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Abstract: As a basic concept in fuzzy theory, fuzzy relations are used in a 

variety of fields, such as fuzzy clustering, uncertainty reasoning, and fuzzy 

control. When fuzzy relations are applied in practise, it might be difficult to 

estimate and compare them. This method was therefore applied in this study 

to tackle a challenging issue. It turns out that a combination of this strategy 

and the three prior expanded ones can have a beneficial effect on the actual 

issue. Finally, using fuzzy quantifiers, we give a theoretical investigation into 

the capacity to solve systems of fuzzy relation equations. As we shall see, 

solutions to such systems are given in building a fashion, and they may be 

solvable. 
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1. Introduction: 

In mathematics, fuzzy sets (also known as uncertain    sets) are sets whose members may or may not 

be present. In 1965, Dieter Klaua and Lotfi A. Zadeh independently introduced fuzzy sets as an 

extension of the traditional notion of set. Fuzzy relations are specific examples of L-relations, which 

are used more and more frequently in fuzzy mathematics and have uses in areas like linguistics, 

decision-making, and clustering (De Cock, Bodenhofer, & Kerre 2000). (Bezdek 1978).In classical set 

theory, the membership of items in a set is assessed in binary terms in accordance with a bivalent 

condition; an element belongs to the set or it does not. 

Contrarily, fuzzy set theory permits a gradual evaluation of an element's membership in a set, which 

is defined by a membership function with a value in the real unit interval [0, 1].Due to the fact that the 

membership functions of fuzzy sets, which can only take values of 0 or 1, can only take values of 0 or 

1, the indicator functions of classical sets (also known as characteristic functions) are particular cases 

of these membership functions. Fuzzy set theory frequently refers to the traditional bivalent sets as 

crisp sets. When data is lacking or erroneous, the fuzzy set theory can be used to a variety of domains, 

including bioinformatics. 

A fuzzy relation is the Cartesian product of mathematical fuzzy sets. When two fuzzy sets are supplied, 

the fuzzy relation is equal to the cross product of the sets, which is created by vector multiplication. In 

order to give the fuzzy controller the ability to change its internal values, rule bases are often preserved 

as matrices. In contrast to Zadeh's idea of fuzzy logic in the wide sense, the phrase "mathematical 

fuzzy logic" is frequently referred to as "fuzzy logic in the limited sense" (FLn). It can be described as 
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a generalization of classical logic with particular qualities designed to address the vagueness 

phenomena. 

Numerous additions have been made to it, such as fuzzy natural logic (FNL), which tries to create a 

mathematical representation of how people naturally reason and emphasizes the importance of natural 

language. To evaluate a formula, such (propositional) logic requires an algebraic structure of truth 

degrees, just as classical logic. In mathematical fuzzy logic, the structure of truth degrees typically 

takes the form of a resituated lattice, ⟨L, ∧, ∨, ⊗, →, 0, 1⟩, where L is a collection of truth values 

(support), generalizing the Boolean algebra, ⟨{0, 1}, ∧, ∨, ¬, 0, 1⟩, as the structure of truth degrees in 

classical binary propositional logic. For additional information on mathematical fuzzy logic 

Practically speaking, a fuzzy relationship is described in a second table. A table with fuzzy values 

between 0 and 1 is first created. The if-then rules will then be applied to the values. An array of the 

generated numbers is kept in the table. Fuzzy relations can be employed in fuzzy databases. As a 

fundamental concept in fuzzy theory, fuzzy relations have found use in a number of fields, such as 

fuzzy clustering, uncertainty reasoning, and fuzzy control. When fuzzy relations are used in practice, 

it can be challenging to estimate and compare them. 

2. PRELIMINARY  

A. Union and intersection of fuzzy regions 

Definition 1 

Let BA
~

,
~

  R be general set, then  

R
~

= {((𝑎̃, 𝑏̃),
R
~  ( ba

~
,~ ))│( ba

~
,~ )ϵ BA

~~
 } is so-called a fuzzy relation from A

~
to B

~
. 

Definition 2 

Let ,
~

, RBA  and 

},:))(,{

};:))(,{

BbbbB

AaaaA

B

A

=

=




 be two fuzzy sets.  

