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Abstract:  

We consider finite-capacity Markovian queues with a single hiatus scheme and waiting server. 

Customers are arriving at a Poisson arrival λ and exponential service distribution, with a mean 

service rate µ. In which customers join the queue according to the number of customers in the 

system while the hiatus is in the service-providing process. For the assumed queuing model, 

steady-state probabilities were derived, and some important performance measures, such as the 

mean number of customers in the system and mean response time in the system and queue are 

analysed. The expected expense function is developed and formulated as an optimization 

problem in order to find the minimum expense. Numerical illustrations are given to show the 

effect of parameters on the performance measures. 
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1. Introduction 

In this paper, we consider a single server queueing system where the service time of each customer 

depends on the number of customers served prior to him in the current busy period and with server 

vacation. Several researchers have studied queueing systems in which the service time of a customer 

depends on the number of customers served in the current busy period. Doshi [5], Takagi [16] and 

Tian and Zhang [17] are excellent survey works on the subject.  Teghem [10] has made a 

comprehensive survey of queueing system with vacation. Mishra et al. [19] discussed and investigated 

transient behavior of a M/M/1 waiting line undergoing multiple differentiated vacations in conjunction 

with impatient customers- manifested in the form of balking and probabilistically modified reneging. 

Vijayalakshmi et al. [20] discussed about arriving customers to receive only one service and may want 

to choose some optional service from the services available in the system. Baburaj and Sahana [21] 

studied the discrete time single arrival and single-batch service queue under policy ’C’ is de- scribed 

in this study together with reneging and vacation interruption. Yumei Hou et al. [22] discussed 

optimization of beds allocation based on queuing model and by Particle Swarm Optimization 

Algorithm. 

   According to Ammar et al. [1], customers balk using a set probability and renege based on a negative 

exponential distribution. Bouchentouf et al. [3] examined a single-server M/M/1/N feedback queuing 

system that includes vacation, balking, reneging and customer retention. Abdul Rasheed et al. [2] 

investigated the discouraged arrival of markovian queueing systems, which regulate service speed 

according on customer count. Courtois and George [4] found that a customer’s desire for service is 
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influenced by the duration of their wait time. Haddadi [6] proposed a method for studying busy period 

processes in queue models. Satish Kumar et al. [7] developed a single-server Markovian queueing 

system with limited capacity, encouraged or discouraged arrivals and a modified customer reneging 

policy. Reynolds [8] researched multi-server queuing models with diminishing arrival rates as queue 

length increases. Kumar [9] studied a reneged customer may be persuaded to stay in the wait for 

additional service with a probability of q or they may depart the queue without obtaining service with 

a probability of p = 1 -q. Parthasarathy et al. [11,12] conducted a transient analysis of a line with 

potential customers discouraged by its length and a fluid queue driven by discouraged arrivals. They 

obtained explicit formulas for the stationary distribution function. Sanga et al. [13] proposed a 

queueing model with a single server, finite capacity, discouraged customers, and distributed retry 

times. Sharma et al. [14] computed closed-form probability for transient states in a finite waiting space. 

Rao [15] mentioned, the M/G/1 queuing procedure involves units that balk and renege. Unit servicing 

may experience breakdowns due to disruptions, which must be addressed promptly. Van Doorn [18] 

investigated exact formulas for the birth-death process transition probability. The model treated in this 

paper is immediately applicable to many fields such as computer systems, telecommunication systems 

and production systems. The outlook of this paper is as follows. We describe the model and introduce 

notation in section 2. In section 3, we obtain the steady state probabilities and the moments of the 

queue length distribution. The performance measures are obtained in section 4. Optimization process 

is carried out in section 5 by Total cost method, Direct search method and particular swarm     

optimization (PSO)method. Numerical analysis is carried out in section 6. 

2. Model Formulation 

Consider a finite buffer Markovian queue with a single hiatus policy with the    following assumptions. 

• Beneficiary entries occur in a Poisson stream at a rate λ 

• The service times follow an exponential distribution with µ. 

• The beneficiaries are receiving service on a First Come First Serve (FCFS). 

• A single hiatus(α) scheme is followed. Once the system reaches the zero-beneficiary level, the 

service provider departs from the service station for a hiatus. 

