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Abstract 

Putting emotional labels on music, or "music mood classification," is important for 

use in recommendation systems and music therapy. Using fine-tuned machine 

learning methods, this study aims to improve the accuracy and performance of 

classification. We used a large dataset with names for different types of music and 

moods to make sure that the model training was strong. Advanced feature extraction 

methods picked up both the traits of the audio stream and the lyrics. For audio 

features, color features, spectral contrast, and mel-frequency cepstral coefficients 

(MFCCs) were recovered. For poetry analysis, TF-IDF and word embeddings were 

used, along with natural language processing (NLP) methods. Logistic Regression, 

SGD Classifier, Gaussian Naive Bayes, Decision Tree, Random Forest, XGB 

Classifier, SVM Linear, and K-Nearest Neighbors (KNN) were some of the machine 

learning classification methods we used. Random Forest, XGB Classifier, and SVM 

Linear all did better than the others. We used grid search and random search to fine-

tune the hyperparameters of these top-performing models in order to make them 

even better. Cross-validation made sure that the models were stable and could be 

used in other situations. Our results show that the highly tuned Random Forest, 

XGB, and SVM models greatly improved the accuracy of classification, with the 

XGB Classifier performing the best. This study adds to music information retrieval 

by creating a useful method for mood classification that can be used in real-life 

situations to improve user experiences and create more personalized music services. 

Keywords: Music Mood Classification, Machine Learning, Feature Extraction, 

Hyperparameter Optimization, Random Forest, XGB Classifier, SVM, Music 

Information Retrieval. 

 

1. Introduction 

The study of music mood classification is both complicated and interesting. It combines aspects of 

musicology, psychology, and computer science. The main goal is to correctly give emotional tags to 

songs so that users can have more unique and relevant music experiences. This feature is very useful 

for many things, like song suggestion systems, mood-based tracks, and healing settings. The need for 

automatic and accurate mood classification systems grows as the amount of digital music keeps 

growing at an exponential rate. Music mood classification has relied on simple heuristics and hand 

tagging, which take a lot of time and are open to personal bias. Machine learning has completely 

changed this area by providing strong tools and methods that can deal with the complexity and 

variability of sound data. Big datasets can teach machine learning models new things, and these 

models can find connections and trends that humans often miss [1]. The move toward data-driven 
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methods has made music mood labeling tools much more accurate and scalable. One important part 

of accurately classifying music mood is extracting features. As a tool, music has many uses. It 

includes both sound messages and lyrics. Things in sound like Mel-frequency cepstral coefficients 

(MFCCs), color features, and spectral contrast tell us a lot about the music's harmonic and rhythmic 

qualities [3]. On the other hand, the lyrics can help you understand the emotional and thematic 

themes of a song. Many Natural Language Processing (NLP) methods, like Term Frequency-Inverse 

Document Frequency (TF-IDF) and word embeddings, have been shown to be useful for reading 

songs and pulling out useful information. Putting these audio and written traits together will help us 

make more complete models that can understand all the different kinds of information that are in 

musical pieces [2]. 

It look into how well different machine learning classification methods work for figuring out the 

mood of music. Logistic Regression, SGD Classifier, Gaussian Naive Bayes, Decision Tree, Random 

Forest, XGB Classifier, SVM Linear, and K-Nearest Neighbors (KNN) are some of the algorithms 

we look into. Because they are all different, these algorithms can be used for different kinds of data 

and sorting jobs. We want to find the best method for our classification problem by carefully 

comparing these models. Fine-tuning the hyperparameters is the next important step after finding the 

models that work best. This is different from the model's parameters: hyperparameters are the 

parameters of the learning method itself. To get the most out of the model, these hyperparameters 

must be tuned correctly. We use methods like grid search and random search to carefully look 

through the hyperparameter space of Random Forest, XGB Classifier, and SVM, which are our best 

models. Cross-validation is used to make sure the results are reliable and can be used in other 

situations. Our study shows that fine-tuning makes music mood classification models much more 

accurate and reliable. It was especially the fine-tuned XGB Classifier that showed huge performance 

gains [3]. This shows how important it is to choose the right model and optimize hyperparameters to 

get the best results. This study not only adds to our technical knowledge of how to classify music 

based on mood, but it also shows us how to use these models in real life. This study shows a 

complete method for classifying music moods using cutting-edge feature extraction methods and 

cutting-edge machine learning algorithms. We improve the performance of the most promising 

models by fine-tuning their hyperparameters [4]. This paves the way for more accurate and user-

friendly systems that suggest music. This study adds to the field of retrieving music information and 

shows how machine learning can help us understand and connect with music better. 

2. Related Work 

Music temperament classification has experienced noteworthy advancement with the rise of machine 

learning methods, profound learning structures, and multimodal approaches. Early approaches 

depended intensely on manual explanation and heuristic-based strategies, which were constrained by 

subjectivity and needed versatility [5]. The coming of machine learning empowered analysts to 

robotize temperament classification forms by learning designs from information [6]. Back Vector 

Machines (SVM) developed as a significant device in early considers, illustrating their adequacy in 

capturing nonlinear connections between sound highlights extricated from music signals and 

disposition names [7]. SVMs given a vigorous system for progressing classification precision and 

decreasing human intercession in temperament labeling. Profound learning structures, especially 
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Convolutional Neural Systems (CNNs) and Repetitive Neural Systems (RNNs), revolutionized the 

field by specifically handling spectrograms and capturing worldly conditions in music information 

[8]. Choi et al. [8] showcased the adequacy of CNNs in extricating various leveled highlights from 

sound signals, whereas RNNs exceeded expectations in modeling consecutive designs in music. 