Then, fuzzy relation ),(
~

BAR is well-defined as follows 

},),(:),(),,{((),(
~~

~ BAbababaBARR
R

=  is a fuzzy family member on BandA
~~

if  

))(),(min(),(

),(,)(),(

),(,)(),(

~

~

~

babaor

BAbabba

BAbaaba

BAR

BR

AR













 

Definition 3 

Let ZandR
~~

be two fuzzy family members in the same product spaces. Then the union and intersection 

of ZandR
~~

is well - defined as follows: 
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}),(:),(),,(max{),(,

}),(:)],(),{[(
~~

~~~~

~~

ZAbabababawhere

ZAbababaZR

ZRZR

ZR

=

=







  

}),(:),(),,(min{),(,

}),(:)],(),{[(
~~

~~~~

~~

ZAbabababawhere

ZAbababaZR

ZRZR

ZR

=

=





  

Definition 4 

An algebra L = ⟨L, ∧, ∨, ⊗, →, 0, 1⟩ is a resituated lattice if 

1. ⟨L, ∧, ∨, 0, 1⟩ is a lattice with the least and greatest element. 

2. ⟨L, ⊗, 1⟩ is a commutative monoid such that is isotone in both arguments.  

3. The operation is a residue with respect to, that is, it does not change the value of ⊗. 

a ⊗ b ≤ c  if and if only  a → c ≥ b . 

The relocated lattices depicted in the following photos are among the most common: 

Example  2.4.1 (G¨odel algebra) 

LG = ⟨[0, 1], ∧, ∨, →∧, 0, 1⟩ 

where the development ⊗ = ∧  

Example 2.4.2.   

L- Ukasiewicz algebra = ⟨[0, 1], ∧, ∨, ⊗ →⊗, 0, 1⟩ 

where 

a ⊗ b = 0 ∨ (a + b − 1) (2.1)   

a →⊗ b = 1 ∧ (1 − a + b), 

a ⊗ b ≤ a, a ⊗ b ≤ b (2.3)  

a → b = 1 whenever a ≤ b (2.4)  

a → c ≥ b → c whenever a ≤ b (2.5)  

a → b ≤ a → c whenever b ≤ c (2.6)  

a ⊗ (a → b) ≤ b (2.7)  

a → (b → c) = (a ⊗ b) → c = (b ⊗ a) → c (2.8) 

(a ∧ b) ⊗ c ≤ (a ⊗ c) ∧ (b ⊗ c) (2.9) 

(a ∨ b) ⊗ c = (a ⊗ b) ∨ (a ⊗ c) (2.10) 

(a ∨ b) → c = (a → c) ∧ (b → c) (2.11) 

(a → b) → b ≥ a ∨ b (2.12)  

Other operations can be specified for all a, b ∈ L, including negation, addition, and biresiduation (bi-

implication, residual equivalence).  
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a ↔ b = (a → b) ∧ (b → a), 

                         ¬a = a → 0 , 

a ⊕ b = ¬(¬a ⊗ ¬b) . 

B. Projection and cylindrical fuzzy relations 

Let  }),(:)),(),,(
~

~ BAbababaR
R

=  be the fuzzy dual relation, then  

The first prediction of R
~

 is defined as 

}),(:)),(max,{(
~

~
)1( BAbabaaR

Rb
= 

  

And the second prediction of R
~

is defined as  

}),(:)),(max,{(
~

~
)2( BAbababR

Ra
=   

Also, the total prediction is defined as  

}).(:),({maxmax
~

~
)( BAbabaR

Rba

T =   

C. Extension of the fuzzy relation in a cylinder 

A fuzzy relation named cyl X with a membership function of equal to is the cylindrical extension

BA  of a fuzzy set called X of a given A.  

BbAaaXbaXcyl = ,),(),(  

The B-projection filling all the columns of the connected matrix is referred to as "cylindrical extension 

from A-projection." Similar to cylindrical extension from projection, the relational matrix's rows of 

the B-projection are completely filled. Let U, V, W, Q be finite cosmoses, and let P, P1, P2  ∈ F(X × Y 

), S, S1, S2  ∈F(V  × W) and T∈F (W×Q).  

Furthermore, let ∪, ∩ denote the G odel union and intersection, correspondingly. 

Proposition 2.3.1 

(P ◦ S)T = ST ◦ PT , (P    S)T = ST D PT , 

(P D S)T = ST     PT , (P Q S)T = ST Q PT . 

Proposition 2.3.2.   

