
Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 28 No. 7s (2025)                                                                                                                                  

 
903 

https://internationalpubls.com 

Banach Contraction Principle its Generalizations and 

Applications 

Ashish Kumar*, Lokesh Joshi**and Mukesh Bijalwan* 

*Department of Applied Sciences and Humanities (Mathematics), Himalayan School of Science and 

Technology,Swami Rama Himalayan University, Dehradun 

** Department of Applied Science, Faculty of Engineering & Technology, Gurukula Kangri (Deemed to be 

University), Haridwar 

Article History: 

Received: 10-04-2025 

Revised: 27-05-2025 

Accepted: 07-06-2025 

Abstract: The Banach Contraction Principle (BCP), a cornerstone of fixed-point theory, 

employs the method of successive approximations to determine fixed points of operator 

equations. These fixed points often represent solutions to complex mathematical 

problems, making the principle highly valuable in a wide range of scientific and 

technological disciplines. Over time, numerous extensions and modifications of the 

classical BCP have been developed to broaden its scope and adapt it to more complex 

systems. This paper aims to explore these generalizations and highlight their 

significance in various mathematical contexts. In particular, it focuses on their 

application within iterated function systems (IFS), where repeated function application 

results in the formation of self-similar patterns. These patterns, known as fractals, 

possess unique geometric structures and have applications in modeling natural 

phenomena and solving real-world problems. By analyzing these generalizations, the 

study underscores how BCP continues to evolve as a powerful mathematical tool, 

offering insights into both abstract theory and practical implementations. Through this 

discussion, the paper emphasizes the enduring relevance of fixed point methods and 

their expanding role in the study of dynamic systems and geometric constructions. 
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1. Introduction 

The classical Banach contraction principle (BCP) is a fundamental tool in fixed-point theory, widely applied 

across mathematics, science, and engineering. It employs an iterative method, where a function is repeatedly 

applied to an initial value, generating a sequence that progressively approaches a stable solution. This sequence 

operates like a feedback loop—each output becomes the next input—leading to convergence at a single, 

unchanging value known as the fixed point. 

What makes BCP particularly powerful is its ability to guarantee both the existence and uniqueness of this fixed 

point under specific conditions, especially in complete metric spaces. The iterative process ensures that, regardless 

of the starting point, the sequence will draw closer to the fixed point, provided the mapping satisfies a contraction 

condition—typically, that it brings points closer together by a constant factor less than one. 

Beyond its mathematical elegance, BCP finds real-world applications in solving equations that arise in various 

fields, such as differential equations in physics, optimization problems in engineering, and models in biological 

systems. Its simplicity and reliability have made it a cornerstone of modern analysis and a foundational concept 

in nonlinear functional analysis and computational methods. (see for instance, Barnsley [2] and Zeidler [31]). 

Let (X, d) be a metric space. The Bcp states that a self-map T of complete metric space X admits a unique fixed 

point if T is a Banach contraction, i.e. if T satisfies  

,,),,(),( XyxyxkdTyTxd  (1.1) 
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where .10 k One of the earliest generalizations of condition (1.1) is due to Edelstein [8] he proved that the 

map T satisfying the following condition has a unique fixed point provided that space X is compact. 

XyxyxdTyTxd  ,),,(),( with .yx (1.2) 

For some fundamental generalizations of condition (1.1) and their comparison, one may refer to Rhoades [25], 

Jachymski [11], Kumar et al. [16] and Kumar [17] (see also Kirk and Sims [15]). 

Rakotch [24] gave a new direction to the study of fixed-point theory by replacing constant k in (1.1) by some real-

valued function. He considered: 

,,),,()),((),( XyxyxdyxdTyTxd  (1.3)           

where ),0[),0[: +→+ is a monotonically decreasing function. 

Given a function ),0[),0[: +→+  such that tt )( for 0t , and a self-map T of X. Then we say that 

Tis  -contractive if  

.,),,(),( XyxyxdTyTxd  (1.4) 

In general, when condition (1.4) is satisfied, the associated function is referred to as a contractive gauge function 

(see [10]). Several types of such functions have been explored to extend the foundational result originally proposed 

by Rakotch [24]. One notable advancement came from Browder [5], who formulated a fixed point theorem for 

mappings defined on complete and bounded metric spaces, where the contractive function is assumed to be 

nondecreasing and right-continuous. 

Subsequently, Boyd and Wong [4] broadened Browder’s result by removing the requirement of the metric space 

being bounded. Instead, they considered functions that are upper semi-continuous from the right, without requiring 

monotonicity. Under this framework, they established a fixed point theorem for so-called φ\varphiφ-contractive 

mappings (also discussed by Kirk and Sims [15]). 