• If there are beneficiaries in the waiting line at the end of a hiatus, the server begins to provide service. 

Otherwise, the service provider remains waiting in the service station for the new beneficiaries. A 

hiatus period is exponentially distributed with γ. 

• While the service provider is on hiatus, arriving beneficiaries are discouraged harmonically with respect 

to the number of beneficiaries waiting in system, that is, 𝜆𝑛 =
𝜆

𝑛+1
 , 𝑛 ≥ 0 

 

                                                        Figure 1: State transition diagram 
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• The state transition diagram of the queueing model undertaken is displayed      in figure 1. 

• Let N(t) be the quantity of customers in the system at time t. At that point the       bivariate 

process  

{(C(t), N(t)), t ≥ 0} is a persistent time Markov chain. Let 

Pi,n(t) =   Prob {C(t) = i, N(t) = n, i = 0, 1and n ≥ 0} 

𝐶(𝑡) =          {
0,                                             𝑖𝑓 𝑎 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑎𝑘𝑒𝑠 𝑝𝑙𝑎𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
1,   𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑖𝑑𝑙𝑒 (𝑜𝑟) 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑎𝑘𝑒𝑠 𝑝𝑙𝑎𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

} 

3. Steady State Analysis 

By Markov theory, the steady state balance flow equations of assumed model      are as follows. 

(𝜆 + 𝛾)𝑝0,0 = α𝑝1,0   (1) 

(
𝜆

𝑛+1
+ 𝛾) 𝑝0,𝑛 =

𝜆

𝑛
𝑝1,𝑛−1, 1 ≤ 𝑛 ≤ 𝑁 − 1   (2) 

𝛾𝑝0,𝑁 =
𝜆

𝑁
𝑝0,𝑁−1   (3) 

(𝜆 + 𝛼)𝑝1,0 = γ𝑝0,0 + µ𝑝1.1   (4) 

(𝜆 + µ)𝑝1,𝑛 = λ𝑝1,𝑛−1 + µ𝑝1.𝑛+1+ϒ𝑝0,𝑛  , 1 ≤ 𝑛 ≤ 𝑁 − 1 (5) 

(𝜆 + µ)𝑝1,𝑛= 𝜆𝑝1,𝑁−1 + 𝛾𝑝0,𝑁                                          (6) 

Let 

𝑃𝑖(𝑧) = ∑ 𝑝𝑖,𝑛 
𝑁
𝑖=0 𝑧𝑛,      𝑖 = 0,1   (7) 

be the partial probability generating functions. 

 From (3),                                 𝑝0,𝑁 =
𝜆

𝑁𝛾
𝑝0,𝑁−1    

The recursive application of (2) becomes 

𝑝0,𝑁 =
𝜆𝑁

𝛾 ∏ (𝜆+𝑖𝛾)𝑁
𝑖=2

   (8) 

Multiply (4) - (6) by appropriate 𝑧𝑛 and adding, we have        

𝑃1(𝑍) =
𝜆𝑧𝑁(1−𝑧)𝑝1,𝑁−𝛼𝑝1,0+µ𝑝1,0 +𝛾𝑃0(𝑍) −  

µ𝑝1,0
𝑧

𝜆(1−𝑧)−
µ

𝑧
+µ

          (9) 

Here the denominator of  𝑃1(𝑧)  has tworoots 1,
µ

𝜆
 

From this 

                                         𝑃0(𝑍) =
𝛼

𝛾
𝑝1,0                                                                   (10) 

and 𝑧 =
µ

𝜆
 is also the root of the numerator of P1(z) 
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                                   0 =  𝜆(
µ

𝜆
)𝑁(1 −

µ

𝜆
)𝑝1,𝑁 − 𝛼𝑝1,0 + µ𝑝1,0 + 𝛾𝑝0(

µ

𝜆
) − 𝜆𝑝1,0              (11) 

From (1), (2) and (3) 

                                 𝑃0(𝑍) = 𝑝0,0 [1 + ∑
(𝑛+1)(𝜆𝑧)𝑛

∏ (𝜆+(𝑖+1)𝛾)𝑛
𝑖=1

𝑁−1
𝑛=1  + 

(𝜆𝑧)𝑁

∏ (𝜆+𝑖𝛾)𝛾𝑁
𝑖=2

]                       (12) 

