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The philosophy of inequalities has profundity been established for explaining numerous
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enormous entities articulated in expressions of inequalities. Inequalities in information

theory have been determined by the aspiration to elucidate communication theoretic
problems. To disentangle such problems, the algebra of information was established and
chain rules for entropy and mutual information were framed. The field of information
theory participates with a critical protagonist in accepting and enumerating the
communication of information in innumerable systems. Inequalities in information theory
have appeared as influential implements to investigate and illustrate the restrictions and
opportunities in information dispensation. The contemporary communiqué is an accurate
step in the construction of information inequalities for the discrete probability
distribution. We have prepared abundant inequalities concerning finite sequences of
positive real numbers. The exceptional cases of these inequalities are definitely
advantageous especially, in connection with innumerable measures of entropies and

inaccuracy surviving in the literature of information theory.

Keywords: Entropy, Inaccuracy, Probability distribution, Concavity, Divergence model,

Monte-Carlo simulation, Shannon’s lemma, Increasing function.

1. Introduction

The well-accredited and prominent truthfulness about the Coding theory delivers the exploration of
combination of codes through discrete probabilistic entropic models and makes dialogues in the
direction of demonstrations in predictable disciplines. Shannon [33] well-thought-out the conjectural
background upon bestowing the decisive establishment of entropy involved with the disconnected
probability spaces. The predominantly well-acknowledged observation of probabilistic entropy
planned by Shannon [33] amplified the literature of coding theory with the expedition of abundant
entropic models. This entrenched progression prearranged the stone of discrete entropic model with

agreeable properties.
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It has been observed that in an experimentation dealing with the proclamation about probabilities of
dissimilar events, two varieties of errors are plausible, explicitly one because of the nonappearance
of adequate data or indistinctness in test results and other from erroneous data. Shannon’s [33]
entropic model can be second-handed to enlighten the error because of ambiguity only whereas the
both types of errors can be explained by using a measure identified as measure of inaccuracy which
ascertains applications in statistical inference and a concept anticipated by Kerridge [14].

n
We have the understanding that Fn:{(pl, Poseees Pr) - P zo;izl,...,n;z P; :1} represent the
i=1

assemblage of all disconnected possibility distributions with nonnegative elements and full support

on a set with cardinality nand T"= Urn . A possibility distribution p; € ', which is not degenerate
n=1

is believed to be a nondegenerate probability distribution. In numerous circumstances, one has to

deliver transactions with discrete probability distributions in which each element is a positive real

number. Consequently, we prerequisite the subsequent sets:

n
r, ={(p1, Povens Pa) i P >0 =115 ) py =1}.

For any probability distribution p; € I',,, we indicate below some existing discrete entropic models:

The Shannon [33] entropy:

H(P)=->_p;log, p; (1.1)

i=1

The Renyi [30] entropy:

H,(P)=(-a)" |092£Zn: p.“] a>0, a#l (1.2)

i=1

The Havrda-Charvat [8] entropy:
n

H“(P):(l—zl‘“)‘l[l—z pf’],a>0,a¢1 (1.3)
i=1

To make available the augmentation in the collected works of discrete entropic models, Parkash and
Kakkar [23, 24] structured the investigations of abundant entropic models for the discrete probability
spaces from demonstration point of observation and consequently enriched the texts of entropy
models by the development of the succeeding manifestations of quantitative entropic models:

i piﬂlogD Pi -1
=1

BS(P):‘ , f>1

1-p (1.4)
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ﬂgpilnpi_
Sﬂ(P)ZT' ,B>1 (15)
2
Sg(p):a—_, a>1 0<b<1
1-a (1.6)

There survives an enormous assemblage of entropic models but still expectedness ascends to
communicate amplification in their text. Furthermore, there happens to be perceptible astonishingly
strong connotation networking entropy and Chi-square distribution. To undertake this target,
Parkash, Sharma and Singh [28] sketched a new ground-breaking discrete entropic model by the
subsequent appearance:

p-aiT

By providing work for the newly created model (1.7), the authors enhanced the application area of
maximum entropy principle subsequent to the knowledge of contingency tables. Recently, Parkash
and Kumar [25] investigated and twisted a new-fangled entropic model and reflected its solicitations
to abundant disciplines comprising probability theory and queueing theory. Additionally, the authors
reflected a wide-ranging study of their innovative discrete entropic model along with its
presentations to queueing theory.