Further developments were made by Matkowski [19], who extended Browder’s result in a different direction. He 

allowed the contractive function to be nondecreasing but not necessarily upper semi-continuous. Under this 

approach, the function must satisfy both condition (1.4) and an additional compatibility condition, which ensures 

the convergence required for fixed point existence. These generalizations have played a significant role in 

advancing fixed point theory in metric spaces. 

                     
,0)(lim =→ tn

n  for .0t                                                                           (1.5) 

 We remark that the classes of contractive guage functions studied by Boyd and Wong [4] and Matowski 

[19] are independent (see Jachymski [12, p. 2328 and p. 2334] and Jachymski [13, p.151]. 

Recently, Ri [27] replaced the condition of upper semi continuity of the guage function by the following 

condition and generalized the result of Boyd and Wong [4]. 

                     
ts

ts


+→
)(suplim  for all .0t

                                                                         
(1.6) 

We remark that the condition (1.6) on  implies the upper semi continuity of (see Suzuki [28]).   

The following theorem is essentially due to Ri [27]. 

Theorem 1.1 [27]. Let T be a self-map of a complete metric space X satisfying the condition (1.4) where 

),0[),0[: +→+ with tt )( satisfies condition (1.6) then T has a unique fixed point in X. 

 We remark that the guage function ),0[),0[: +→+ with tt )( satisfying condition (1.6) was 

perhaps first studied by Jotic [14]. He proved the following theorem. 
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Theorem 1.2 [14]. Let T be a self-map of complete metric space X satisfying condition 

                           ),,(),( 2 TxxdxTTxd  for every .Xx  

where ),0[),0[: +→+ with tt )( satisfies condition (1.6). Then )}({ xT n
is a Cauchy sequence. 

Further, if a map G(x) = d (x, Tx) is lower semi continuous at a limit point of )},({ xT n
say x*, then x* is a fixed 

point of T. 

Babu and Kameswari [1] gave the following counterexample to the result of Jotic [14] and demonstrated that with 

the present hypothesis Theorem 1.2 is not valid. 

Example 1.1. [1]. Let },...3,2,1:
1

{
1

==  =
n

k
X

n

k
with the usual metric. Define self-map T on X by 

                 

= =
)

1
(

1

n

k k
T .

11

1
+

=

n

k k
 

Further define ),0[),0[: +→+ by
1)1( −+= tt for 0t . Then T and satisfy all the conditions of 

Theorem 1.2 above and the sequence }{ nx defined by 1+= nn xTx with 10 =x is not Cauchy in X, It may also be 

observed that T is asymptotic regular at 0x . 

Inspired by the above Example 1.1 of Babu and Kameswari [1], in 2019 Bisht [3] utilized the same example to 

disprove the result proved by Ri [27]. Bisht [3] assumed that T and  satisfy the condition (1.4) of Theorem 1.1 

but sequence }{ nx is not a Cauchy sequence for .10 =x  

Dung and Sintunavarat [7] recalculated the Example 1.1 and concluded that the observation of Bisht [3] for 

Theorem of Ri [27] (cf. Theorem (1.1) in light of Example 1.1 is incorrect. In particular if x=1 and 
3

1

2

1
1 ++=y

in Example 1.1 then condition (1.4) of Theorem 1.1 is not satisfied. Showing the validity of Theorem 1.1. 

Let }0t allfor r   (t)suplim )(:),0(),0(:{
rt

→=
+→

 andtt . We note the following 

definitions. 

For ,0 Xx  the set }....,2,1,0:{),( 00 == nxTTxO n
is called the orbit of T at .0x  

Definition 1.1. [1], [3].A self-map T of X is said to be orbitally continuous at a point Xz iffor any sequence

),(}{ TxOxn  for some zxXx n → , implies TzTxn → as .→n  

Every continuous self-map in a metric space is orbitally continuous however the converse of this is not true. 

Definition 1.2. [1], [3]. A space X is said to be T-orbitally complete iff every Cauchy sequence contained in 

),( TxO for some Xx converges in X. 

 We remark that every complete metric space is T-orbitally complete for any T but an T- orbitally complete 

metric space need not be a complete space. 

Definition 1.3. [1]. A self-map T of metric space X is said to be asymptotically regular if  

                 
0),(lim 1 =+

→ xTxTd nn

n
for all ., Xyx   

The following result is precisely due to Babu and Kameswari [1]. 
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Theorem 1.3. [1]. Let (X, d) be T-orbitally complete and T be a self-map of X. Let there exists 
0

x for some

,0 Xx  such that 

           
)),,((),(

0
yxdTyTxd x for every yx and .),(0, 0 Txyx 

                               
(1.7) 

Then the sequence }{ nx is Cauchy in X and .,lim Xzzxnn =→ If T is orbitally continuous at z then z is a 

fixed point of T and z is unique in the sense that ),(0 0 Tx contains one and only one fixed point of T. 