Substitute 𝑧 =
µ

𝜆
  in the above equation, we have 

                            𝑃0(
µ

𝜆
) = 𝑝0,0 Ө                                                                                           (13) 

where 

                                   Ө = 1 + ∑ (𝑛 + 1) ∏
𝜆𝑖

𝜆+𝑖𝛾

𝑛+1
𝑖=2

𝑁−1
𝑛=1 (

µ

𝜆
)𝑛 + 

1

𝛾 
 ∏

𝜆𝑁

𝜆+𝑖𝛾

𝑁
𝑖=2 (

µ

𝜆
)𝑁  

From (11) and (13) we have 

                               𝑝1,𝑁 =
(𝛼−µ+𝜆)

𝜆+µ

𝛼
+𝛾Ө

(𝜆−µ)
µ

𝜆

𝑝0,0                                                                     (14) 

From the local balance equation, 

                 ρ𝑝1,0+
ρ

1
𝑝0,0 = 𝑝1,1 

                 ρ𝑝1,1+
ρ

1
𝑝0,1 = 𝑝1,2 

                                   . 

                                   . 

                                   . 

       ρ𝑝1,𝑁−1+
ρ

𝑁
𝑝0,𝑁−1 = 𝑝1,𝑁 

Generally 

           ρ𝑝1,𝑛+
ρ

𝑛
𝑝0,𝑁−1 = 𝑝1,𝑛+1 ,    0≤n≤N-1                                                                   (15) 

After some mathematical manipulations equation (15), we obtain 

   𝜌[𝑃1(z)-𝑝1,𝑁𝑧𝑁]+ρ∑
1

𝑛
𝑁
𝑛=1 𝑝0,𝑛−1= 

1

𝑧
[𝑃1(z)-𝑝1,0] 

put 𝑧 = 1 

              𝑃1(1) = 
𝜌

𝜌−1
𝑝1,𝑁 −

𝜌

𝜌−1
∑

1

𝑛
𝑁
𝑛=1 𝑝0,𝑛−1 −

1

𝜌−1
𝑝1,0                                              (16) 

From the law of total probability, 

𝑝0,0 =
1

𝜆+𝛾

𝛾
+

𝜌

𝜌−1
[𝜌𝑁(

𝜆+𝛾+𝛼

𝛼
)+

𝜆𝜌

𝜆+2𝛾
(𝜌𝑁−2+∑

𝜆𝑖−2𝜌𝑁−𝑖

∏ (𝜆+𝑗𝛾)𝑖
𝑗=3

)]−
𝜆+𝛾

(𝜌−1)𝛼
−

𝜌

𝜌−1
∑

𝑁𝜆𝑁−1

𝑛 ∏ (𝜆+𝑖𝛾)𝑁
𝑖=2

𝑁
𝑛=1

𝑁
𝑖=3

            (17)             

Substitute the value of 𝑝0,0  in (1), 
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                          𝑝1,0=(
𝜆+𝛾

𝛼
) 𝑝0,0      

𝑝1,0=(
𝜆+𝛾

𝛼
)

1

𝜆+𝛾

𝛾
+

𝜌

𝜌−1
[𝜌𝑁(

𝜆+𝛾+𝛼

𝛼
)+

𝜆𝜌

𝜆+2𝛾
(𝜌𝑁−2+∑

𝜆𝑖−2𝜌𝑁−𝑖

∏ (𝜆+𝑗𝛾)𝑖
𝑗=3

)]−
𝜆+𝛾

(𝜌−1)𝛼
−

𝜌

𝜌−1
∑

𝑁𝜆𝑁−1

𝑛 ∏ (𝜆+𝑖𝛾)𝑁
𝑖=2

𝑁
𝑛=1

𝑁
𝑖=3

  (18) 

 
Figure 2: P1,0 against λ 

 
Figure 3: P1,0 against λ

 
Figure 4: P1,0 against λ

As a regular service period ends, if there are customers in the system, the system will be resumed to the 

regular service period. Otherwise, the server will enter into a vacation, during which service is not 

rendered to any of new arrivals in the period completely. Ultimately as the arrival rate λ increases, the 

steady state probability which is in equation (18) decreased which is shown in Figure 2, for the fixed 

values of µ = 0.51 and γ = 0.7, by varying the values of λ from 0.1 to 0.5 with different values of α = 

0.5, 0.6, 0.7. 