In parallel, analysts investigated the integration of literary data, such as tune verses, into disposition 

classification frameworks. Common Dialect Preparing (NLP) methods, counting opinion 

investigation and topical extraction, improved the relevant understanding of music substance [9]. Hu 

and Downie [9] illustrated that combining literary examination with sound highlights altogether 

progressed classification precision, highlighting the complementary nature of acoustic and semantic 

prompts in temperament forecast. Outfit strategies have moreover played a significant part in 

upgrading prescient execution by combining numerous classifiers. Zhang et al. [10] proposed a half 

breed demonstrate that coordinates SVM with Choice Trees, leveraging the qualities of both 

calculations to realize prevalent comes about compared to person classifiers. Gathering learning 

approaches have demonstrated successful in dealing with the differing qualities and complexity of 

music information. Later progressions in hyperparameter optimization have assist refined the 

execution of machine learning models for music temperament classification. Strategies such as 

framework look and Bayesian optimization empower analysts to efficiently investigate the parameter 

space and recognize ideal arrangements [11]. Fine-tuning hyperparameters upgrades demonstrate 

generalization and strength, driving to moved forward precision in temperament forecast 

assignments. Assessment measurements in music temperament classification include precision, 

exactness, review, and F1-score, giving comprehensive experiences into demonstrate execution over 

distinctive temperament categories [12]. Cross-validation procedures such as k-fold cross-validation 

guarantee thorough assessment and approval of show execution on assorted subsets of information, 

guaranteeing unwavering quality and generalizability [13]. 

Profound learning designs proceed to thrust the boundaries of music disposition classification, with 

Repetitive Neural Systems (RNNs) and Long Short-Term Memory (LSTM) systems proficient at 

capturing transient conditions and consecutive designs in music information [14]. These models 

exceed expectations in handling consecutive information such as music sound streams and 

expressive groupings, advertising upgraded precision and expressive control in temperament 

classification frameworks. Moreover, multimodal learning approaches have gained footing by 

joining data from numerous modalities, counting sound, verses, and metadata. By leveraging 

complementary prompts from distinctive modalities, multimodal models improve the strength and 

precision of disposition classification expectations [15]. These approaches emphasize the 

significance of coordination differing sources of data to attain a all encompassing understanding of 

music substance and setting. In rundown, the field of music temperament classification has advanced 

altogether through the selection of machine learning, profound learning, and multimodal approaches. 

Analysts proceed to investigate novel techniques and refine existing systems to address the 

complexities characteristic in music information investigation. The integration of progressed include 

extraction, outfit learning, and hyperparameter optimization has cleared the way for more precise and 

personalized music disposition classification frameworks, upgrading client encounters and 

applications in music suggestion and treatment [16]. 
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Table 1:  Summary of related Work 

Approach Algorithm Methodology Key Finding Application 

Traditional Heuristic Methods 

[17] 

Manual annotation, 

rule-based 

classification 

Subjectivity and scalability 

limitations; basic mood 

tagging 

Initial music 

categorization 

Machine 

Learning 

SVM [18] Feature extraction 

(e.g., MFCCs), 

supervised learning 

Captures nonlinear 

relationships in audio 

features; improves 

classification accuracy 

Automated mood 

tagging, 

recommendation 

systems 

Deep Learning CNN [19] Spectrogram 

processing, 

hierarchical feature 

extraction 

Efficient feature learning 

from audio signals; 

competitive performance in 

mood prediction 

High-dimensional audio 

data analysis, real-time 

mood classification 

Textual Analysis NLP [20] Sentiment analysis, 

thematic extraction 

Enhances contextual 

understanding of lyrics; 

improves accuracy when 

combined with audio 

features 

Lyrics-based mood 

classification, 

integration with audio-

based models 

Ensemble 

Methods [21] 

SVM + Decision 

Trees 

Hybridization, 

combination of 

classifiers 

Improves predictive 

performance and 

robustness; synergistic 

effects of different 

algorithms 

Robust mood prediction 

models, handling 

diverse music datasets 

User-Centric Collaborative 

Filtering [22] 

User interaction 

data, preference 

modeling 

Personalizes mood 

recommendations based on 

user preferences; enhances 

user engagement 

Personalized music 

recommendation 

systems, user-driven 

music therapy 

Hyperparameter Grid Search, 

Bayesian Opt. [23] 

Systematic 

exploration of 

parameter space 

Optimizes model 

performance and 

generalization; fine-tuning 

enhances accuracy 

Enhancing model 

robustness and accuracy 

in mood classification 

Sequential Data RNN, LSTM [24] Temporal 

dependencies, 

sequential pattern 

learning 

Captures temporal aspects 

in music data; enhances 

predictive power in mood 

classification 

Sequential music 

analysis, dynamic mood 

tracking 

Multimodal Fusion of Audio 

and Text [25] 

Integration of 

multiple modalities, 

complementary cues 

Improves robustness and 

accuracy; holistic 

understanding of music 

content and context 

Enhanced music mood 

prediction, 

comprehensive music 

information retrieval 

Real-World 

Apps 

Music 

Recommendation 

Systems [26] 

Integration into 

practical 

applications 

Enhances user experiences; 

supports diverse music-

related services and 

applications 

Personalized music 

services, therapeutic 

music applications 

3. Dataset Description 

The presentation of a unused multi-modal feeling dataset for music, associated to MIREX 

benchmarks, marks a noteworthy headway in music feeling classification inquire about. This dataset 

comprises 903 sound clips, each 30 seconds long, organized into clusters and subfolders based on 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 31 No. 5s (2024) 

 

238 
https://internationalpubls.com 

passionate names. Moreover, it incorporates 764 verse records in content arrange and 196 MIDI 

records, making it the primary of its kind to consolidate these three unmistakable sources—audio, 

verses, and MIDI. The overview of dataset and its feature value illustrate in figure 2. 