P1 ⊆ P2  ⇒ (P1 ◦ S) ⊆ (P2 ◦ S) , 

S1 ⊆ S2  ⇒ (P ◦ S1) ⊆ (P ◦ S2) , 

P1 ⊆ P2  ⇒ (P1     S) ⊇ (P2     S) , 

S1 ⊆ S2   ⇒  (P   S1) ⊆ (P    S2) , 

P1 ⊆ P2  ⇒ (P1 D S) ⊆ (P2 D S) , 

S1 ⊆ S2 ⇒ (P D S1) ⊇ (P D S2) . 
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Proposition 2.3.3.   

(P1 ∪ P2) ◦ S = (P1 ◦ S) ∪ (P2 ◦ S), 

P ◦ (S1 ∪ S2) = (P ◦ S1) ∪ (P ◦ S2), 

(P1 ∪ P2)     S = (P1     S) ∩ (P2     S), 

P   (S1 ∪ S2) ⊇ (P    S1) ∪ (P    S2), 

(P1 ∪ P2) D S ⊇ (P1 D S) ∪ (P2 D S), 

P D (S1 ∪ S2) = (P D S1) ∩ (P D S2). 

Proposition 2.3.4.   

(P1 ∩ P2) ◦ S ⊆ (P1 ◦ S) ∩ (P2 ◦ S), 

P ◦ (S1 ∩ S2) ⊆ (P ◦ S1) ∩ (P ◦ S2), (P1 ∩ P2) 

S ⊇ (P1     S) ∪ (P2     S), P   (S1 ∩ S2) = (P    S1) ∩ 

(P    S2), (P1 ∩ P2) D S = (P1 D S) ∩ (P2 D S), P D (S1 ∩ S2) ⊇ (P D S1) ∪ (P D S2) 

Proposition 2.3.5. 

P ◦ (S D T ) ⊆ (P ◦ S) D T, 

(P     S) ◦ T ⊆ P     (S ◦ T ). 

Proposition 2.3.6.  

P ◦ (S ◦ T ) = (P ◦ S) ◦ T , 

P   (S    T ) = (P ◦ S)    T , 

P   (S D T ) = (P    S) D T, 

Proposition 2.3.7.  

P Q S = (P   S) ∩ (P D S) 

Proposition 2.3.8. 

P ◦ S›E ⊆ (P ◦ S) ∩ ¬(P ◦ E), (2.13) 

P ◦ S›E ⊆ (P ◦ S) ∩ (P     ¬E). (2.14) 

Proof. 

It follows from property (2.7) 

(P ◦ S›E)(u,w) = P ◦ S)(u,w) ⊗ ¬(P ◦ E)(u,w) 

≤ (P ◦ S)(u,w) ∧ ¬(P ◦ E)(u,w) 

= ((P ◦ S) ∩ ¬(P ◦ E)) (u,w) 

For completely (u,w) ∈ U × W, which proves (2.13).  

The proof of (2.14) uses the circumstance that  

https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1y810tw
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1ljsd9k
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1ljsd9k
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(P ◦ S›E)(u,w) = (P ◦ S›E)Q(u,w)  

= (P ◦ S)(u,w) ⊗ (P¬E)(u,w) 

and analogously to the preceding one also the  

circumstance that lowest is the biggest t- norm.  

Proposition 2.3.9. 

(P ◦ S) ◦ T ›F = P ◦ (S ◦ T )›(S ◦ F ) (3.17) 

Proof.  

Based on the associative property of the basic compositions, (P ◦ S) ◦ T =P ◦ (S ◦ T ), we have 

((P ◦ S) ◦ T ›F )(u, u) = ((P ◦ S) ◦ T) (u, u) ⊗ ¬ ((P ◦ S) ◦ F ) (u, u) = (P ◦ (S ◦ T )) (u, u) ⊗ ¬ (P ◦ (S ◦ 

F )) (u, u) = (P ◦ (S ◦ T )›(S ◦ F )) (u,u) 

for all (u, u) ∈ U × U , which verifies (2.14)  

Proposition 2.3.10. 

S1 ⊆ S2 ⇒ (P ◦ S1
›E) ⊆ (P ◦ S2

›E), E1 ⊆ E2  

⇒ (P ◦ S›E1) ⊇ (P ◦ S›E2). 