Ha,ﬁ(P) |:1_ pi(ﬁfa)p':';aiﬂ,ﬂ—a>0 1.7)

Additionally, Huang and Zhang [11] conveyed an unanticipated clarification with orientation to
Shannon’s [33] mutual information and stressed that it has comprehensively been second-handed its
functioning computation. Furthermore, the authors carried out numerical replication and
acknowledged that their projected modus operandi were surprisingly wonderful with burgeoning
convenience to numerous realistic and hypothetical problems. This is supplementary additional that
the discrete entropy models discover marvelous applications in abundant many disciplines.
Lenormand et al. [15] delivered the presentations of entropy grounded models in urban atmosphere
and commented that describing and enumerating longitudinal inequalities through the urban
background remains an assorted and secretive task which has been accelerated by the cumulative
accessibility of enormous geolocated successions. The outcomes of their research results provided
illustration that the attractiveness of a specified locality measured by entropy is a domineering
descriptor of the socioeconomic position of the locality and can consequently be second-handed as a
demonstration for multifarious socioeconomic indicators.

Saraiva, P. [31] made accessible temporary and unstructured summary to Shannon’s [33] entropy
comprising of particular belongings and provided the solicitations of the model in two divergent
outlooks from what was in its commencement: biological diversity and a pioneering learning on
student migration. Manzoor et al. [17] delivered the solicitations of entropy model in the persuasion
of chemistry and mentioned that through the provocation of Shannon’s [33] entropy, the graph
entropies with topological indices have been fetching the information-theoretic magnitudes for
quantifying the operative information of chemical graphs and multifaceted structures. Elgawad et al
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[5] delivered the presentations of Shannon’s [33] entropy in the arena of statistics comprising of
order statistics and for some documented disseminations. Bulinski and Kozhevin [3] delivered the
presentations of entropy function to procure concerns which can be made practical to the feature
selection problems. Some additional pioneers who have publicized their concentration to study the
discrete entropic models are Parkash and Mukesh [26, 27], Yuan et al. [39], Sholehkerdar et al. [35],
Lu etal. [16], Gui et al. [7], Zhang and Shi [40], Hojjati et al. [10],Shwartz and LeCun [36],Stoyanov
et al. [37] etc.

This fundamental perception of inaccuracy has been explained subsequently:

Assume that an experimenter states that the probability of the i" outcome of the random
experiment is ¢, while the exact probability is p,. Then, taking some convinced postulates, Kerridge

[14] proved that the inaccuracy of the above declaration is given by the subsequent numerical
appearance:

1(P;Q) = —2 p; 109, g;. (1.8)
i

Ifg; =0, p; =0for some index i, then we adopt the convention 0log, 0:=0. On the other hand, if
q; =0 but p; >0 for some indexi, then—p; log, g; = +oo . Consequently, the right hand side of (1.8)
is no longer a nonnegative real number. The inaccuracy I(p;;q;) =0 iff p; =q; =1 for exactly one i,
sothat p;=q;=0 forall j, 1<i= j<n if such j’s exist. In order to ensure that the right hand
side of (1.8) is a nonnegative real number, one way is to consider only those p; €I',,, g, € T',, which
have the property that p, =0 whenever g, =0. For instance, consider (p, p,,..., Ps)el's and
(9;,95,.--.05) € I's where

1 4 2 1
P=c p, =0, p;=0, Pa=¢, ps =0 and % =3 % =0, 03 =0, =5 0=

Notice that, here, p; =0 whenever g; =0, i=2,3. Since g :%, ps =0, it follows that

2 0,0,= 1 l 1 OO ,0 | =+oowhereas | E,O,O,io;g
377665 5 5 '3

we consider the probability distributions p; €T, g, €[, then both I(p;;q) and I(q;;p;) are

OO%%) is a positive real number. If

nonnegative real numbers, not necessarily equal. However, if p; e ', butg; el":, thenl(p;;q;) is a
nonnegative real number but 1(q;; p;) may not be a nonnegative real number. However, if p; el“:,

q; € F; , then 1(p;; ;) is always a nonnegative real number and we write (1.8) as

1 (p;; ) = Zp. |092(qu (1.9)

i=1
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The inaccuracy model (1.8) reduces to Shannon’s [33] entropic model for P =Q, that is, p, =q,.
From Kerridge’s [14] innovative description of a measure of inaccuracy, three deep-seated properties
of an inaccuracy model are:

(1) 1(P:P) should be a measure of entropy of P
(i) 1(P:Q)=1(P:P) and equivalence insignia clutches only when P =Q
(iii) 1(P:Q)—1(P:P) should exemplify some divergence measure

Kerridge’s [14] measure of inaccuracy (1.8) can be viewed as a generalization of the thought of
entropy. It has broadly been employed as a practical and constructive instrument for the
measurement of error in experimental results and accordingly discovers applications in statistical
inference. Different authors have anticipated innovative inaccuracy models for the reason that their
applicability in statistics, coding theory and other associated fields are imminent. Some of these
models are:

z pla Ila
I.(P:Q) = 11I0g = ca#l a>0 (1.10)

“- > pe

i=1

which is Renyi’s [30] inaccuracy model.

L (P Q)=—Z P (@ -1, a#l a>0 (1.11)
o1

i=1
which is Havrda-Charvat’s [8] inaccuracy model.

I“'ﬁ(P:Q)— ﬂ Z pe(a " -1)- Z p (@ =) |, a=pB (1.12)

which represents Sharma and Taneja’s [34] inaccuracy model.

Furthermore, the subsequent well known practically functional inaccuracy models have been
developed by Kapur [12]:

n
z piﬂQiliﬂ Z e

i=1 =

épiﬁ Z::

IKl(P:Q):ﬁl log ,aél,ﬂzlorazl,/i'sl (1.13)

lo(P:Q) = Z o In i 1Z(Q.+«':1|0.)Iln fa/q Z p; log p,
' =t (1.14)

Ezn: 1+ap;) In(1+ api)—g(1+a) log (1+a)

Q)
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Sathar et al. [32] made investigations about the past inaccuracy model and consequently
recommended nonparametric estimators for these models. The authors made rigorous study of the
asymptotic properties of these estimators under convinced appropriate and reliability conditions.
Additionally, the authors made comparisons for the performance of the projected estimators by
employing Monte-Carlo simulation technique.

Different instigators anticipated new-fangled inaccuracy models for the reasons that of their
applicability in statistics, coding theory and supplementary associated fields. Some pioneers who
have made efforts for the characterizations and applications of inaccuracy models are Parkash and
Taneja [29], Kapur [13], Molloy and Ford [18], Thapliyal and Taneja [38], Eskandarzadeh et al. [6],
da Costa Bueno and Balakrishnan [4] etc.

2. Development of Inequalities Via Discrete Entropy and Inaccuracy Models

In this segment, we prerequisite some knowledge about real-valued concave functions demarcated on
numerous intervals inR.

Definition 2.1. A functiong:]a,b[— R, is supposed to be a twice differentiable concave function if
it is twice differentiable in Ja,b[ and

@"(x)<0 forall xe]a,b[. (2.1)

Lemma 2.2. If a function ¢:]a,b[— R is twice differentiable in]a,b[ and ¢"(x) <0 forall x e]a,b[
, then the subsequent inequality holds:

gp(imijz Zn:z1¢(ti) forall t, eJa,b[, and all (4, 4y,...A) e, n=2,3,.... (2.2)
i=1 i=1

Definition 2.3. A functiong:]Ja,b[— R, is supposed to be a twice differentiable strictly concave
function if it is twice differentiable in ]Ja,b[ and

¢"(x) <0 forall xe]a,b[. (2.3)

Lemma 2.4. If a function ¢:]a,b[—> R is twice differentiable inJa,b[ and ¢"(x)<0 for all
x €]a,b[, then for all t; e]a,b[,and all (4, 4,,....4,) eT",, the succeeding inequality holds:

(/{Zn:ﬂitiJ>zn:/ligo(ti) unlesst, =t, =...=t,. (2.4)
i=L i=1

Lemma 2.5. If a real-valued function ¢ is demarcated on [a,b], acR, beR, a<b; and is (i)
twice differentiable in Ja,b[ (ii) ¢"(x) <0 for all x]a,b[ (iii) continuous from the right at a and
from the left at b ; then (2.2) holds for all t; €[a,b], and all (4, 4,,....4,) €T, .

The inequality (2.2) is acknowledged as the Jensen inequality for real-valued twice differentiable
concave functions with domain]a,b[.