 
Figure 2: Dataset Features and Values 

This comprehensive dataset addresses the developing require for multimodal information in music 

feeling classification thinks about. By coordination sound signals, expressive substance, and melodic 

structure (spoken to by MIDI records), analysts pick up a more nuanced understanding of how 

distinctive modalities contribute to enthusiastic expression in music, the different class distribution in 

figure 3. Such datasets are pivotal for creating and approving machine learning models that can 

viably analyze and classify feelings in music, in this manner improving applications like 

personalized music suggestion frameworks and music treatment intercessions. 

 
Figure 3: Distribution of Class 
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4. Methodology 

A. Data Input and Pre-process the data: 

Dataset preparation is an important step in getting data ready for machine learning jobs like figuring 

out how music makes people feel. At first, it includes checking all features for missing numbers to 

make sure the data is full and accurate. Depending on the size of the collection and the type of 

messiness, any numbers that are not present are either filled in using statistical methods or taken out. 

Next, columns that don't help with the classification job or have information that is already known 

are removed to make the dataset smaller and lower the noise in the training process for the model 

[27]. After the information is cleaned, number and classification features are split so that the right 

preparation steps can be done. Numerical features may be scaled to make their range more uniform. 

This makes sure that every feature adds the same amount to training the model. Using one-hot 

encoding and other methods, category traits like genre or mood labels are changed into a format that 

machine learning algorithms can understand. Label encoding, on the other hand, is used to make sure 

that category variables with numerical relationships are properly represented in the model. These 

steps make sure that the dataset is set up in the best way possible so that strong machine learning 

models can be trained to correctly identify music feelings from a variety of inputs. 

a. Numeric and Categorical Features Separation: 

Given a dataset D with n samples and m features, features can be categorized into: 

1. Numeric Features: 

   - Numeric features are continuous variables denoted as  

𝑋_𝑛𝑢𝑚 =  {𝑥_𝑖𝑗}_(𝑛 𝑥 𝑚_𝑛𝑢𝑚) 

• where x_ij represents the j-th numeric feature of the i-th sample. 

   2. Categorical Features: 

   - Categorical features are discrete variables denoted as  

𝑋_𝑐𝑎𝑡 =  {𝑐_𝑖𝑗}_(𝑛 𝑥 𝑚_𝑐𝑎𝑡) 

• where c_ij represents the j-th categorical feature of the i-th sample. 

b. One-hot Encoding: 

For a categorical feature c_ij with q unique categories, the one-hot encoding OneHot(c_ij) is 

represented as a binary vector {0, 1}^q where: 

   𝑂𝑛𝑒𝐻𝑜𝑡(𝑐_𝑖𝑗)  =  [0, 0, . . . , 1, . . . , 0] 

• Where, the position of 1 corresponds to the category of c_ij. For example, if c_ij takes the 

value of the second category out of q categories, the encoding would be [0, 1, 0, ..., 0]. 

c. Label Encoding: 

Label encoding assigns integers to categories preserving their order. For a categorical feature c_ij, 

Label Encode(c_ij) converts each category into a unique integer: 
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   𝐿𝑎𝑏𝑒𝑙𝐸𝑛𝑐𝑜𝑑𝑒(𝑐_𝑖𝑗)  =  {0, 1, 2, . . . , 𝑞 − 1} 

• Where, q is the number of unique categories in c_ij. Label encoding is suitable for algorithms 

that interpret ordinal relationships among categories, such as decision trees or regression 

models. 

d. Data Normalization 

Information normalization, particularly utilizing Standard Scaler, could be a preprocessing procedure 

fundamental for machine learning assignments. Standard Scaler changes numerical highlights to 

have a cruel of and a standard deviation of 1, guaranteeing that all highlights are on the same scale.  

Standard Scaler Step wise model 

1. Compute Mean (μ) of Each Feature: 

   𝜇𝑗 =  (
1

𝑛
) 𝛴𝑖 = 1𝑛𝑥𝑖𝑗  

• Calculate the mean value for each feature j across all samples i. 

2. Compute Standard Deviation (σ) of Each Feature: 

   𝜎𝑗 =  𝑠𝑞𝑟𝑡 ((
1

𝑛
) 𝛴𝑖 = 1𝑛(𝑥𝑖𝑗 −  𝜇𝑗)

2
) 

• Calculate the standard deviation for each feature j across all samples i. 

3. Standardize Each Feature: 

   𝑥̂𝑖𝑗 =
(𝑥𝑖𝑗 −  𝜇𝑗)

𝜎𝑗
 

• Standardize each feature j by subtracting its mean μ_j and dividing by its standard deviation 

σ_j. This centers the feature distribution around 0 with a standard deviation of 1. 

4. Transformed Feature Calculation: 

   𝑥̂ =
(𝑋 −  𝜇)

𝜎
 

• Apply the transformation across all features X, where μ is the mean vector and σ is the 

standard deviation vector calculated for each feature. 

5. Inverse Transform: 

   𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 =  𝑥̂ ∗  𝜎 +  𝜇 

• The transform the standardized data back to its original scale by multiplying with the 

standard deviation vector σ and adding the mean vector μ. 

This normalization is significant for calculations touchy to the scale of input information, such as 

bolster vector machines and k-nearest neighbours. By standardizing highlights, Standard Scaler 
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makes strides the meeting speed of gradient-based calculations and anticipates overwhelming 

highlights from dominating others, normalized dataset shown in figure 4.  

 

Figure 4: Representation of Normalized Dataset 

It moreover makes a difference in deciphering show coefficients, making it less demanding to 

compare the significance of diverse highlights within the prescient demonstrate. In this way, 

Standard Scaler plays a key part in planning information for strong and effective machine learning 

show preparing.  

B. Machine Learning Classification Algorithms 

a. Logistic Regression:  

This is a linear model that is often used for jobs that need to classify things into two groups. It uses a 

logistic function to predict odds, which means it can be used to figure out how likely it is that a 

sample belongs to a certain class based on its traits. 