As aforesaid, in Figure 3, the nature of decreasing continues in the steady state probability for the 

fixed values of µ = 0.51 and α = 0.8, by varying the values of λ from 0.1 to 0.5 with different values 

of γ = 0.6, 0.7, 0.8.  This nature continues in Figure 4, for the fixed values of γ = 0.8 and α = 0.9 by 
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varying the values of λ from 0.1 to 0.5 with different values of µ = 0.51, 0.6, 0.7. 

4. Performance Measure 

Expected number of customers in the system  

𝐸(𝐿) = 𝑝0,0 {∑
𝑖(𝑖 + 1)𝜆𝑖

∏ (𝜆 + (𝑗 + 1)𝛾)𝑖
𝑗=1

+
𝑁𝜆𝑁

𝛾 ∏ (𝜆 + 𝑖𝛾)𝑁
𝑖=2

𝑁

𝑖=1

+ 𝜌 (
𝜆 + 𝛾 + 𝛼

𝛼
)

+ ∑ [𝑗𝜌𝑗 (
𝜆 + 𝛾 + 𝛼

𝛼
) +

𝜆

𝜆 + 2𝛾
(𝜌𝑗−2 + ∑

𝜆𝑘−2𝜌𝑗−𝑘

∏ (𝜆 + 𝑙𝛾)𝑘
𝑙=1

𝑗

𝑘=3

)]

𝑁

𝑗=2

} 

where p0,0 is already in (17) and the expected waiting time is 

                  𝐸(𝑊) =
𝐸(𝐿)

𝜆
 

The graph for the probability P1,0 against λ, E(L) and E(W) for distinct parame ters are as follows. 

 
Figure 5: E(L) against λ 

 
Figure 6: E(L) against λ 

 
Figure 7: E(L) against λ 
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As the arrival rate λ increases then the number of customers in the line is also increased during the 

vacation period. In Figure 5, for the fixed values of µ = 0.7 and γ = 0.6, by varying the values of λ 

from 0.1 to 0.5 with different values of α = 0.5, 0.6, 0.7. The value of E(L), Figure 6 increases for 

the fixed values of µ = 0.7 and α = 0.6, by varying the values of λ from 0.1 to 0.5 with different 

values of γ = 0.5, 0.6, 0.7. The expected number of customers in the line is also increased during the 

vacation period. In Figure 7, for the fixed values of α = 0.55 and γ = 0.65, by varying the values of 

λ from 0.1 to 0.5 with different values of µ = 0.7, 0.8, 0.9. 

 

 
Figure 8: E(W) against λ 

 
Figure 9: E(W) against λ 

 
Figure 10: E(W) against λ 

As the arrival rate λ increases then the number of waiting customers in the waiting line is also 

increased during the vacation period. In Figure 8, for the fixed values of µ = 0.6 and γ = 0.7, by 

varying the values of λ from 0.1 to 0.5   with different values of α = 0.5, 0.6, 0.7. The value of E(W) 

in Figure 9 increases, for the fixed    values of µ = 0.6 and α = 0.7, by varying the values of λ from 
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0.1 to 0.5 with different values of γ = 0.55, 0.65, 0.8. The expected number of waiting customers in 

the waiting queue is also in- creased during the vacation period. In Figure 10, for the fixed values of α 

= 0.6 and γ = 0.5, by varying the values of λ from 0.1 to 0.5 with different values of   µ = 0.7, 0.8, 

0.9. 

5. Reliability Measures 

Because of the importance of dependability measures under varied queueing conditions, a few 

investigations are dedicated to queueing hypothesis writing. Accessibility is defined as the likelihood 

that the system will function properly when it is mentioned for use. However, disappointed 

recurrence of the server is a possibility when the system is on vacation period. In this manner, we 

obtain the two key dependability measures 

• The availability of the server 

𝑃1(1) =
𝜌𝑝0,0

𝜌 − 1
[𝜌𝑁(

𝜆 + 𝛾 + 𝛼

𝛼
) +

𝜆𝜌

𝜆 + 2𝛾
(𝜌𝑁−2

+ ∑
𝜆𝑖−2𝜌𝑁−𝑖

∏ (𝜆 + 𝑗𝛾)𝑖
𝑗=3

)] −
𝜆 + 𝛾

𝜌𝛼
− ∑

𝑁𝜆𝑁−1

𝑛 ∏ (𝜆 + 𝑖𝛾)𝑁
𝑖=2

𝑁

𝑛=1

𝑁

𝑖=3

] 

