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Abstract:  

The philosophy of inequalities has profundity been established for explaining numerous 

optimizational problems encountered in mathematical sciences. The contemporary 

develpments in computational mathematics have made it conceivable to compute 

enormous entities articulated in expressions of inequalities. Inequalities in information 

theory have been determined by the aspiration to elucidate communication theoretic 

problems. To disentangle such problems, the algebra of information was established and 

chain rules for entropy and mutual information were framed. The field of information 

theory participates with a critical protagonist in accepting and enumerating the 

communication of information in innumerable systems. Inequalities in information theory 

have appeared as influential implements to investigate and illustrate the restrictions and 

opportunities in information dispensation. The contemporary communiqué is an accurate 

step in the construction of information inequalities for the discrete probability 

distribution. We have prepared abundant inequalities concerning finite sequences of 

positive real numbers. The exceptional cases of these inequalities are definitely 

advantageous especially, in connection with innumerable measures of entropies and 

inaccuracy surviving in the literature of information theory. 

Keywords: Entropy, Inaccuracy, Probability distribution, Concavity, Divergence model, 

Monte-Carlo simulation, Shannon’s lemma, Increasing function. 

 

1. Introduction 

The well-accredited and prominent truthfulness about the Coding theory delivers the exploration of 

combination of codes through discrete probabilistic entropic models and makes dialogues in the 

direction of demonstrations in predictable disciplines. Shannon [33] well-thought-out the conjectural 

background upon bestowing the decisive establishment of entropy involved with the disconnected 

probability spaces. The predominantly well-acknowledged observation of probabilistic entropy 

planned by Shannon [33] amplified the literature of coding theory with the expedition of abundant 

entropic models. This entrenched progression prearranged the stone of discrete entropic model with 

agreeable properties.  
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It has been observed that in an experimentation dealing with the proclamation about probabilities of 

dissimilar events, two varieties of errors are plausible, explicitly one because of the nonappearance 

of adequate data or indistinctness in test results and other from erroneous data. Shannon’s [33] 

entropic model can be second-handed to enlighten the error because of ambiguity only whereas the 

both types of errors can be explained by using a measure identified as measure of inaccuracy which 

ascertains applications in statistical inference and a concept anticipated by Kerridge [14].   

We have the understanding that 1 2

1

( , ,..., ) : 0; 1,..., ; 1
n

n n i i

i

p p p p i n p
=

 
 =  = = 

 
  represent the 

assemblage of all disconnected possibility distributions with nonnegative elements and full support 

on a set with cardinality n and 
1

n

n



=

 =  . A possibility distribution i np   which is not degenerate 

is believed to be a nondegenerate probability distribution. In numerous circumstances, one has to 

deliver transactions with discrete probability distributions in which each element is a positive real 

number. Consequently, we prerequisite the subsequent sets:  

*
1 2

1

( , ,..., ) : 0; 1,..., ; 1
n

n n i i

i

p p p p i n p
=

 
 =  = = 

 
 . 

For any probability distribution i np  , we indicate below some existing discrete entropic models:  

The Shannon [33] entropy: 

2

1

(P) log
n

i i

i

H p p
=

= −                                                                                                           (1.1) 

The Renyi [30] entropy: 

1
2

1

(P) (1 ) log
n

i

i

H p  −

=

 
= −  

 
 , 0  , 1                                                                      (1.2) 

The Havrda-Charvat [8] entropy: 

1 1

1

(P) (1 2 ) 1
n

i

i

H p  − −

=

 
= − − 

 
 , 0  , 1                                                                      (1.3) 

To make available the augmentation in the collected works of discrete entropic models, Parkash and 

Kakkar [23, 24] structured the investigations of abundant entropic models for the discrete probability 

spaces from demonstration point of observation and consequently enriched the texts of entropy 

models by the development of the succeeding manifestations of quantitative entropic models: 
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1
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a
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S p a b

a

=

 
 
 −  
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−
=   

−                                                                               (1.6) 

There survives an enormous assemblage of entropic models but still expectedness ascends to 

communicate amplification in their text. Furthermore, there happens to be perceptible astonishingly 

strong connotation networking entropy and Chi-square distribution. To undertake this target, 

Parkash, Sharma and Singh [28] sketched a new ground-breaking discrete entropic model by the 

subsequent appearance: 

( ) ( )

,

1

1
1 ; , 0i

n
p

i

i

H P p
 

     
 

−

=

 = −  −  −
                                                             (1.7) 

By providing work for the newly created model (1.7), the authors enhanced the application area of 

maximum entropy principle subsequent to the knowledge of contingency tables. Recently, Parkash 

and Kumar [25] investigated and twisted a new-fangled entropic model and reflected its solicitations 

to abundant disciplines comprising probability theory and queueing theory. Additionally, the authors 

reflected a wide-ranging study of their innovative discrete entropic model along with its 

presentations to queueing theory. 