Algorithm: 

1. Model Hypothesis: 

   Logistic Regression models the probability 𝑃(𝑦_𝑖 =  1 | 𝑥_𝑖) that a sample x_i belongs to 

class 1 (positive mood) using a sigmoid function: 

   𝑃(𝑦_𝑖 =  1 | 𝑥_𝑖;  𝑤, 𝑏)  =  𝜎(𝑤^𝑇 𝑥_𝑖 +  𝑏) 

2. Cost Function (Log-Loss): 

   The objective is to maximize the likelihood of the observed data. The cost function for 

logistic regression is the log-loss function: 

   𝐽(𝑤, 𝑏) =  −
1

𝑛
𝛴𝑖 = 1𝑛[𝑦𝑖 log(𝜎(𝑤𝑇𝑥𝑖 +  𝑏)) + (1 −  𝑦𝑖) log(1 −  𝜎(𝑤𝑇𝑥𝑖 +  𝑏))] 

3. Gradient Descent: 
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   Update the parameters w and b iteratively to minimize the cost function: 

𝑤𝑛𝑒𝑤 =  𝑤𝑜𝑙𝑑–  𝛼 ∗
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤
 

   𝑏𝑛𝑒𝑤 =  𝑏𝑜𝑙𝑑 −  𝛼 ∗
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
 

4. Gradient Calculation: 

   Compute the gradients of the cost function with respect to w and b: 

  
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤 
=

1

𝑛
𝛴𝑖 = 1𝑛(𝜎(𝑤𝑇𝑥𝑖 +  𝑏) −  𝑦𝑖) ∗  𝑥𝑖 

  
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
 =

1

𝑛
𝛴𝑖 = 1𝑛(𝜎(𝑤𝑇𝑥𝑖 +  𝑏) −  𝑦𝑖) 

5. Prediction: 

   After training, predict the probability 𝑃(𝑦 =  1 | 𝑥) for a new sample x: 

   𝑃(𝑦 =  1 | 𝑥;  𝑤, 𝑏)  =  𝜎(𝑤^𝑇 𝑥 +  𝑏) 

   Classify based on the probability threshold (e.g., 0.5). 

6. Regularization: 

   Optionally, include regularization to prevent overfitting: 

   𝐽(𝑤, 𝑏) =  −
1

𝑛
𝛴𝑖

= 1𝑛[𝑦𝑖 log(𝜎(𝑤𝑇𝑥𝑖 +  𝑏)) + (1 −  𝑦𝑖) log(1 −  𝜎(𝑤𝑇𝑥𝑖 +  𝑏))] +  𝜆 ||𝑤||
2
 

   where λ is the regularization parameter and ||w||^2 is the L2 norm of w. 

 

b. The Stochastic Gradient Descent (SGD) Classifier: 

It makes linear classifiers work better with convex loss functions. This makes it useful for learning 

on a big scale. It changes the model parameters over and over, which works well for situations with a 

lot of dimensions and big datasets. 

Stochastic Gradient Descent (SGD) Classifier:  

1. Model Hypothesis: 

   The SGD Classifier optimizes a linear model for binary classification tasks using a 

stochastic gradient descent approach.  

It estimates the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃(𝑦_𝑖 =  1 | 𝑥_𝑖) that a sample x_i belongs to class 1 (positive 

mood). 

2. Loss Function: 

   The objective is to minimize the loss function, typically the logistic loss for binary 
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classification: 

   𝐿(𝑤, 𝑏) = log(1 + exp(−𝑦𝑖 ∗  (𝑤𝑇𝑥𝑖 +  𝑏))) 

3. Gradient Calculation: 

   Compute the gradient of the loss function with respect to the parameters w (weight vector) 

and b (bias term): 

  
𝜕𝐿(𝑤, 𝑏)

𝜕𝑤
 =  −𝑦𝑖 ∗

𝑥𝑖

(1 + exp(𝑦𝑖 ∗  (𝑤𝑇𝑥𝑖 +  𝑏)))
 

  
𝜕𝐿(𝑤, 𝑏)

𝜕𝑏 
=  −

𝑦𝑖

(1 + exp(𝑦𝑖 ∗  (𝑤𝑇𝑥𝑖 +  𝑏)))
 

4. Update Parameters: 

   Update the parameters w and b iteratively using the gradients and a learning rate α: 

𝑤𝑛𝑒𝑤 =  𝑤𝑜𝑙𝑑–  𝛼 ∗
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤
 

 𝑏𝑛𝑒𝑤 =  𝑏𝑜𝑙𝑑 −  𝛼 ∗
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
 

5. Prediction: 

   After training, predict the probability P(y = 1 | x) for a new sample x using the updated 

parameters: 

   𝑃(𝑦 =  1 | 𝑥;  𝑤, 𝑏)  =  1 / (1 +  exp (−(𝑤^𝑇 𝑥 +  𝑏))) 

   Classify based on the probability threshold (e.g., 0.5). 

 

c. Gaussian Naive Bayes: 

 It assumes that features are independent of each other and uses the Gaussian distribution for features 

that are continuous. Even though it makes some assumptions that are too simple, it does well at many 

classification tasks, especially text classification. 

Algorithm: 

1. Model Assumption: 

   Gaussian Naive Bayes assumes that features are conditionally independent given the class label y. 

