][15] (37)
2.1 Algorithm

Stepl:Take x, € R™ ,and 0 < § < ¢ < 1 ,Calculate f(x,) and go = Vf(x,) , set
do = _go fOI‘k = O
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Step2: Compute «a, Satisfying Strong "Wolfe Condition "(3.10) (3.11) and then Compute
Xp+1 = X + g dy
Step3:1f(|| gille < 10710 or (|argrdi| < 10710\ f]) is Satisfy then stop.
Step4: Compute the new search direction :
dr = =9k + Brdk-1

If the restart criterion of Powell, such that |gr g1 | = 0.2|lg, |? is Satisfied, then set dj, = —g;
otherwise, define

Step5:Compute the new Parameters BR*, B2, BR>from(30,31,34)respectively

Step6: Set K = K + 1 and go to Step2.
3. Convergence analysis
3.1 Introductory
In this section we are position verify global convergence of the new methods .
3.1 Hypothesis 1: see [10].

Dia et al. demonstrated that any CG algorithm utilizing the powerful Wolf line search yields the
subsequent beneficial outcome [16],[17].

3.2 Lemma

From he hypothesis 1 holds .we have for any CG method in the form (2)-(3), where dsatisfies the
D.C. in (26) ,where «ay is gets by the strong Wolf line search (28)-(29). Let ¢ € [0,4] be given[18].

k=1

Then the following holds
lim [lgll = 0
by then...if8 = 0 = lim;_,llgill =0

3.3 Theorem

Assuming assumption 1 is valid and f is a uniformly convex function, let's take a look at the
conjugate gradient method using equation (15). In this method, the values of dx and u;, must satisfy
the descent condition (26) and condition (5.9) respectively, while ox is determined through the strong
Wolfe line search algorithm. If L = u then our method with p > 0 satisfies zlil?o”g"” =0.1fL>y,

L
3(L—w)

then our method 0 < p < satisfies Ilim llgkll = 0.
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Proof: from paper [10]we have that
From {Zk"l = Ykt P (SZZ—;l)
Ok—1 = 6(fi—1 — fi) + 3(8k-1 + 81) " Sk-1
and fi—1 — fi = gk Sk-1 +§ lIsi-111?
and pllsg-111* < sg_1Vk-1 < Lllsg_1lI?
Sk—1Zk-1 = Sk—1Yk-1 + POx_1

= Sp—1Vk-1 T 60(fi—1 — fi) + 3p(gr-1 + G1) " Sk-1

O
Zk—1=3’k—1+.0< = uk—l)-

T
Sk—1Uk-1

Or-1 = 6(fi—1 — fi) + 3(Gk—1 + 9k) "Sk-1

HyZp—1 = Sk—1
Sk-1Zk-1 = Sk-1Vk-1 + POx—1
= Sg-1Vk—1 + 6p(fic1 — fi) + 3p(gr—1 + gi) k-1
>Sg-1Yk-1 T 6p (—91151(—1 + % ||Sk—1||2) +p3(gr-1 + i) Sk—1
= Sk-1Yk-1 = 3PFSk-1 + 30Gi-15k-1 + 3pullsi_1II°
= Sg-1Yk-1 — 3PSk-1Yk—1 + 3pullsi—lI?
= (1 - 3p)Si—1Vi-1 + 3putllsi—1lI”

3
> (1-3p)Si-1Vk-1 + %513—1)%—1

L-3p(L—p)
= L S Yk (38)
Wehave 0 < p < L , and we have:
3(L-w)
L—-3p(L—p
sz = 2 s 12
ldill = I—gk + Brdi-1ll
T
Ik Vi — tS—-1)
= -9k t+ dy—
|| “ d;cr—1Yk—1 ot
lgr I yi—1ll + tllse—1ll
< llgpll + == gy
|dk—1yk—1|

gl (Fllsg—1ll + thsg_qll

|S£—1Zk—1|

< lgill + Sk-1ll
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(F + Ol gl llsi_1117
fillsg_1ll?
- (1 s t) gl
fi

< (fi tF+0y
fi

Z i d:d|22{(f1+]}3+t)y} kzl 1=

By Theorem 3. If 6 =0 = ]lim lgkll =0

< lgll +

4. Numerical results

This section provides the numerical results that assessed the effectiveness of the conjugate gradient
algorithms employing the Fletcher-Reeves (FR), Polak-Ribiere (PR), and Liu-Storey (LS)
techniques. This information is also available in reference [19].