Additionally, Huang and Zhang [11] conveyed an unanticipated clarification with orientation to 

Shannon’s [33] mutual information and stressed that it has comprehensively been second-handed its 

functioning computation. Furthermore, the authors carried out numerical replication and 

acknowledged that their projected modus operandi were surprisingly wonderful with burgeoning 

convenience to numerous realistic and hypothetical problems. This is supplementary additional that 

the discrete entropy models discover marvelous applications in abundant many disciplines. 

Lenormand et al. [15] delivered the presentations of entropy grounded models in urban atmosphere 

and commented that describing and enumerating longitudinal inequalities through the urban 

background remains an assorted and secretive task which has been accelerated by the cumulative 

accessibility of enormous geolocated successions. The outcomes of their research results provided 

illustration that the attractiveness of a specified locality measured by entropy is a domineering 

descriptor of the socioeconomic position of the locality and can consequently be second-handed as a 

demonstration for multifarious socioeconomic indicators. 

Saraiva, P. [31] made accessible temporary and unstructured summary to Shannon’s [33] entropy 

comprising of particular belongings and provided the solicitations of the model in two divergent 

outlooks from what was in its commencement: biological diversity and a pioneering learning on 

student migration. Manzoor et al. [17] delivered the solicitations of entropy model in the persuasion 

of chemistry and mentioned that through the provocation of Shannon’s [33] entropy, the graph 

entropies with topological indices have been fetching the information-theoretic magnitudes for 

quantifying the operative information of chemical graphs and multifaceted structures. Elgawad et al 
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[5] delivered the presentations of Shannon’s [33] entropy in the arena of statistics comprising of 

order statistics and for some documented disseminations. Bulinski and Kozhevin [3] delivered the 

presentations of entropy function to procure concerns which can be made practical to the feature 

selection problems. Some additional pioneers who have publicized their concentration to study the 

discrete entropic models are Parkash and Mukesh [26, 27], Yuan et al. [39], Sholehkerdar et al. [35], 

Lu et al. [16], Gui et al. [7], Zhang and Shi [40], Hojjati et al. [10],Shwartz and LeCun [36],Stoyanov 

et al. [37] etc. 

This fundamental perception of inaccuracy has been explained subsequently:      

    Assume that an experimenter states that the probability of the 
thi outcome of the random 

experiment is iq  while the exact probability is ip . Then, taking some convinced postulates, Kerridge 

[14] proved that the inaccuracy of the above declaration is given by the subsequent numerical 

appearance: 

2

1

(P;Q) log .
n

i i

i

I p q
=

= −                                                                                                        (1.8) 

If 0iq = , 0ip = for some index i , then we adopt the convention 20log 0 : 0= . On the other hand, if 

0iq =  but 0ip   for some index i , then 2logi ip q− = + . Consequently, the right hand side of (1.8) 

is no longer a nonnegative real number. The inaccuracy ( ; ) 0i iI p q =  iff 1i ip q= =  for exactly one i , 

so that 0j jp q= =  for all j , 1 i j n    if such j ’s exist. In order to ensure that the right hand 

side of (1.8) is a nonnegative real number, one way is to consider only those i np  , i nq   which 

have the property that 0ip =  whenever 0iq = . For instance, consider 1 2 5 5( , ,..., )p p p 
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1 2 5 5( , ,..., )q q q   where  
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1
, 0
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 is a positive real number. If 

we consider the probability distributions
*

i np  , 
*

i nq  , then both ( ; )i iI p q  and ( ; )i iI q p  are 

nonnegative real numbers, not necessarily equal. However, if i np   but
*

i nq  , then ( ; )i iI p q  is a 

nonnegative real number but ( ; )i iI q p may not be a nonnegative real number. However, if
*

i np  ,

*
i nq  , then ( ; )i iI p q is always a nonnegative real number and we write (1.8) as 