• The failure frequency of the server 

𝑃0(1) = (
𝜆 + 𝛾

𝛾
) 𝑝0,0 

6. Optimization Analysis 

6.1 Total Cost method 

We develop the cost model to enable the minimum cost over the system. The        various cost parameters     

are defined as 

CO1 ≡ holding cost for every customer present in the system 

 CO2 ≡ waiting cost for every customer waits in the system  

CO3 ≡ cost for the server in the busy period 

CO4 ≡ cost for the server in the vacation period 

CO5 ≡ cost for service 

Using the definition of these cost elements listed above, the expected cost   function per unit time is 

given by    

            TC   ≡   CO1E(L) + CO2E(W) + CO3P0(Z) + CO4P1(Z) + CO5µ 

The cost minimization problem can be formulated as 

            TC (µ, γ) = Minimize (µ, γ) 

subject to µ > γ and ρ < 1 
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We consider the following cost parameters as  

CO1 = 20, CO2 = 45, CO3 =60, CO4 = 80, CO5=90 

 
Figure 11: Total Cost against µ  

Table 1: Cost function versus µ 

µ 1 2 3 4 5 6 7 8 9 10 

λ = 0.6 650.3 557.1 612.1 687.6 769.8 854.9 941.5 1029.1 1117.2 1205.7 

λ = 0.8 835.1 672.5 719.1 792.5 873.9 958.6 1045.1 1132.5 1220.6 1309.1 

λ = 0.9 912.2 760.4 802.1 874.5 955.3 1039.9 1126.2 1213.6 1301.6 1390.1 

      

In Figure 11, for the different arrival rate λ = 0.6, 0.8, 0.9 and for the fixed values of   γ = 0.1 and α = 

0.2, we got the values while varying µ from 1 to 10 as follows the table. The minimum values 

corresponding to the given values of          𝜆 are 557.1, 672.5 and 760.4 respectively. It is seen that 

initially the total cost        diminishes and begins expanding with the ward of µ for fixed estimations of γ 

and α. The raised nature of the cost work concerning show the pattern for the ideal expense by 

expanding the typical assistance sace of the clients. This shows        the convex nature.  

Indeed, it is not possible to derive the analytic solutions for the optimal service rates at the minimum 

expected cost. Thus, we progress the approximations    to achieve the optimal service rates by direct 

search method 

6.2 Direct Search Method 

We assumed the following cost parameters as 

CO6 = 30, CO7 = 45, CO8 = 90 

The cost element is defined as 

CO6 ≡ cost for expected number of customers in busy period 

CO7 ≡ cost for expected number of customers in vacation period  

CO8 ≡ cost for the server in the busy period 
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The cost function TC is defined as 

𝑇𝐶 ≡ 𝐶𝑂6𝑃0
1(𝑍) + 𝐶𝑂7𝑃1

1(𝑍) + 𝐶𝑂8µ 

 
                                                              Figure 12: Total Cost against µ 

   Table 2: Cost function versus µ 

µ 1 2 3 4 5 6 7 8 9 10 

λ = 0.3 833.1 497.4 479.5 520.2 582.1 653.7 730.9 811.5 894.2 978.4 

λ = 0.4 1344.6 668.4 584.6 598.6 645.3 707.3 788.6 854.4 933.6 1015.1 

λ = 0.5 2088.4 885.9 713.8 693.1 722.1 773.3 836.6 907.1 982.1 1060.3 

 

In Figure 12, for the different hiatus rate λ = 0.3, 0.4, 0.5 and for the fixed values of α = 0.1 and γ = 

0.7 we got the values while varying µ from 1 to 10  as follows the table. The minimum values 

corresponding to the given values for λ are 479.5, 584.6 and 693.1 respectively. It is evident that total 

cost function  decreases first and then increases. Consequently, the convex nature arises in the total 

cost function. This confirms the possibility of obtaining the optimum  service rates. 