The program's requirements for stopping ||gx+11l < 107> and written in (FORTRAN90). Table 1
shows the number of the function (NOF) and the number of the iteration (NOI) and confirms that the

new methods are superior (NI) with dimension n=1000, 10000[19],[20]

Table (1) Comparison between the new SN1, 8N2, N3 methods against SHS , BPR , SLS methods
for the Total of 30-problems with n=1000, 10000

P.No. [N BLS BPR BHS BN3 SN2 BN1
Fns NOI | NOF | NOI | NOF | NOI [ NOF | NOI [ NOF | NOI [ NOF | NOI | NOF
1 1000 |52 |102 |53 |103 |52 |103 |27 |77 |26 |76 |23 |71
10000 | 51 | 132 |52 | 127 |49 |124 |29 |80 |32 |82 |29 |80
2 1000 |21 |92 |50 |112 [32 |91 |15 |72 |19 |8 |13 |70
10000 36 |71 |42 |73 |32 |73 |21 |59 |28 |61 |20 |39
3 1000 |36 |82 |37 |91 |37 |81 |21 |68 |23 |73 |21 |67
10000 | 47 | 113 |61 |122 |47 |122 |35 | 101 |43 | 106 |35 |98
4 1000 |51 |71 |65 |93 |63 |8 |31 |55 |45 |70 |38 |60
10000 |53 |72 |53 |89 |72 |93 |30 |51 |39 |64 |44 |69
5 1000 |33 |54 |36 |60 |39 |51 |20 |41 |23 |47 |18 |38
10000 |23 |61 |40 |66 |34 |60 |21 |49 |28 |54 |20 |45
6 1000 |27 |45 [32 |47 [32 |47 |15 [29 |14 [30 |14 [30
10000 |41 |51 |37 |52 |41 |52 |15 |30 |16 |32 |16 |32
7 1000 | 41 |142 |43 | 161 |37 |153 |14 | 115 |15 | 115 |13 | 102
10000 | 26 | 109 |28 | 121 |26 |104 |14 |95 |14 |109 |12 |90
8 1000 |24 |[111 |27 | 115 |23 |102 |12 |99 |15 |103 |11 |90
10000 | 28 | 192 |31 |200 |29 |182 |16 | 178 |19 | 188 |15 | 166
9 1000 |41 |142 |42 [152 |37 |82 |15 | 120 |17 |129 |19 |60
10000 | 52 | 302 |52 |302 |42 |226 |19 | 199 |19 |200 |18 | 195
10 | 1000 |29 |111 |29 133 |27 |107 |17 |99 |17 |121 |15 |95
10000 | 41 | 162 |47 | 233 |30 |182 |18 | 185 |21 | 198 |14 | 163
11 1000 |51 |142 |62 |209 |52 |143 |35 | 108 |39 |112 |32 | 105
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10000 | 61 | 172 |61 |182 |61 | 145 |45 139 |45 | 145 |40 | 133
12 1000 |53 |82 |52 |82 |51 |8 |24 [55 |25 |56 |23 |55
10000 | 41 |83 |51 |83 |44 |82 |23 |51 |33 |60 |20 |50
13 1000 |37 |72 |42 |78 |37 |64 |25 |60 |30 |66 |25 |52
10000 | 50 | 184 |54 | 203 |43 | 173 |38 |170 |41 | 191 |31 | 160
14 1000 |41 | 111 |52 [122 |29 |92 |18 |8 |35 |90 |17 |80
10000 | 41 | 103 |41 |103 |34 |102 |20 |77 |20 |77 |12 |70
15 1000 |30 |101 |41 |92 |31 |83 |18 |8 |35 |90 |17 |80
10000 | 81 | 120 |83 |126 |70 |122 |60 |102 |70 | 106 |58 | 100
16 1000 |27 | 110 |26 |112 |25 [106 |13 |98 |14 |100 |11 |94
10000 | 31 | 122 |26 |121 |30 |106 |19 |109 |14 | 109 |16 |94
Total 1317 | 3720 | 1448 | 3965 | 1288 | 3416 | 743 | 2937 | 874 | 3140 | 710 | 2753

Clearly, we have from the Table (2) that Newlalgorithm beats (HS) algorithm in about (44%) NOI;
(21%) NOF, also, we have the New2 algorithm beats (PR) algorithm in about (40%) NOI,(21%)
NOF then we have the New3 algorithm beats (LS) algorithm in about (45%) NOI,(19%) NOF.

Table2: percentage modified of the new algorthims

HS algorithm | N1 | PR algorithm | SN2 | LS algorithm | SN3
NI | 100% 56% | 100% 60% | 100% 55%
NF | 100% 79% | 100% 79% | 100% 81%

The charts below (Fig(1), Fig(2)) show the comparison of the new algorithm with similar algorithms
(HS, PR, LS) based on the number of iterations and the number of function calculations,

respectively.

We used More,Dolan to compare the new methods with the classical methods, based on the number
of iterations and the number of function calculations.

Figure 1: Number of iteration comparing
bewteen New methods to standred methods
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5. Conclusion
1. The CG Methods are proposed for solving nonlinear Optimization Problems
2. Adequate decrease and worldwide convergence can be achieved under certain conditions.
The numerical findings shown in the previously mentioned figure.
3.The new algorithms (N1, N2, N3 )have prove its efficiency through results in table(1) and(2)
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Appendix

The Test Function For Unconstrained Optimization

Z
©

The Test Function
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Diagonal 1
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[EN
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[ SN
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Extend Quadratic
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