2

1

1
( ; ) log

n

i i i
ii

I p q p
q=

 
=  

 
 .                                                                                                  (1.9) 
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The inaccuracy model (1.8) reduces to Shannon’s [33] entropic model for P Q= , that is, .i ip q=  

From Kerridge’s [14] innovative description of a measure of inaccuracy, three deep-seated properties 

of an inaccuracy model are: 

(i) ( : )I P P  should be a measure of entropy of P  

(ii) ( )( : ) :I P Q I P P  and equivalence insignia clutches only when P Q=  

(iii) ( )( : ) :I P Q I P P−  should exemplify some divergence measure 

Kerridge’s [14] measure of inaccuracy (1.8) can be viewed as a generalization of the thought of 

entropy. It has broadly been employed as a practical and constructive instrument for the 

measurement of error in experimental results and accordingly discovers applications in statistical 

inference. Different authors have anticipated innovative inaccuracy models for the reason that their 

applicability in statistics, coding theory and other associated fields are imminent. Some of these 

models are: 

1

1

1

1
( : ) log , 1, 0

1

n

i i

i

R n

i

i

p q

I P Q

p

 



 


−

=

=
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−




                                                         (1.10) 

which is  Renyi’s [30] inaccuracy model.  

1

1

1
( : ) ( 1), 1, 0

1

n

HC i i

i

I P Q p q   


−

=

= −  
−
                                                          (1.11) 

which is  Havrda-Charvat’s [8] inaccuracy model.  

, 1 1

1 1

1
( : ) ( 1) ( 1) ,

n n

i i i i

i i

I P Q p q p q       
 

− −

= =

 
= − − −  

−  
                                   (1.12) 

which represents Sharma and Taneja’s [34] inaccuracy model. 

Furthermore, the subsequent well known practically functional inaccuracy models have been 

developed by Kapur [12]: 

1
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Sathar et al. [32] made investigations about the past inaccuracy model and consequently 

recommended nonparametric estimators for these models. The authors made rigorous study of the 

asymptotic properties of these estimators under convinced appropriate and reliability conditions. 

Additionally, the authors made comparisons for the performance of the projected estimators by 

employing Monte-Carlo simulation technique.  

     Different instigators anticipated new-fangled inaccuracy models for the reasons that of their 

applicability in statistics, coding theory and supplementary associated fields. Some pioneers who 

have made efforts for the characterizations and applications of inaccuracy models are Parkash and 

Taneja [29], Kapur [13], Molloy and Ford [18], Thapliyal and Taneja [38], Eskandarzadeh et al. [6], 

da Costa Bueno and Balakrishnan [4] etc. 

2. Development of Inequalities Via Discrete Entropy and Inaccuracy Models 

In this segment, we prerequisite some knowledge about real-valued concave functions demarcated on 

numerous intervals in R . 

Definition 2.1. A function :] , [a b R → , is supposed to be a twice differentiable concave function if 

it is twice differentiable in ] , [a b  and  

( ) 0x   for all ] , [x a b .                                                                                                   (2.1) 

Lemma 2.2. If a function :] , [a b R →  is twice differentiable in ] , [a b  and ( ) 0x   for all ] , [x a b

, then the subsequent inequality holds:  

1 1

( )
n n

i i i i

i i

t t  
= =

 
 

 
   for all ] , [it a b , and all 1 2( , ,..., )n n    , 2,3,...n = .              (2.2) 

Definition 2.3. A function :] , [a b R → , is supposed to be a twice differentiable strictly concave 

function if it is twice differentiable in ] , [a b  and 

( ) 0x   for all ] , [x a b .                                                                                                   (2.3) 

Lemma 2.4. If a function :] , [a b R →  is twice differentiable in ] , [a b  and ( ) 0x   for all 

] , [x a b , then for all ] , [it a b ,and all 1 2( , ,..., )n n    ,  the succeeding inequality holds: 

1 1

( )
n n

i i i i

i i

t t  
= =

 
 

 
   unless 1 2 ... nt t t= = = .                                                                     (2.4) 

Lemma 2.5. If a real-valued function   is demarcated on [ , ]a b , a R , b R , a b ; and is (i) 

twice differentiable in ] , [a b  (ii) ( ) 0x   for all ] , [x a b  (iii) continuous from the right at a and 

from the left at b ; then (2.2) holds for all [ , ]it a b , and all 1 2( , ,..., )n n    . 