Proof. Using belongings of the first argument of the suggestion and (2.7), we obtain  

(P ◦ S1
›E)(u,w) = (P ◦ S1)(u,w) ⊗ ¬(P ◦ E)(u,w) 

≤ (P ◦ S2)(u,w) ⊗ ¬(P ◦ E)(u,w)  

= (P ◦ S2
›E)(u,w) 

for all (u,w) ∈ X × Z. Thus, (P ◦ S1
›E) ⊆ (P ◦ S2

›E) Additionally,  

P ◦ S›E1)(u,w) = (P ◦ S)(u,w) ⊗ ¬(P ◦ E1)(u,w) 

≥ (P ◦ S)(u,w) ⊗ ¬(P ◦ E2)(u,w) 

= (P ◦ S›E2)(u,w)  

for all (u,w) ∈ X × Z.  Thus, (P ◦ S›E1) ⊇ (P ◦ S›E2).  

Theorem 2.3.11.   

P ◦ (S1 ∪ S2)
›E = (P ◦ S1

›E) ∪ (P ◦ S› E), (3.18) 

P ◦ S›(E1 ∪ E2) ⊆ (P ◦ S›E1) ∩ (P ◦ S›E2). (3.19) 

Proof. Using the properties (2.9), (2.10) and (2.11), we obtain 

(P ◦ (S1 ∪ S2)
›E)(u,w) = (P ◦ (S1 ∪ S2))(u,w) ⊗ ¬(P ◦ E)(u,w) 

= ((P ◦ S1) ∪ (P ◦ S2)) (u,w) ⊗ ¬(P ◦ E)(u,w) 

= ((P ◦ S1)(u,w) ∨ (P ◦ S2)(u,w)) ⊗ ¬(P ◦ E)(u,w) 

= ((P ◦ S1)(u,w) ⊗ ¬(P ◦ E)(u,w)) 

https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.2koq656
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1y810tw
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.3whwml4
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∨ ((P ◦ S2)(u,w) ⊗ ¬(P ◦ E)(u,w)) 

= ((P ◦ S› E) ∪ (P ◦ S› E)) (u,w) 

for all (u,w) ∈ U × W, which proves (2.15). Additionally, 

(P ◦ S›(E1 ∪ E2))(u,w) = (P ◦ S)(u,w) ⊗ ¬(P ◦ (E1 ∪ E2))(u,w) 

= (P ◦ S)(u,w) ⊗ ¬((P ◦ E1) ∪ (P ◦ E2))(u,w) 

= (P ◦ S)(u,w) ⊗ ¬((P ◦ E1)(u,w) ∨ (P ◦ E2)(u,w)) 

= (P ◦ S)(u,w) ⊗ (¬(P ◦ E1)(u,w) ∧ ¬(P ◦ E2)(u,w)) 

≤ ((P ◦ S)(u,w) ⊗ ¬(P ◦ E1)(u,w)) 

   ∧ ((P ◦ S)(u,w) ⊗ ¬(P ◦ E2)(u,w)) 

= ((P ◦ S›E1) ∩ (P ◦ S›E2))(u,w) 

for all (u,w) ∈ X × Z, which verifies (2.16).  

Theorem 3.2.6.    

P ◦ (S1 ∩ S2)
›E ⊆ (P ◦ S1

›E) ∩ (P ◦ S› E),   (2.20) 

P ◦ S›(E1 ∩ E2) ⊇ (P ◦ S›E1) ∪ (P ◦ S›E2). (2.21) 

Proof. Using the property (2.9), we obtain 

(P ◦ (S1 ∩ S2)
›E)(u,w) = (P ◦ (S1 ∩ S2))(u,w) ⊗ ¬(P ◦ E)(u,w) 

≤ ((P ◦ S1) ∩ (P ◦ S2)) (u,w) ⊗ ¬(P ◦ E)(u,w) 

= ((P ◦ S1)(u,w) ∧ (P ◦ S2)(u,w)) ⊗ ¬(P ◦ E)(u,w) 

≤ ((P ◦ S1)(u,w) ⊗ ¬(P ◦ E)(u,w)) 

   ∧ ((P ◦ S2)(u,w) ⊗ ¬(P ◦ E)(u,w)) 

= ((P ◦ S› E) ∩ (P ◦ S› E)) (u,w) 

for all (u,w) ∈ U × W, which verifies (2.20). Similarly, using the property (1.10) and (2.11), we obtain 