It models the likelihood of observing feature values 𝑥_𝑖 =  (𝑥_{𝑖1}, 𝑥_{𝑖2}, . . . , 𝑥_{𝑖𝑑}) given class 

y_i using Gaussian distribution: 

   𝑃(𝑥_𝑖 | 𝑦_𝑖, 𝜃_{𝑦_𝑖})  =  𝛱_{𝑗 = 1}^{𝑑} 𝑃(𝑥
{𝑖𝑗}| 𝑦𝑖,𝜃{𝑦𝑖})

) 

2. Parameter Estimation: 

   Estimate the parameters θ_{y_i} of the Gaussian distribution for each class y_i: 
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      − 𝑀𝑒𝑎𝑛 𝜇{𝑦𝑖,𝑗} =  
1

|{𝑖 ∶  𝑦𝑖 =  𝑦}|𝛴{𝑖:𝑦𝑖=𝑦}𝑥{𝑖𝑗}

 

   − 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎{𝑦𝑖,𝑗}
2 =

1

|{𝑖 ∶  𝑦𝑖 =  𝑦}|𝛴
{𝑖:𝑦𝑖=𝑦}(𝑥{𝑖𝑗}− 𝜇{𝑦𝑖,𝑗})

2  

  3. Class Prior Probability: 

   Estimate the prior probability P(y_i): 

      𝑃(𝑦𝑖) =
|{𝑖 ∶  𝑦𝑖 =  𝑦}|

𝑛
 

   Where n is the total number of samples. 

4. Predictive Probability: 

   Calculate the posterior probability P(y_i | x_i) using Bayes' theorem: 

      𝑃(𝑦_𝑖 | 𝑥_𝑖)  ∝  𝑃(𝑦_𝑖) 𝛱_{𝑗 = 1}^{𝑑} 𝑃(𝑥
{𝑖𝑗}| 𝑦𝑖,𝜃{𝑦𝑖})

) 

   Substituting the Gaussian distribution: 

      𝑃(𝑦_𝑖 | 𝑥_𝑖)  ∝  𝑃(𝑦_𝑖) 𝛱_{𝑗 =  (
1

𝑠𝑞𝑟𝑡(2𝜋𝜎{𝑦𝑖,𝑗}
2 )

) ∗ exp (−
(𝑥{𝑖𝑗} −  𝜇{𝑦𝑖,𝑗})

2

(2𝜎{𝑦𝑖,𝑗}
2 )

) 

5. Prediction: 

   Classify a new sample x_i by selecting the class y_i that maximizes the posterior probability P(y_i 

| x_i): 

   𝑦_𝑖 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥{𝑦𝑖}𝑃(𝑦𝑖)𝛱{𝑗=1}
𝑃(𝑥_{𝑖𝑗} | 𝑦_𝑖, 𝜃_{𝑦_𝑖}) 

d. Decision Tree: 

Decision trees use feature levels to repeatedly divide data into groups, making a structure that looks 

like a tree. They are easy to understand and use, and they can capture complex relationships between 

traits. However, they tend to overfit without being pruned. 

Decision Tree Model for Mood Analysis: 

1. Tree Construction: 

   Decision Trees recursively partition the feature space into disjoint regions by selecting feature 

thresholds that maximize information gain or minimize impurity measures. 

2. Splitting Criterion: 

   At each node, choose the split that best separates the data based on a chosen criterion (e.g., Gini 

impurity, entropy, or misclassification error). 
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   - Gini Impurity:  

     𝐺𝑖𝑛𝑖(𝐷) =  1 −  𝛴{𝑖=1}
{𝑘}(𝑝𝑖)2

 

     where p_i is the probability of class i in node D. 

   - Entropy: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) =  − 𝛴
{𝑖=1}

𝑖
{𝑘}𝑝

𝑙𝑜𝑔2(𝑝𝑖)
 

where p_i is the probability of class i in node D. 

   - Misclassification Error: 

     𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟(𝐷)  =  1 −  𝑚𝑎𝑥(𝑝_𝑖) 

     where p_i is the maximum probability of class i in node D. 

3. Recursive Splitting: 

   Recursively split the data until a stopping criterion is met, such as maximum tree depth, minimum 

samples per leaf, or no further gain in impurity reduction. 

4. Prediction: 

   Assign the majority class of training samples in each leaf node as the predicted class for new 

instances falling into that leaf. 

e. Random Forest:  

A Random Forest is a group of decision trees, and each tree is trained on a different set of data and 

traits. By averaging results across multiple trees, it cuts down on overfitting and boosts accuracy, 

making it suitable for a wide range of classification tasks. 

Random Forest Model for Mood Analysis 

1. Bootstrap Sampling: 

   Randomly select n samples with replacement from the original dataset to create multiple 

bootstrap samples (also known as bagging). 

2. Tree Construction: 

   Build a decision tree for each bootstrap sample: 

   - Select a random subset of features at each node. 

   - Split nodes based on the best split according to a criterion (e.g., Gini impurity or entropy). 

3. Ensemble Learning: 

   Aggregate predictions from all decision trees to make final predictions: 

   - For classification: Use majority voting among all decision trees. 

   - For regression: Use the average of predictions from all decision trees. 
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4. Random Forest Prediction: 

   Given a new sample x_i, predict its class y_i by aggregating predictions from all decision 

trees: 

   𝑦𝑖 ∗ =  𝑚𝑜𝑑𝑒( {𝑇1(𝑥𝑖), 𝑇2(𝑥𝑖), … , 𝑇𝑛(𝑥𝑖)}) 

 

   where T_j(x_i) is the prediction of the j-th decision tree for sample x_i. 

5. Out-of-Bag Error: 

   Evaluate model performance using out-of-bag (OOB) samples: 

   - For miss classification. 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 𝑛1∑𝑖 = 1𝑛𝐼(𝑦𝑖 = 𝑦𝑖) 

   - For regression Error: 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 𝑛1∑𝑖 = 1𝑛(𝑦𝑖 − 𝑦𝑖)2 

f. XGB Classifier:  

The XGBoost Classifier is the best way to use gradient boosting to improve model performance 

through sequential ensemble learning. It makes predictions more accurate by reducing the number of 

loss and regularization terms. In competitions, it often gets the best results possible. 