Pant [21] considered the following Suzuki type generalized  -contractive condition to generalize the result 

obtained by Ri [27]. 

),(),(
2

1
yxdTxxd  implies )},(),,(),,((max{),( TyydTxxdyxdTyTxd  for all ,, Xyx  where  

.                                                                                                                                                              (1.8) 

This paper presents new fixed point theorems involving Suzuki-type ϕ-contractions, which extend and generalize 

several well-known results in fixed point theory. Notably, the findings encompass and build upon the work of 

researchers such as Jotic, Mukharjee, Babu and Kameswari, Ri, Bisht, and Boyd and Wong. A key feature of this 

approach is the use of T-orbital complete metric spaces rather than traditional complete metric spaces, allowing 

for broader applicability. Importantly, the existence and uniqueness of a fixed point are established without 

imposing any continuity conditions on the mapping, which marks a significant relaxation of traditional 

assumptions. In the final section of the paper, attention is given to the concept of Iterated Function Systems (IFS) 

and their relationship with fractals. The study demonstrates how a fractal set can be generated as the unique fixed 

point of an IFS using Suzuki-type ϕ-contractions. This connection highlights the practical relevance of the 

theoretical results in modeling self-similar structures. Overall, the work offers a meaningful contribution to fixed 

point theory by expanding the class of contraction mappings and by applying these findings to the construction of 

fractals through IFS. 

2. Fixed Point Theorems. 

Throughout the paper, let N denotes the set of natural numbers,  

)]},,(),([
2

1
),,(),,(),,(max{),( TxydTyxdTyydTxxdyxdyxM +=  

.10)},,(),()1(),,()1(),(),,(max{),( +−−+= aTyyadTxxdaTyydaTxxadyxdyxm  

Theorem 2.1. Let (X, d) be a T- orbitally complete metric space and T be a self-map of X such that for all 

,, Xyx   

              

),(),(
2

1
yxdTxxd  implies )),,((),( yxMTyTxd                                             (2.1) 

where .
 
Then T has a unique fixed point in X. 

Proof. Choose an arbitrary element Xx 0 and define a sequence }{ nx by
0xTx n

n = for all .Nn Let

).,(),( 10

1

0 +

+ == nn

nn

n xxxTxTa We show that na is a convergent sequence. Notice that for any ,Nn

),(),(
2

1
11 ++  nnnn xxdxxd using (2.1), we have 

)),((),(),( 1121 ++++ = nnnnnn xxMTxTxdxxd   
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 )]}),(),([
2

1
),,(),,(),,((max{ 1122111 +++++++ += nnnnnnnnnn xxdxxdxxdxxdxxd  

),(),(()]}),(),([
2

1
),,((max{ 111121 ++++++ =+= nnnnnnnnnn xxdxxdxxdxxdxxd  (2.2) 

Hence
nn aa +1

and }{ na is strictly decreasing sequence of real numbers. We therefore assert that nn a→lim

exists and tends to a limit ,0a i.e. .0lim =→ aann If a> 0 then using (2.2) we have, 

                        
),(1 nn aa +  

and 

                   
,)()(suplim aata

at
 +→

  

a contradiction. Therefore, for each ,Xx  

         
.0),(lim),(limlim 10

1

0 === +→

+

→→ nnn

nn

nnn xxdxTxTda                                        (2.3) 

This shows that map T is asymptotically regular at some point .0 Xx   

Now we show that ),(}{ 0 Txoxn  is a Cauchy sequence. If not, there exists an 0 and integers kk nm , with 

knm kk  such that ),( mknk xxd and  .),( 1 −mknk xxd  

Hence 

             
).,(),(),(),( 111 mkmkmkmkmknkmknk xxdxxdxxdxxd −−− ++   

Now, 0),(lim 1 =−→ mkmkk xxd implies .),(lim =→ mknkk xxd
                                              

(2.4) 

Notice that .0),(limlim 1 == +→→ nnnnn xxda So there exists some integer k such that 

            

),(),(
2

1
1 mknknknk xxdxxd + for .knm kk  Using (2.1), we have 

            
)).,((),(),( 11 mknkmknkmknk xxMTxTxdxxd =++  

Using triangle inequality 

          