For definitions 2.1, 2.3 and Lemmas 2.2, 2.4 and 2.5, see Aczel and Daroczy [1]; Hardy, Littlewood
and Polya [9].
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The real-valued functionx— log, x, x>0, is a twice differentiable strictly concave function
demarcated on ]0,0[={x e R:0< x <oo}.

In the forthcoming subsections of the paper, unless otherwise revealed, we shall soppose that
Xy X9 s Xy Y11 Youees Yy &, 89,8, @nd by, b,..., b, are positive real numbers.

Result 2.6 ([22], p. 88).

With the above declared assumptions, the subsequent inequality grips:

n Zn: %i n
(z xillog2 1< Iogz(éj (2.5)
i1 B i
ém

for all integers n>1. If n=1, then (2.5) holds only as an equality.

In the sequel, we have presented innumerable inequalities originating through discrete inaccuracy
measures.

Theorem 2.7. With the above declared assumptions and n>1 a specified integer, the succeeding
inequality is permanently accurate:

n n
D % log, y; D %Y,

L <log,| = (2.6)

2% ;Xi

i=1

Ifn=1, then (2.6) holds as an equality. If n>2, then the sign of equality in (2.6) holds only for the
equivalence of ;.

Proof. If n=1, then the sign of equality holds in (2.6) as each side of it equals log, y,. Now
suppose n=>2. Then by the inequality (2.5), we acquire the subsequent communication:

n

n in n
(injlogz =<3 x log, 2. (2.7)

i-1 Z Y i=1 X Yi
i—1

which, upon simplification, contributes with the subsequent manifestation:

n n 1
D% R Iogzy

log, | =— <=L ! (2.8)

n

iZ:,XiYi in

i=1
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from which (2.6) follows immediately. The emblem of equivalence in (2.7) clutches only for the
equivalence of y; . Consequently, the sign of equality in (2.6) holds only for the equivalence of ;.

n
The inequality (2.6) remains effective if x; and y; are nonnegative real numbers such thatz X; >0,
i=1

n

Zyi >0; and x; =0 for all those indices i for which y; =0 (if any). The reason is that for such
i=1
indicesi, xy; =0 and x; log, y; =0log, 0:=0 and, thus, both sides of the inequality (2.6) remain
unchanged.

n
The inequality (2.6) remains valid if x; and y; are nonnegative real numbers such thathi >0.In
i=1
this case, in addition to the assumptions mentioned in the above paragraph, one needs to assume
0 if x=0
X(—OO) =
-0 if x>0.

Now, we point out the usefulness of (2.6) in information theory.

Remarks. We assume that at least two elements among y; are unequal.

(i) Ify; = xl x; >0, n>2an integer, then (2.6) provides the subsequent appearance:
i

)

<log,

anxi iZ:llXi

i=1

(2.9)

Note that the left hand side of the inequality (2.9) may not be a nonnegative real number.

(i) If y; =%, n>2an integer, then (2.6) reduces to the succeeding inequality:

Zn: X; log, X; i Xi2
i—1

<log, | = (2.10)

anxi i%:xi

i=1

In particular, ifx; = p;, such that piel“;, then equations (2.10), (1.1) and (1.2) provide the
subsequent manifestation:

H.(P)>H,(P) (2.11)
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where H, (P) denotes the Renyi’s [30] entropy of order 2, H,(P) the Shannon’s [33] entropy and
(2.11) holds except for the equivalence of p; .

Definition 2.8. A real number k' is said to be conjugate to a real numberk, k=0, k=1 if

—+—=1.

k k'

Result 2.9 (Holder’s inequality [9]). Suppose a real number k’ is conjugate to a real number k,
k =0, k=1. With the above declared assumptions and forn> 2 integers, the succeeding inequalities
are permanently accurate:

[+

'

1
zn:aiq <(Zn:aikjk (Zbik'} (k >1) (2.12)
i=1

i=1 i=1

=

i=1 i=1

1 1
Zn:aib. >[Zn:aikjk [Zb.k'Jk (k <1) (2.13)
i=1

a a a
except when 2 =—2=_ ="
b2 bn

Theorem 3.0. Leta >0, a=1 be a given real constant. With the above declared assumptions and
for n>2 an integer, the following conclusions hold:

() If a>1, then the successive dissimilarities are perpetually correct:
n 1 n 1 n n