 
Figure 13: Total Cost against µ 

Table 3: Cost function versus µ 

µ 1 2 3 4 5 6 7 8 9 10 

γ = 0.3 1429.4 677.2 596.1 613.1 663.6 728.3 800.8 878.1 958.2 1040.5 

γ = 0.5 1683.5 752.7 635.5 637.9 679.6 739.1 807.9 882.4 960.6 1041.3 

γ = 0.7 1951.5 893.8 686.1 673.1 706.3 760.3 825.4 897.2 973.3 1052.4 
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In Figure 13, for the values of γ = 0.3, 0.5, 0.7 and for the fixed values of   λ = 0.5 and α = 0.1 we 

got the values while varying µ from 1 to 10 as follows the table. The minimum values 

corresponding to the given values for γ are         596.1, 635.5 and 673.1 respectively. The figure shows 

the convexity in the total cost function. The convex nature of the cost function with respect to µ shows 

the trend for the optimum cost by increasing the normal service domain of the      customers. 

 
        Figure 14: Total Cost against µ 

Table 4: Cost function versus µ  

µ 1 2 3 4 5 6 7 8 9 10 

α = 0.15 912.5 509.8 487.9 528.8 591.2 663.4 741.1 822.1 905.1 989.5 

α = 0.21 717.1 437.4 443.5 496.6 565.9 642.6 723.3 806.5 891.3 977.2 

α = 0.29 581.9 387.2 412.6 474.1 548.2 627.9 710.8 795.5 881.5 968.3 

In Figure 14, for the different hiatus rate α = 0.15, 0.21, 0.29 and for the fixed values of λ = 0.4 and γ 

= 0.7 we got the values while varying µ from 1 to 10  as follows the table. The minimum values 

corresponding to the given values of α are 487.9, 437.4 and 387.2 respectively. The figure shows the 

convexity in the total cost function. This confirms the possibility of obtaining the optimum service 

rate. 

6.3 Particular Swarm Optimization 

Particle swarm optimization is one of the most popular nature-inspired meta- heuristic optimization 

algorithms developed by James Kennedy and Russell Eberhart in 1995.Particle swarm optimization 

(PSO) is inspired by social and cooperative behavior displayed by various species to fill their needs 

in the search space. Recently, PSO has emerged as a promising algorithm in solving various 

optimization problems in the field of science and engineering 
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Figure 15: PSO Total Cost against Iteration 

                       Table 5: PSO-Effect of µ∗ on TC∗, E(L), E(W) for different value of λ 

 

 

 

 

The snapshot of the optimized solution of the problem is shown in the above table. It is observed that the 

best value of the objective function obtained after 10 independent runs is 48.1851. This value is 

obtained at x (0.4) = 1.4473. Out of the 10 runs, 10th run gives this best results. The simulation total time 

taken is 329.2360 seconds. It is to be noted that the simulation time depends on computer configuration. 

Further, Figure 15 shows the convergence characteristic of PSO. 

7. Conclusion 

As the service rate µ grows, the considered probabilities drop. This is apparent because growing signifies 

a higher chance of customers abandoning the system during the service receiving stage, resulting in a 

shorter system length. The purpose of this experiment is to investigate the effect of increasing the 

arrival rate λ on the average response time µ of a client. Figure 4 shows that as grows, the average 

waiting time for clients in the system increases, as expected. 

The purpose of this experiment is to evaluate the behavior of the mean system length versus the vacation 

rate for the three possibilities of the relationship between λ and µ. Figure 5 shows that the following 

are true: 

• With the exception of the case λ < µ, the mean system size increases slowly with increasing. 

• As the for the example increases, the mean system size falls steadily. This is due to the fact that as 

the vacation rate γ increases, the server returns to the system sooner. As a result, the predicted number 

of consumers increases for cases λ=µ and λ < µ and falls for the remaining case. 

 

λ µ∗ E(L) E(W) TC∗ Elapsed Time 

0.3 1.3629 1.8445 6.1484 47.7613 291.0614 

0.4 1.4473 2.3228 5.8070 48.1851 329.2360 

0.5 1.5355 2.9194 5.8388 50.3765 321.3652 

0.6 1.6241 3.6782 6.1304 53.9342 350.7149 

0.8 1.7941 5.9485 7.4356 65.3713 359.1852 
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