XGBoost Classifier: Algorithm 

1. Initialize Model: 

   Start with initial predictions 𝐲̂_𝑖 = 0 for all samples. 

2. Compute Gradient and Hessian: 

   Compute the gradient 𝑔_𝑖 and the second derivative (Hessian) ℎ_𝑖 of the loss function with respect 

to the predicted values 𝐲̂_𝑖: 

   𝑔𝑖 =
𝜕𝐿(𝑦𝑖, 𝑦̂𝑖)

𝜕𝑦̂𝑖
 

   ℎ𝑖 =
𝜕2𝐿(𝑦𝑖, 𝑦̂𝑖)

𝜕(𝑦̂𝑖)2
 

3. Build a Decision Tree: 

   Fit a regression tree to the gradient 𝑔_𝑖 as targets: 

   - Split nodes to minimize the loss function within each leaf. 

4. Update Predictions: 

   Update predictions 𝐲̂_𝑖 using the fitted tree: 

   𝑦̂𝑖
𝑡 =  𝑦̂𝑖

𝑡−1 +  𝜂 ⋅  𝑡𝑟𝑒𝑒𝑡(𝑥𝑖) 
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   where 𝜂 is the learning rate and 𝑡𝑟𝑒𝑒_𝑡(𝑥_𝑖) is the prediction of the 𝑡-th tree for sample 𝑥_𝑖. 

5. Regularization: 

   Add regularization terms to prevent overfitting: 

   - Penalize large trees using regularization parameters like max_depth, min_child_weight, and 

gamma. 

6. Repeat: 

   Iterate steps 2-5 until a predefined number of trees (iterations) is reached or the loss function 

converges. 

g. SVM Linear: 

It finds the best hyperplane that divides classes in a collection that can be separated linearly. It makes 

the difference between classes as big as possible, which makes it good for binary classification jobs 

with lots of variables. 

SVM Linear Model 

1. Objective Function: 

   Minimize the objective function to find the optimal hyperplane: 

 
min 1

2
||𝑤||

2
 

   subject to: 

   𝑦𝑖(𝑤𝑇𝑥𝑖 +  𝑏) ≥  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =  1, … , 𝑛 

2. Lagrangian Formulation: 

   Formulate the Lagrangian with Lagrange multipliers 𝛼_𝑖 ≥ 0: 

   𝐿(𝑤, 𝑏, 𝛼) =
1

2
||𝑤||

2
− 𝛴

{𝑖=1}
𝑖
{𝑛}𝛼

[𝑦𝑖(𝑤𝑇𝑥𝑖+ 𝑏)− 1]
 

3. Dual Problem: 

   Maximize the dual function to find 𝛼 that maximizes the margin: 

  max 𝛴
{𝑖=1}

𝑖
{𝑛}𝛼 −

1

2
𝛴

{𝑖,𝑗=1}
𝑖
{𝑛}𝛼

𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

 

   subject to: 

   𝛴
{𝑖=1}

𝑖
{𝑛}𝛼

𝑦𝑖
=  0 

   𝛼𝑖 ≥  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =  1, … , 𝑛 

4. Calculate 𝐰 and 𝑏: 

   Compute 𝐰 and 𝑏 using the optimal 𝛼: 
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   𝑤 =  𝛴
{𝑖=1}

𝑖
{𝑛}𝛼

𝑦𝑖𝑥𝑖
 

   𝑏 =  𝑦𝑖 −  𝑤𝑇𝑥𝑖𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 <  𝛼𝑖 <  𝐶 

h. KNN: 

In the feature space, the K-Nearest Neighbors (KNN) method sorts a sample into a category based on 

the category that it’s K nearest neighbors belong to. It works well and is easy to use for small to 

medium-sized datasets, but because it learns slowly, it can be hard to run on big datasets. The result 

snapshot of mood classification using KNN illustrate in figure 4. 

 
Figure 4: Music Recommendation based on Mood using KNN 

K-Nearest Neighbors (KNN) Step wise Model 

1. Training Phase: 

   - Store all training samples {𝑥_𝑖, 𝑦_𝑖} 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝑛. 

   − 𝑥_𝑖 ∈  ℝ^𝑑 represents the feature vector of the 𝑖-th sample. 

   − 𝑦_𝑖 ∈  {1, . . . , 𝐾} denotes the class label of the 𝑖-th sample. 

2. Prediction Phase: 

   Given a new sample 𝐱_test, find its 𝐾 nearest neighbors in the training set based on a distance 

metric (e.g., Euclidean distance): 

   𝐷(𝑥𝑖, 𝑥𝑡𝑒𝑠𝑡) =  √𝛴{𝑗=1}

{𝑑}(𝑥{𝑖𝑗}– 𝑥{𝑡𝑒𝑠𝑡,𝑗})
2

 

3. Voting Mechanism: 

   - Count the occurrences of each class among the 𝐾 nearest neighbors. 

   - Assign 𝐱_test to the class that is most common among its 𝐾 nearest neighbors. 
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4. Distance Weighting: 

   - Weight the contribution of each neighbor to the prediction by the inverse of their distance: 

   𝑤𝑖 =  
1

𝐷(𝑥𝑖 , 𝑥𝑡𝑒𝑠𝑡)2
 

   - Adjust the voting mechanism to consider the weighted sum of class labels. 

C. Hyper Parameters Fine-tuning on Best Performing Algorithms 

a. Random Forest with Fine-tuning 

Random Forest may be a capable gathering learning strategy that combines different choice trees to 

move forward prescient execution and diminish overfitting. Fine-tuning includes optimizing different 

parameters to upgrade show exactness and generalization.  

Parameters to Tune: 

• Number of Trees (n_estimators): Determines the number of decision trees in the forest. 

Increasing n_estimators can improve model performance until a certain point, beyond which 

it may lead to overfitting. 