(in yi J{Z yix j{ZXf"j{Z yi‘"] (2.14)
i=1 i=1 i=1 i=1

. Xi
except for the equivalence of —.
i

(I If 0<a <1, then the succeeding inequalities are forever accurate:
n 1 n 1 n n

[inyf’" J(Z yix( J{ZXF‘}(Z y{ j (2.15)
i=1 i=1 i=1 i=1

. Xi
except for the equivalence of — ..
i

Proof. Let o >1. By Result 2.9, we acquire the succeeding communication:
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1 a-1
o e Sx [ [Sx ]’
i=1 i=1 i=1

(2.16)

a-1

(i) iZ:,inial < (.Z:‘ ye ji [izil:xia Ja

except for the equivalence ofﬁ. The inequality (2.14) follows from (2.16) (i) and (ii).

Now, consider the case when 0 <« <1. In this case, o« —1<0. Now, by Result (2.9)

N}
iR

s

1
() Yy >[ix? J (Z %
i=1 i=1 i=l (2.17)

R
iR

*|

(i) iyixf’%[iy?]i(ix?

i=1 i=1 i=1

except for the equivalence ofﬁ. The inequality (2.15) follows from (2.17) (i) and (ii).

Lemma 3.1. Let & >0, a=1 be a given real constant. With the above acknowledged conventions
and for n>2, if

PRI R (2.18)

then the following conclusions hold good:

() If & >1, then the subsequent inequalities are forever correct:

n n
PRI DI (2.19)
i=1 i=1
(I If 0<a <1, then the succeeding inequalities are persistently accurate:

n n
Dxyrt > K (2.20)
i=1 i=1

Proof. If & >1, then (2.19) follows from (2.16) (i) and (2.18). If0 <« <1, then (2.20)
follows from (2.17) (i) and (2.18) by means of the fact that x —1<0.

If (2.18) is replaced by the subsequent inequality

n n

DX <Y (2.21)
]

i=1 i
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and >0, a=1 is a real constant, then with the above acknowledged conventions and for n>2,
the succeeding inequalities are determinedly truthful:

Zx yrt< Zy, if &>1 and (2.22)
i=1

n n

Dy TS if 0<a <1 (2.23)

i1 i1

The inequality (2.22) follows from (2.16) (i) and (2.21) in the case when o >1. If0 < <1, then by
Result 2.9, we acquire the subsequent inequation:

1 a-1
n n af N o
S (86)°
i=1 i=1 i=1
The inequality (2.23) follows from (2.21) and (2.24).

Consider n=2,a=2 andx,=2,%x,=3;y,=3y,=2. Then x+x3=13=y7+y5 and
y;X + Yo%, =12. Accordingly, we comprehend that, in common, (2.23) does not hold when o >1.
Now consider the subsequent equation

n n
DK T=DN (2.25)
i=1 i=1

Obviously, (2.25) holds if x; = y;. Here, too, let us taken=2,0=2; x,=4,%x,=6; y; =1y, =8.
Then y,x + Y% =52 =x7 +x3. Consequently, (2.25) holds but x, =vy;, X,#Y,. This example
provides demonstrations that when o >1, (2.25) may be true without being x; = y;.

Letp; € F;, a; el“;, n>1 an integer. Nath [19, 20, 21] defined the subsequent inaccuracy of

ordera, >0, a#1 as
n

1,(P;Q)=(-a) 'log, (Z piqf“lJ (2.26)
i=1

Obviously, 1,(P;P)=H_(P), the Renyi’s [30] entropy of order &, >0, a=1. In this common

sense, the inaccuracy of ordera,o >0, a=1, demarcated by (2.26), is a generalization of the
Renyi’s [30] entropy of order o, >0, a#1.

Alsollml L(P:q) = ZpI log, g, =1(P;Q) (2.27)

i=1

Thus, the inaccuracy I (P;Q), demarcated by Kerridge [14], may be regarded as the inaccuracy of
order 1 and henceforward, 1(P; Q) may be written as 1,(P; Q) depending upon the condition.
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Let n>1 be an integer, then from equations (1.1), (1.9) and Shannon’s [2] Lemma, the subsequent
inequality holds good:

11(P;Q) = Hy(P) (2.28)

The sign of equality, in (2.28), holds good if n=1. If n>2, then the sign of equivalence in (2.28)

holds iff p, =q; Vi. Also, H,(p)>0 for all (p,P,,...P,) €l whenevern>2. Hence (2.28)
provides the subsequent manifestation:

1,(P;Q) >0 (2.29)

for all distributions p;, €T, q; €', whenever n>2. Also, with n>2

n
> pgt = Z( P jq, <1 or >laccordingas a>1lor 0<a<1.

i=1
Henceforth, we acquire
l,(P;Q)>0 (2.30)
forall p; €T, g; €T, whenever n>2. Notice that 1, (1;1)=0.
Corresponding to (2.28), let us examine the succeeding inequality
I,(P;Q)=H_(P) when >0, o #1. (2.31)

The insignia of egalitarianism holds good in equation (2.31) when n=1. If n>2, then the insignia
of egalitarianism in (2.31) holds iff p; =q; .

Now, consider the subsequent example:

Example 3.2. Take n=2, pl—1 P, = qlzl,qZ:% and «=3. Then Hs(%éjﬂ bit

1.
2’
whereas | (1 1.1 3)— Iog( j ( j
315537 | = 510092
2'2'3'4) 2

Accordingly, equation (2.31) does not hold for n=2 and «=3. On the other hand,

Hg(l 1) —2log,(0.7071) and I, 1113

=,=;=,— |=-2log, 0.6830.
55 2( j 9,

2'2°4°4

2

Consequently, equation (2.31) holds for n=2 and azg as |

However, Hz(%éjzb(%é?% j 1 bit.

Now, let us choose k=, >0, a=1and a = p,, b, =q**, such that p, e[, g €, n>2 an

N w
N~
N~
Wl
~lw
~—
V
T
| w
TN
N~
N |~
~

J>Ioo

integer. Then (2.16) (i) and (2.17) (i) condense respectively to the successive inequalities:
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a-1

1 a1
2 pa <(Z pi“]a (Zqi‘"J @
i=1

i=1 i=1

a-1

1 a
2 pa >{Z p{’ja [qu’] " 0<a<y
i=1 i=1 i=1

(2.32)

(2.33)

which hold unless p; = g;. From equations (2.32), (2.33), (2.26) and (1.2), it follows that

H,(P)<al,(P:Q+(1-a)H,(Q),a>0 a=1

unless p; = ;..

Similarly,

H,(Q<al,(QP)+(Q-a)H,(P),a>0, a=1

unless p; = q;..

From equations (2.34) and (2.35), we obtain the succeeding inequality [22]:

H,(P)+H,(Q) <1,(P;Q)+1,(Q;P)

(2.34)

(2.35)

(2.36)

valid for all & >0, a#1. Accordingly, we have evidenced the obligatory consequence.

Theorem 3.3. Let >0, a=1 be a prearranged real constant; and p, eI, g €l’,, n>2 an

integer. Then (2.36) holds for all >0, a=1unless p; =g;.

Now suppose that for o >0, a#1,
Ia(P;Q)Z Ha(P)

Holds for n>2an integer. Then

n n
>pgt =Y pf
i=1 i=1

(2.37)

(2.38)

Obviously, (2.38) holds good if p;=q;. On the additional hand, if we take n=2,a=2,

1 1

pp==,p, = E,q1 :%,q2 :%,then we acquire the succeeding manifestation:

2

2
> pg ™t =pf+pl.

i=1

Accordingly (2.38) holds, whenn=2, but p, # 0, and p, # 0, . Here

2 2 10 1 o, o
+05=—>==p’+p2.
0 +0 6 2 Py + Py
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Let us pick outx, = p;,y; =q;, i =1,...,n and n>2 an integer such that p, e T, ¢; e T,,. Let & >0,
n n

a =1, be a prearranged real constant. If g7 <> p{*,
i=1 i=1

then making practice of Lemma 3.1, it monitors that

l,(P;Q)>H,(P).

n n

If the probability distributions p; T, o; T, are such that > pf* <> a7 ; a>0, a=1 being a
i =

specified real constant, then making practice of (2.21), (2.22), (2.23), (1.2) and (2.26), it follows that

I,P;Q)>H, Q) if a>1
and
1,(Q;P)>H, (P) if 0<a<1.

Proposition 3.4. Letaa >0, a =1 be a specified real constant and with the above acknowledged
conventions and also for n>1, the subsequent inequality always hold good:

n

n n in
> %y log, yi* < (Z X yf“ljlogz N (2.39)
i=1

=1 Z X Vi -
i-1

If n=1, then (2.39) holds as an equality. If n>2, then the sign of equality in (2.39) holds only for
the equivalence in ;.