The inequality (2.2) is acknowledged as the Jensen inequality for real-valued twice differentiable 

concave functions with domain ] , [a b . 

For definitions 2.1, 2.3 and Lemmas 2.2, 2.4 and 2.5, see Aczel and Daroczy [1]; Hardy, Littlewood 

and Polya [9]. 

https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=745314
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=42995
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=193047
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The real-valued function 2logx x , 0x  , is a twice differentiable strictly concave function 

demarcated on ]0, [ { : 0 }x R x =     . 

In the forthcoming subsections of the paper, unless otherwise revealed, we shall soppose that

1 2, ,..., nx x x , 1 2, ,..., ny y y , 1 2, ,..., na a a  and 1 2, ..., nb b b  are positive real numbers.  

Result 2.6 ([22], p. 88).  

With the above declared assumptions, the subsequent inequality grips: 

1
2 2

1 1

1

log log

n

in n
i i

i in
ii i

i

i

x
x

x x
y

y

=

= =

=

 
 

            
 
 


 


                                                                                 (2.5) 

for all integers 1n . If 1n= , then (2.5) holds only as an equality.  

In the sequel, we have presented innumerable inequalities originating through discrete inaccuracy 

measures. 

Theorem 2.7. With the above declared assumptions and 1n  a specified integer, the succeeding 

inequality is permanently accurate: 

2

1 1
2

1 1

log

log

n n

i i i i

i i

n n

i i

i i

x y x y

x x

= =

= =

 
 
 
 
 
 

 

 
                                                                                              (2.6) 

If 1n= , then (2.6) holds as an equality. If 2n , then the sign of equality in (2.6) holds only for the 

equivalence of iy . 

Proof. If 1n= , then the sign of equality holds in (2.6) as each side of it equals 2 1log y . Now 

suppose 2n . Then by the inequality (2.5), we acquire the subsequent communication:  

1
2 2

1 1

1

log log

n

in n
i i

i in
i ii i

i i

i

x
x

x x
x y

x y

=

= =

=

 
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     
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 
 


 


.                                                                              (2.7) 

which, upon simplification, contributes with the subsequent manifestation: 

2

1 1
2

1 1

1
log

log

n n

i i
ii i

n n

i i i

i i

x x
y

x y x

= =

= =

 
 
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 
 
 

 

 
                                                                                              (2.8) 
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from which (2.6) follows immediately. The emblem of equivalence in (2.7) clutches only for the 

equivalence of iy . Consequently, the sign of equality in (2.6) holds only for the equivalence of iy . 

The inequality (2.6) remains effective if ix  and iy  are nonnegative real numbers such that
1

0
n

i

i

x
=

 , 

1

0
n

i

i

y
=

 ; and 0ix =  for all those indices i  for which 0iy =  (if any). The reason is that for such 

indices i , 0i ix y =  and 2 2log 0 log 0 : 0i ix y = =  and, thus, both sides of the inequality (2.6) remain 

unchanged. 

The inequality (2.6) remains valid if ix  and iy  are nonnegative real numbers such that
1

0
n

i

i

x
=

 . In 

this case, in addition to the assumptions mentioned in the above paragraph, one needs to assume 

0 if 0

( )

if 0.

x

x

x

=


− = 
− 

 

Now, we point out the usefulness of (2.6) in information theory. 

Remarks. We assume that at least two elements among iy are unequal. 

(i) If
1

i
i

y
x

= , 0ix  , 2n an integer, then (2.6) provides the subsequent appearance: 

2

1
2

1 1

1
log

log

n

i
ii

n n

i i

i i

x
x n

x x

=

= =

 
 
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 
 
 



 
                                                                                             (2.9) 

Note that the left hand side of the inequality (2.9) may not be a nonnegative real number. 