(P ◦ S›(E1 ∩ E2))(u,w) = (P ◦ S)(u,w) ⊗ ¬(P ◦ (E1 ∩ E2))(u,w) 

≥ (P ◦ S)(u,w) ⊗ ¬((P ◦ E1) ∩ (P ◦ E2))(u,w) 

= (P ◦ S)(u,w) ⊗ ¬((P ◦ E1)(u,w) ∧ (P ◦ E2)(u,w)) 

= (P ◦ S)(u,w) ⊗ (¬(P ◦ E1)(u,w) ∨ ¬(P ◦ E2)(u,w)) 

= ((P ◦ S)(u,w) ⊗ ¬(P ◦ E1)(u,w)) 

   ∨ ((P ◦ S)(u,w) ⊗ ¬(P ◦ E2)(u,w)) 

= ((P ◦ S›E1) ∪ (P ◦ S›E2))(u,w). 

for all (V, W) ∈ U × W, which verifies (3.21). 

 

https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1yyy98l
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1yyy98l
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.2y3w247
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.haapch
https://docs.google.com/document/d/1EeyonTVzDkkZxc9WcRzyZWVJu7UVYMi7/edit#heading=h.2y3w247
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3. Methodology 

Allow the two fuzzy relations ZandR
~~

to exist. The following two relations matrix then give the union 

of ZandR
~~

which can be understood as "a significantly larger than b" and "a is very close to b," i.e., 

"a considerably larger or very close to b." "a is significantly bigger than b" 

 

            

=R
~

 

 

"b is rather near a" 

 
1b
 2b

 3b
 4b

 

1a
 

.8 .9 .8 .7 

2a
 

.8 1 .5 .7 

3a
 

.6 .8 .8 .7 

=Z
~

 

}),(:),(),,(max{),(,

}),(:)],(),{[(
~~

~~~~

~~

ZAbabababawhere

ZAbababaZR

ZRZR

ZR

=

=







  

at that time  

 
1b
 2b

 3b
 4b

 

1a
 

.8 .9 0 .7 

2a
 

0 1 .3 .1 

3a
 

.6 .8 .7 .7 

= ZR
~~

  

}),(:),(),,(min{),(,

}),(:)],(),{[(
~~

~~~~

~~

ZAbabababawhere

ZAbababaZR

ZRZR

ZR

=

=





           

  
1b
 2b

 3b
 4b

 

1a
 

.3 0 0 .6 

2a
 

0 .4 .3 .1 

3a
 

.4 0 .7 .5 

 = ZR
~~

 

Let  ),(
~

BAR  be a fuzzy relation well defined by the resulting relation matrix. Then the first 

projection take ZR
~~

 values in above result substantially, 

 
1b
 2b

 3b
 4b

 

1a
 

.3 0 .8 .6 

2a
 

.8 .4 .5 .7 

3a
 

.4 0 .8 .5 



Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 27 No. 2 (2024) 

 

341 
https://internationalpubls.com 

First prediction =)1(~
R (.8, 1, .8) = max=1 

Second projection =)2(~
R (.8, 1, .7, .7) = max=1 

Total prediction =)(~ TR 1 

Then the cylindrical extension of 𝑅̃(1)is 

𝑅̃(1) = [
. 9 . 9 . 9 . 9
1 1 1 1
. 8 . 8 . 8 . 8

] 

The cylindrical extension of 
)2(~

R is 

𝑅̃(2) = [
. 8 1 . 7 . 7
. 8 1 . 7 . 7
. 8 1 . 7 . 7

] 

Because a fuzzy relation's first projection and domain, second projection and range, and overall 

projection and height are all the same, so too are all of these. 

4. Results 

The union of fuzzy relations is likewise satisfied for projection and cylindrical extension criteria, and 

the total projection is identical to the first and second projections. 

5. Conclusion 

Numerous academic disciplines as well as personal applications use fuzzy sets and their applications. 

I made the decision to concentrate my research on the foundations of fuzzy relations, such as the 

definitions of union and intersection as well as the projection and cylindrical aspects of fuzzy relations, 

due to developments in technology. I then went on to my next research endeavour, a district-by-district 

computation of accident leading utilising fuzzy relations equations and fuzzy quantifiers. 
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