• Tree Depth (max_depth): Controls the maximum depth of each decision tree. Deeper trees 

can capture more complex relationships in the data but may also overfit. 

• Minimum Samples per Leaf (min_samples_leaf): Specifies the minimum number of samples 

required to be at a leaf node. Increasing min_samples_leaf can prevent overfitting by 

ensuring that each leaf node has sufficient samples. 

• Feature Subset Size (max_features): Determines the number of features to consider when 

looking for the best split. Smaller max_features can reduce overfitting. 

• Bootstrap Sampling (bootstrap): Specifies whether samples are drawn with or without 

replacement. Setting bootstrap=True enables bagging, which generally improves model 

performance. 

Fine-tuning Strategy: 

• Grid Search or Random Search: Perform grid search over a predefined set of hyperparameters 

or random search across a specified range to find the optimal combination. 

• Cross-validation: Use cross-validation to evaluate each combination of hyperparameters. This 

helps in selecting the set that provides the best generalization performance. 

b. XGBoost with Fine-tuning 

XGBoost is an advanced implementation of gradient boosting that offers better performance and 

efficiency over traditional gradient boosting methods. Fine-tuning XGBoost involves optimizing 

various parameters to achieve optimal performance. 

Parameters to Tune: 

• Learning Rate (eta or learning_rate): Controls the step size at each iteration while moving 

toward a minimum of the loss function. 
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• Number of Trees (n_estimators): Specifies the number of boosting rounds or trees to build. 

• Maximum Tree Depth (max_depth): Limits the depth of each tree. Deeper trees can model 

more complex relationships but may lead to overfitting. 

• Subsample Ratio (subsample): Specifies the fraction of samples to be used for training each 

tree. Lower values prevent overfitting but may increase bias. 

• Column Subsampling (colsample_bytree): Specifies the fraction of features to be randomly 

sampled for each tree. 

Fine-tuning Strategy: 

• Grid Search or Random Search: Search over a grid of hyperparameters or randomly sample 

from a distribution of hyperparameters. 

• Early Stopping: Use early stopping to halt the training process when model performance 

stops improving on a validation dataset. 

c. SVM with Fine-tuning 

Support Vector Machines (SVMs) are powerful supervised learning models used for classification 

and regression tasks. Fine-tuning SVM involves optimizing parameters that influence the decision 

boundary and regularization. 

Parameters to Tune: 

• Kernel Choice and Parameters (kernel, C, gamma): Select the kernel type (linear, polynomial, 

radial basis function) and tune associated parameters. 

• C: Penalty parameter for the error term. Controls the trade-off between maximizing the 

margin and minimizing classification error. 

• Gamma: Kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’. Higher values lead to tighter 

decision boundaries, potentially overfitting the training data. 

• Regularization (C): Controls the trade-off between a larger margin and higher training error. 

Higher values of C allow more training points to be correctly classified at the cost of a 

smaller margin. 

• Kernel Parameters (gamma): Influence the decision boundary's flexibility. Larger values of 

gamma can lead to overfitting. 

Fine-tuning Strategy: 

• Grid Search or Random Search: Explore a grid of hyperparameters to find the combination 

that maximizes model performance. 

• Cross-validation: Use cross-validation to evaluate each combination of hyperparameters and 

select the one with the best average performance across all folds. 
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5. Result and discussion 

A. Result for Machine Learning Algorithms 

Table 3 shows how well different machine learning classification methods worked with a dataset for 

mood analysis. For each algorithm, the table shows its Accuracy, Precision, Recall, and F1 Score. 

These measurements are very important for figuring out how well each program sorts the emotional 

tone of the data. It has an F1 Score of 0.541512, an accuracy of 0.568345, a precision of 0.548112, 

and a memory of 0.568345 to be exact. These results show that Logistic Regression does a decent 

job, but it could do better, especially when it comes to finding the right balance between accuracy 

and memory to raise the F1 Score. 

Table 3: Performance Metrics for ML Classification Algorithms for mood analysis dataset 

Algorithm Accuracy Precision Recall F1 Score 

Logistic Regression 0.568345 0.548112 0.568345 0.541512 

SGD Classifier 0.266187 0.070856 0.266187 0.111920 

Gaussian Naive Bayes 0.661871 0.664540 0.661871 0.649197 

Decision Tree 0.748201 0.762372 0.748201 0.745440 

Random Forest 0.856115 0.861950 0.856115 0.855389 

XGB Classifier 0.827338 0.827626 0.827338 0.826412 

SVM Linear 0.460432 0.628598 0.460432 0.414862 

KNN 0.309353 0.292099 0.309353 0.294645 

 

With an accuracy of 0.266187 and a very low precision of 0.070856, the SGD (Stochastic Gradient 

Descent) Classifier does a lot worse. At 0.266187 and 0.111920, the memory and F1 Score are also 

very low. This shows that SGD Classifier has trouble with the mood analysis job. This could be 

because it is sensitive to changing the size of features and the settings for parameters. With a score of 

0.661871, Gaussian Naive Bayes is more accurate than Logistic Regression and SGD Classifier. It's 

accurate 0.664540 times, correct 0.661871 times, and has an F1 Score of 0.649197. These 

measurements show that it does a good job of dealing with the uncertain nature of the mood 

classification task, but it still needs to get better at being precise and remembering things. 
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Figure 5: Representation of Performance comparison of Different ML Model 

With a score of 0.748201, the Decision Tree classification is much more accurate than before. They 

got a score of 0.745440 for F1 and a score of 0.762372 for precision. This shows that Decision Trees 

are good at finding the basic trends in data, but they can overfit, which can hurt their performance on 

data they haven't seen before. With an accuracy of 0.856115, Random Forest stands out. It also has a 

high F1 Score of 0.855389, an accuracy of 0.861950, and a memory of 0.856115. As you can see, 

these results show that ensemble methods, especially Random Forest, can handle difficult mood 

classification jobs with ease, comparison of different model shown in figure 5. With an accuracy of 

0.827338, the XGBoost (XGB) Classifier also does very well. It's accurate 0.827626 times, accurate 

0.827338 times, and has an F1 Score of 0.826412. The gradient boosting method in XGBoost makes 

it better at making predictions, which makes it very good at this classification problem. With a level 

of accuracy of 0.460432, SVM Linear does pretty well. The accuracy is higher at 0.628598, but the 

recall is lower at 0.460432. This gives it an F1 Score of 0.414862. This difference shows that SVM 

can make good guesses, but it might miss a lot of good examples, which would lower its total recall. 