(ii) If i iy x= , 2n an integer, then (2.6) reduces to the succeeding inequality:  

2
2

1 1
2

1 1

log

log

n n

i i i

i i

n n

i i

i i

x x x

x x

= =

= =

 
 
 
 
 
 

 

 
                                                                                               (2.10) 

In particular, if i ix p= , such that
*

i np  , then equations (2.10), (1.1) and (1.2) provide the 

subsequent manifestation: 

1 2(P) (P)H H                                                                                                                    (2.11) 
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where 2 (P)H  denotes the Renyi’s [30] entropy of order 2, 1(P)H  the Shannon’s [33] entropy and 

(2.11) holds except for the equivalence of ip .  

Definition 2.8. A real number k  is said to be conjugate to a real number k ,  0k  , 1k   if 

1 1
1

k k
+ =


. 

Result 2.9 (Holder’s inequality [9]). Suppose a real number k  is conjugate to a real number k ,  

0k  , 1k  . With the above declared assumptions and for 2n  integers, the succeeding inequalities 

are permanently accurate: 

1 1

1 1 1

n n nk k
k k

i i i i

i i i

a b a b




= = =

   
    
   

     ( 1)k                                                                                  (2.12) 

1 1

1 1 1

n n nk k
k k

i i i i

i i i

a b a b




= = =

   
    
   

     ( 1)k                                                                                 (2.13) 

except when 1 2

1 2

... n

n

aa a

b b b
= = = . 

Theorem 3.0. Let 0  , 1   be a given real constant. With the above declared assumptions and 

for 2n  an integer, the following conclusions hold: 

(I) If 1  , then the successive dissimilarities are perpetually correct:  

1 1

1 1 1 1

n n n n

i i i i i i

i i i i

x y y x x y   − −

= = = =

     
     

     
                                                                          (2.14) 

except for the equivalence of i

i

x

y
.  

(II) If 0 1  , then the succeeding inequalities are forever accurate: 

1 1

1 1 1 1

n n n n

i i i i i i

i i i i

x y y x x y   − −

= = = =

     
     

     
                                                                          (2.15) 

except for the equivalence of i

i

x

y
.. 

Proof. Let 1  . By Result 2.9, we acquire the succeeding communication: 
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1 1

1

1 1 1

1 1

1

1 1 1

(i)

(ii)

n n n

i i i i

i i i

n n n

i i i i

i i i

x y x y

y x y x



 
  



 
  

−

−

= = =

−

−

= = =


    

     
    




   
    
    

  

  

                                                                          (2.16) 

except for the equivalence of i

i

x

y
. The inequality (2.14) follows from (2.16) (i) and (ii). 

Now, consider the case when 0 1  . In this case, 1 0 −  . Now, by Result (2.9) 

1 1

1

1 1 1

1 1

1

1 1 1

(i)

(ii)

n n n

i i i i

i i i

n n n

i i i i

i i i

x y x y

y x y x



 
  



 
  

−

−

= = =

−

−

= = =


    

     
    




   
    
    

  

  

                                                                          (2.17) 

except for the equivalence of i

i

x

y
. The inequality (2.15) follows from (2.17) (i) and (ii). 

Lemma 3.1. Let 0  , 1   be a given real constant. With the above acknowledged conventions 

and for 2n , if 

1 1

n n

i i

i i

y x 

= =

  ,                                                                                                                   (2.18) 

then the following conclusions hold good:  

(I) If 1  , then the subsequent inequalities are forever correct: 

1

1 1

n n

i i i

i i

x y x −

= =

                                                                                                                 (2.19) 

(II) If 0 1  , then the succeeding inequalities are persistently accurate: 

1

1 1

n n

i i i

i i

x y x −

= =

  .                                                                                                              (2.20) 

Proof. If 1  , then (2.19) follows from (2.16) (i) and (2.18). If 0 1  , then                     (2.20) 

follows from (2.17) (i) and (2.18) by means of the fact that 1 0 −  .            

If (2.18) is replaced by the subsequent inequality  

1 1

n n

i i

i i

x y 

= =

                                                                                                                      (2.21) 
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and 0  , 1   is a real constant, then with the above acknowledged conventions and for 2n , 

the succeeding inequalities are determinedly truthful: 

1

1 1

n n

i i i

i i

x y y −

= =

   if 1   and                                                                                          (2.22) 

1

1 1

n n

i i i

i i

y x x −

= =

   if 0 1  .                                                                                          (2.23) 

The inequality (2.22) follows from (2.16) (i) and (2.21) in the case when 1  . If 0 1  , then by 

Result 2.9, we acquire the subsequent inequation:  

1 1

1

1 1 1

n n n

i i i i

i i i

y x y x



 
  

−

−

= = =

   
    
   

   .                                                                                    (2.24) 

The inequality (2.23) follows from (2.21) and (2.24). 