Proof. If n=1, then the insignia of egalitarianism clutches in (2.39) as both the sides of it reduce to
(1—0:)x1y1‘"1 log, y;. Now consider n>2. In this situation, by (2.5), we acquire the succeeding
manifestation in the form of an inequality:

n

n ZXI n
[injmgz nl; sti Iogz%which, upon simplification, gives (2.39) with the
i=1 Z X, yia—l i= iYi

i=1

insignia of equivalence only for the uniformity in vy; .

Next, we deliberate the significance of Proposition 3.4 in the field of information theory.

We demonstrate that the inaccuracy model I, (P; Q) is a nonincreasing function of &, >0, a=1.
Indeed, we have
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n

n

| . S pa’™ > pgttlog, gt

i l,(P;Q) = log, 1= +1=L (2.40)
o 1

2 n
d-a) Z B Z piqia_l
i i=1

If, in equation (2.39) we takex, = p;, y; =¢;, such thatp, e, g; €T, then the term within
brackets on the right hand side of (2.40) is a nonpositive real number.

Consequently, a4 I, (P;Q)<0.
da
Hence, 1, (P;Q) is a nonincreasing function of « .

Now suppose that ¢; € F; has at least two unequal elements. Then, the term within brackets on the

right hand side of (2.40) is a negative real number. Hence, dd_a I, (P;Q)<0.

Accordingly, 1,,(P;Q) is a strictly decreasing function of a, >0, a=1. In this case, we
demonstrate that the succeeding inequalities grip:

1,(P;Q)<1,(P;Q) if 0<ar<1 (2.41)
and
I,(P;Q)< 1,(P;Q) if a>1. (2.42)

Let >0, >0, a=1, f=1. Without any forfeiture of simplification, we may undertake that
a < f.Then

1,(P:Q) < 1,(P:Q) (2.43)
Next, we distribute the above conversation into three circumstances:

Casel. O<a< f<l.

Letting # — 1 in (2.43), equation (2.41) follows.

Case2. O<a<l<p.

Letting B —1" in (2.43), equation (2.41) follows.

Case3d. l<a< pf.

Letting @ — 1" in (2.43) and writing « in place of 3, equation (2.42) follows.

Both the measures I,(P;Q) and 1,(P;Q), a>0, a=1, are additive. Nath [21] furthermore
recommended the the not-additive inaccuracy model specified by the consequent manifestation:
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1“(P;Q) = (1-2")" [1—i piqf‘*] (244)
i=1

where o >0, a#1 and n>1 an integer. It is informal to authenticate that

IimlI“(P;Q) = z pi log, [ij =1,(P;Q).
a—. i=1 .

Consequently, the additive inaccuracy 1,(P;Q) is a limiting case of the inaccuracy 1 (P;Q) of order
a >0, a=1which is not additive.

For a prearranged real constant « >0, describe the function g:R — R as

Q-2 -209%) if ¢ >0,a#1

9, (X) = (2.45)
X if a=1.

Then

9,1, P:Q1=1“(P;Q), >0, a=1 (2.46)

Thus, maximum number of properties of 1“(P;Q) may be consequential from those of I, (P;Q) by
exhausting the functiong,, .

The inaccuracy model 1 (P;Q) is, certainly a generalization of the entropy model H* (P), « >0,
a #1, demarcated by (1.3).

3. Concluding remarks: Inequalities in information theory participate with an important
accountability for the management of plentiful looked-for outcomes. These mathematical
expressions provide assistance to researchers and specialists to quantify the boundaries of
communication systems, coding structures, and information dispensation protocols. By instituting
these constraints, inequalities monitor the project and optimization of communication arrangements,
confirming effective and dependable information transfer. The investigation of inequalities facilitates
the documentation of optimal coding approaches that maximize the rate of information relocation
while minimizing the likelihood of errors. In turn, this has insightful consequences for the project of
robust and protected communication arrangements in countless presentations, stretching from
telecommunications to data packing. All these inequalities, the propositions and the definitions
mentioned and demonstrated in the paper are worthwhile in the areana of information theory. All
those inequalities which are effective for positive real numbers should be reflected as advantageous
from theoretical point of understanding. Such inequalities can be demonstrated by employing
additional discrete entropic and inaccuracy models.
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