K-Nearest Neighbors (KNN), which has an accuracy of 0.309353, is one of the worst. That number 

is 0.292099, the memory number is 0.309353, and the F1 Score number is 0.294645. These measures 

show that KNN has trouble with the mood analysis task. This might be because it is sensitive to the 

curse of dimensionality and needs to choose the right distance metric.  
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Figure 6: Comparison accuracy of different Model 

Figure 6 shows a comparison of how accurate different models are, with Random Forest and XGB 

Classifier coming out on top. The confusion matrix, shown in figure 7, gives you a lot of information 

about how well each program does at classifying. 

 

(a) Logistic Regression                     (b) SGD Classifier 
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(c) Gaussian Naïve Bayes                              (d) Decision tree 

 

(e) Random Forest                               (f) XGB Classifier 

 

(g) SVM Classifier                     (h) KNN Classifier 

Figure 7: Confusion matrix of machine Learning Algorithms 
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B. Machine Learning Algorithms with Fine-tune Parameters 

Random Forest, XGB Classifier, and SVM Linear are three machine learning methods that were 

tested and their success was measured in Table 4. Accuracy, Precision, Recall, and F1 Score are 

some of the measures that give a full picture of how well each model did on the mood analysis 

dataset. 

Table 4: Result for Machine Learning Algorithms with Fine-tune Parameters 

Algorithm Accuracy Precision Recall F1 Score 

Random Forest 0.8619 0.86195 0.86 0.861 

XGB Classifier 0.863 0.86 0.863 0.86 

SVM Linear 0.8545 0.869 0.460432 0.8356 

 

An accuracy of 0.8619 shows that the Random Forest algorithm works well even when things go 

wrong. The F1 Score is 0.861, which means that both precision and memory are good, at 0.86195 

and 0.86, respectively. The model has a good mix between accuracy (the number of correctly 

predicted positive observations divided by the total number of correctly predicted positive 

observations) and recall (the number of correctly predicted positive observations divided by all 

observations in the real class). This model is very good at classifying things, as shown by its high F1 

Score, the figure 8 illustrate the Comparison Graphs of Fine-tune Machine Learning Algorithms. 

 

Figure 8: Performance Comparison Graphs of Fine-tune Machine Learning Algorithms 

This makes Random Forest a good choice for analyzing mood. At 0.863, the XGBoost (XGB) 

Classifier is the most accurate of the three models. With an F1 Score of 0.86, this method also strikes 

a good mix between accuracy (0.86) and memory (0.863). Its better success is due in part to its 

ability to handle big datasets and its resistance to overfitting. Because recall is a little higher than 
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accuracy, it means that XGBoost is a little better at finding all positive instances. This is important in 

situations where losing a positive instance (like a mood) is more expensive than wrongly naming a 

negative instance as positive. Figure 9 shows confusion matrices show fine-tuned XGBoost and 

Random Forest models excelling in mood classification, with high accuracy and minimal 

misclassifications, highlighting their robust performance. 

 

(a) XG Boost                                                       (b) Random Forest 

 

(c) SVM Linear 

Figure 9: Confusion matrix fine tuner ML Models 

With an accuracy of 0.8545 and a precision of 0.869, the SVM Linear model is the most accurate of 

the three methods. Its F1 Score, on the other hand, drops to 0.8356 because its memory is much 

lower at 0.460432. This difference between accuracy and recall shows that the SVM Linear model is 

very accurate when it says something is positive, but it misses a lot of real positive cases. This 

mismatch makes me think that the model might be too cautious in its predictions, choosing to stay 

away from fake positives even if it means missing true positives. 
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6. Conclusion 

This study shows that fine-tuned machine learning methods can improve how well and how 

accurately music mood labeling works. Using different algorithms like Random Forest, XGBoost 

(XGB) Classifier, and SVM Linear, we saw big gains in accuracy, precision, recall, and F1 score, 

among other performance measures. The performance analysis showed that Random Forest and 

XGB Classifier did a better job. Random Forest was a good model for this job; it had an accuracy of 

0.8619 and a good mix between precision and memory. Its group nature successfully lowers 

overfitting and raises the level of generalization. The XGB Classifier also had the best accuracy, at 

0.863, which showed how well it handled complex data structures and how resistant it was to 

overfitting thanks to its gradient boosting method. The confusion vectors for these models showed 

that they could reduce the number of both false positives and false negatives, which added to the 

evidence that they are reliable in real-world situations. Careful adjustment of hyperparameters during 

the fine-tuning process was a key part of these results, making sure that each model worked at its 

best level of performance. Even though SVM Linear was very accurate, it had a lower recall, which 

means it missed some true positives. This means that SVM can make good guesses, but it needs 

more work to find the best mix between accuracy and memory. Fine-tuning machine learning 

algorithms makes them much better at figuring out the mood of music. Random Forest and XGB 

Classifier stand out as the best options because they are very accurate and do well on all measures. 

These results show how important model selection and hyperparameter improvement are for making 

music mood recognition systems that work well and are reliable. More research can look into adding 

more traits and using these models in real-life music therapy and guidance systems, which could 

make them more useful and have a bigger effect. 
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