Consider 2, 2n = =  and 1 22, 3x x= = ; 1 23, 2y y= = . Then 
2 2 2 2
1 2 1 213x x y y+ = = +  and 

1 1 2 2 12y x y x+ = . Accordingly, we comprehend that, in common, (2.23) does not hold when 1  . 

Now consider the subsequent equation 

1

1 1

n n

i i i

i i

y x x −

= =

=  .                                                                                                              (2.25) 

Obviously, (2.25) holds if i ix y= . Here, too, let us take 2, 2n = = ; 1 24, 6x x= = ; 1 21, 8y y= = . 

Then
2 2

1 1 2 2 1 252y x y x x x+ = = + . Consequently, (2.25) holds but 1 1x y , 2 2x y . This example 

provides demonstrations that when 1  , (2.25) may be true without being i ix y= . 

 Let
*

i np  , 
*

i nq  , 1n  an integer. Nath [19, 20, 21] defined the subsequent inaccuracy of 

order , 0  , 1   as 

1 1
2

1

(P;Q) (1 ) log
n

i i

i

I p q  − −

=

 
= −  

 
                                                                                  (2.26) 

Obviously, (P;P) (P)I H = , the Renyi’s [30] entropy of order  , 0  , 1  . In this common 

sense, the inaccuracy of order , 0  , 1  , demarcated by (2.26), is a generalization of the 

Renyi’s [30] entropy of order  , 0  , 1  .  

Also 2
1

1

lim (P;q) log (P;Q)
n

i i

i

I p q I
→

=

= − =                                                                        (2.27) 

Thus, the inaccuracy (P;Q)I , demarcated by Kerridge [14], may be regarded as the inaccuracy of 

order 1 and henceforward, (P;Q)I  may be written as 1(P;Q)I  depending upon the condition. 
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Let 1n  be an integer, then from equations (1.1), (1.9) and Shannon’s [2] Lemma, the subsequent 

inequality holds good: 

1 1(P;Q) (P)I H                                                                                                                  (2.28) 

The sign of equality, in (2.28), holds good if 1n= . If 2n , then the sign of equivalence in (2.28) 

holds iff i ip q i=  . Also, 1(p) 0H   for all 
*

1 2( , ,..., )n np p p   whenever 2n . Hence (2.28) 

provides the subsequent manifestation:  

1(P;Q) 0I                                                                                                                           (2.29) 

for all distributions
*

i np  , 
*

i nq   whenever 2n . Also, with 2n  

1

1 1

1
n n

i
i i i

ii i

p
p q q

q

 −

= =

 
=  

 
   or 1 according as 1  or 0 1  .  

Henceforth, we acquire  

(P;Q) 0I                                                                                                                          (2.30) 

for all
*

i np  , 
*

i nq   whenever 2n . Notice that (1;1) 0I = . 

Corresponding to (2.28), let us examine the succeeding inequality 

(P;Q) (P)I H   when 0  , 1  .                                                                              (2.31) 

The insignia of egalitarianism holds good in equation (2.31) when 1n= . If 2n , then the insignia 

of egalitarianism in (2.31) holds iff i ip q= .  

Now, consider the subsequent example: 

Example 3.2. Take 2n= , 1 2

1 1
,

2 2
p p= = ; 1 2

1 3
,

4 4
q q= =  and 3 = . Then 3

1 1
, 1

2 2
H

 
= 

 
 bit 

whereas 3 2 3

1 1 1 3 1 16 1 1
, ; , log ,

2 2 3 4 2 5 2 2
I H
     

=      
     

.  

Accordingly, equation (2.31) does not hold for 2n=  and 3 = . On the other hand, 

3 2

2

1 1
, 2log (0.7071)

2 2
H

 
= − 

 
 and 3 2

2

1 1 1 3
, ; , 2log 0.6830

2 2 4 4
I
 

= − 
 

.  

Consequently, equation (2.31) holds for 2n=  and 
3

2
 =   as 3 3

2 2

1 1 1 3 1 1
, ; , ,

2 2 3 4 2 2
I H
   

   
   

. 

However, 2 2

1 1 1 1 1 3
, , ; , 1

2 2 2 2 4 4
H I

   
= =   

   
 bit. 

Now, let us choose k = , 0  , 1  and i ia p= , 
1

i ib q−= , such that 
*

i np  , 
*

i nq  , 2n  an 

integer. Then (2.16) (i) and (2.17) (i) condense respectively to the successive inequalities: 
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1 1

1

1 1 1

n n n

i i i i

i i i

p q p q



 
  

−

−

= = =

   
    
   

     ( 1)                                                                        (2.32) 

1 1

1

1 1 1

n n n

i i i i

i i i

p q p q



 
  

−

−

= = =

   
    
   

     (0 1)                                                                  (2.33) 

which hold unless i ip q= . From equations (2.32), (2.33), (2.26) and (1.2), it follows that  

(P) (P;Q) (1 ) (Q)H I H    + − , 0  1                                                                 (2.34) 

unless i ip q= .  

Similarly, 

(Q) (Q;P) (1 ) (P)H I H    + − , 0  , 1                                                               (2.35) 

unless i ip q= .  

From equations (2.34) and (2.35), we obtain the succeeding inequality [22]: 

(P) (Q) (P;Q) (Q;P)H H I I   +  +                                                                                 (2.36) 

valid for all 0  , 1  . Accordingly, we have evidenced the obligatory consequence. 

Theorem 3.3. Let 0  , 1   be a prearranged real constant; and 
*

i np  , 
*

i nq  , 2n  an 

integer. Then (2.36) holds for all 0  , 1  unless i ip q= . 

Now suppose that for 0  , 1  , 

(P;Q) (P)I H =                                                                                                                (2.37) 

Holds for 2n an integer. Then 

1

1 1

n n

i i i

i i

p q p −

= =

=  .                                                                                                             (2.38) 

Obviously, (2.38) holds good if i ip q= . On the additional hand, if we take 2, 2,n = =

1 2 1 2

1 1 1 3
, , , ,

2 2 4 4
p p q q= = = = then we acquire the succeeding manifestation: 

2
2 1 2 2

1 2

1

i i

i

p q p p−

=

= + . 

Accordingly (2.38) holds, when 2n= , but 1 1p q and 2 2p q . Here 

2 2 2 2
1 2 1 2

10 1

16 2
q q p p+ =  = + . 
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 Let us pick out ,i i i ix p y q= = , 1,...,i n=
 
and 2n  an integer such that

*
i np  , 

*
i nq  . Let 0  , 

1  , be a prearranged real constant. If
1 1

n n

i i

i i

q p 

= =

  ,  

then making practice of  Lemma 3.1, it monitors that  

(P;Q) (P)I H  . 

If the probability distributions
*

i np  , 
*

i nq   are such that 
1 1

n n

i i

i i

p q 

= =

  ; 0  , 1   being a 

specified real constant, then making practice of (2.21), (2.22), (2.23), (1.2) and (2.26), it follows that 

(P;Q) (Q)I H      if 1    

and 

(Q;P) (P)I H     if 0 1  .  

Proposition 3.4. Let 0  , 1   be a specified real constant and with the above acknowledged 

conventions and also for 1n , the subsequent inequality always hold good: 

1 1 1 1
2 2

11 1

1

log log

n

in n
i

i i i i i n
i i

i i

i

x

x y y x y

x y

  



− − − =

−= =

=

 
 

     
  
 
 


 


                                                          (2.39) 

If 1n= , then (2.39) holds as an equality. If 2n , then the sign of equality in (2.39) holds only for 

the equivalence in iy .  

Proof. If 1n= , then the insignia of egalitarianism  clutches in (2.39) as both the sides of it reduce to 

1
1 1 2 1(1 ) logx y y −− . Now consider 2n . In this situation, by (2.5), we acquire the succeeding 

manifestation in the form of an inequality: 

1
2 2 1

11 1

1

log log

n

in n
i i

i in
i i i i

i i

i

x
x

x x
x y

x y




=

−
−= =

=

 
 

     
  
 
 


 


which, upon simplification, gives (2.39) with the 

insignia of equivalence only for the uniformity in iy .  

Next, we deliberate the significance of Proposition 3.4 in the field of information theory. 

We demonstrate that the inaccuracy model (P;Q)I  is a nonincreasing function of  , 0  , 1  . 

Indeed, we have 
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1 1 1
2

1 1
22

1

1 1

log
1

(P;Q) log
(1 )

n n

i i i i i

i i

n n

i i i

i i

p q p q q
d

I
d

p p q

  


 

− − −

= =

−

= =

 
 
 = +
 −
 
 

 

 
                                        (2.40) 

If, in equation (2.39) we take i ix p= , i iy q= , such that
*

i np  , 
*

i nq  , then the term within 

brackets on the right hand side of (2.40) is a nonpositive real number.  

Consequently, (P;Q) 0
d

I
d




 .  

Hence, (P;Q)I  is a nonincreasing function of . 

Now suppose that 
*

i nq   has at least two unequal elements. Then, the term within brackets on the 

right hand side of (2.40) is a negative real number. Hence, (P;Q) 0
d

I
d




 .  

Accordingly, (P;Q)I  is a strictly decreasing function of  , 0  , 1  . In this case, we 

demonstrate that the succeeding inequalities grip: 

1(P;Q) (P;Q)I I  if 0 1                                                                                            (2.41) 

and  

1(P;Q) (P;Q)I I   if 1  .                                                                                               (2.42) 

Let 0  , 0  , 1  , 1  . Without any forfeiture of simplification, we may undertake that

  . Then  

(P;Q) (P;Q)I I                                                                                                              (2.43) 

Next, we distribute the above conversation into three circumstances: 

Case 1. 0 1    . 

Letting 1 −→  in (2.43), equation (2.41) follows. 

Case 2. 0 1    . 

Letting 1 +→  in (2.43), equation (2.41) follows. 

Case 3. 1    . 

Letting 1 +→  in (2.43) and writing   in place of  , equation (2.42) follows. 

Both the measures 1(P;Q)I  and (P;Q)I , 0  , 1  , are additive. Nath [21] furthermore 

recommended the the not-additive inaccuracy model specified by the consequent manifestation: 
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1 1 1

1

(P;Q) (1 2 ) 1
n

i i

i

I p q  − − −

=

 
= − − 

 
                                                                                (2.44) 

where 0  , 1   and 1n  an integer. It is informal to authenticate that  

2 1
1

1

1
lim (P;Q) log (P;Q)

n

i

i i

I p I
q



→
=

 
= =  

 
 . 

Consequently, the additive inaccuracy 1(P;Q)I  is a limiting case of the inaccuracy (P;Q)I  of order

0  , 1  which is not additive. 

For a prearranged real constant 0  , describe the function :g R R→  as 

1 1 (1 )(1 2 ) (1 2 ) if 0, 1

( )

if 1.

x

g x

x

 



 



− − − − −  


= 


=

                                                           (2.45) 

Then  

[ (P;Q)] (P;Q)g I I  = , 0  , 1                                                                                (2.46) 

Thus, maximum number of properties of (P;Q)I may be consequential from those of (P;Q)I by 

exhausting the function g . 

The inaccuracy model (P;Q)I  is, certainly a generalization of the entropy model (P)H
, 0  , 

1  , demarcated by (1.3). 

3. Concluding remarks: Inequalities in information theory participate with an important 

accountability for the management of plentiful looked-for outcomes. These mathematical 

expressions provide assistance to researchers and specialists to quantify the boundaries of 

communication systems, coding structures, and information dispensation protocols. By instituting 

these constraints, inequalities monitor the project and optimization of communication arrangements, 

confirming effective and dependable information transfer. The investigation of inequalities facilitates 

the documentation of optimal coding approaches that maximize the rate of information relocation 

while minimizing the likelihood of errors. In turn, this has insightful consequences for the project of 

robust and protected communication arrangements in countless presentations, stretching from 

telecommunications to data packing. All these inequalities, the propositions and the definitions 

mentioned and demonstrated in the paper are worthwhile in the areana of information theory. All 

those inequalities which are effective for positive real numbers should be reflected as advantageous 

from theoretical point of understanding. Such inequalities can be demonstrated by employing 

additional discrete entropic and inaccuracy models.  
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