)),((),(),(),(),( 1111 mknkmknkmkmkmknknknkmknk xxMaaxxdxxdxxdxxd  ++++ ++++
 

)]}).,(),([
2

1
),,(),,(),,((max{ 1111 ++++ +++= nkmkmknkmkmknknkmknkmknk xxdxxdxxdxxdxxdaa       

                                                                                                                                             (2.5)

 
Consider the inequality 

                
),,(),(),( 11 mknknknkmknk xxdxxdxxd ++ +

 

letting →k and using (2.3) and (2.4), we have 

                  
).,(lim 1+→ nkmkk xxd                                                                                                            (2.6) 
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Now using again (2.3) and the inequality 

              
),(),(),( 11 mknknknknkmk xxdxxdxxd + ++  

yields .),(lim 1 +→ nkmkk xxd
                                                                                             

(2.7) 

From (2.6) and (2.7) 

             
.),(lim 1 =+→ nkmkk xxd

                                                                                         
(2.8) 

Similarly, it can be shown that 

            
.),(lim 1 =+→ mknkk xxd

                                                                                              
(2.9) 

Hence using (2.3), (2.4), (2.8) and (2.9) in (2.5) and by the property of , we have 

                  
,)(suplim),(lim 


= +→→ txxd

tmknkk
 

a contradiction. Hence ),(}{ 0 Axox n  is a Cauchy sequence. Since X is T-orbitally complete, there exists a 

point Xz such that zxn → as .→n  

We claim that 

                   

),(),(
2

1
1 zxdxxd nnn + or ).,(),(

2

1
121 zxdxxd nnn +++ 

                              

(2.10) 

Otherwise, we have 

                

),(
2

1
),( 1+ nnn xxdzxd and .),(

2

1
),( 211 +++  nnn xxdzxd

                               

(2.11) 

Using (2.11), 

                  

),(
2

1
),(

2

1
),(),(),( 21111 +++++ ++ nnnnnnnn xxdxxdzxdzxdxxd  

                                    

),,(),(
2

1
),(

2

1
111 +++ =+ nnnnnn xxdxxdxxd  

a contradiction. Therefore (2.10) is true. 

Considering ),(),(
2

1
1 zxdxxd nnn + we get 

                    

),,(),(
2

1
),(

2

1
1 zxdTxxdxxd nnnnn =+ by (2.1) we have 

                       
)).,((),(),( 1 zxMTzTxdTzxd nnn =+  

Making →n we obtain 

),,()),((lim),(lim),( 1 TzzdTzzdTzxdTzzd nnn = →+→   

a contradiction. This yields .zTz= Uniqueness of fixed point follows easily. 
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To appreciate the wide-ranging applicability of Theorem 2.1, it is useful to examine the comparative study by 

Rhoades [25], where numerous contractive conditions are systematically analyzed. In particular, condition (2.1) 

of Theorem 2.1 serves as a Suzuki-type modification of the condition labeled as (21′) in Rhoades [25, p. 267]. 

This modified form reflects a significant generalization, showcasing how Theorem 2.1 extends beyond classical 

contractive frameworks. By incorporating elements of Suzuki-type contractions, the theorem enables the 

exploration of fixed-point results in more generalized settings, thus accommodating mappings that may not satisfy 

the stricter conditions of traditional fixed-point theorems. This generality enhances its utility in various 

mathematical and applied contexts, particularly in problems involving iterative procedures and convergence 

analysis. The comparison with earlier contractive conditions not only emphasizes the strength and flexibility of 

Theorem 2.1 but also situates it within a broader spectrum of fixed-point results. As such, it serves as a valuable 

tool in the ongoing development of fixed-point theory, particularly in spaces where standard contractive 

requirements are either too restrictive or not directly applicable. 

                    .10),,(),(  ayxMaTyTxd                                                                                         (C) 

We remark that condition (C) is general than many well-known conditions in the ambit of metric fixed point 

theory. 

The following theorem can immediately be obtained by replacing T-orbital complete metric space by complete 

metric space. 

Theorem 2.2. Let T be a self-map of a complete metric space satisfying the condition (2.1). Then T has a unique 

fixed point in X. 

The following example vindicates the generality of above Theorem as compared to Theorem 2.1 [3], Theorem 2.1 

[27] and the theorems proved in [1, 4, 14, 20]. 

Example 2.1. Let X = {(0, 0), (0, 4), (4, 0), (4, 5), (5, 4)} and the metric on X be defined by 

                     .)],(,),[( 22112121 yxyxyyxxd −+−=  

  Further, suppose self-map T on X and function ),0(),0(: →  be such that  

                     








=

212

211

21
),0(

)0,(
),(

xxifx

xxifx
xxT

    
and                










−



=

.1
6

1

1
4)(

2

tift

tif
t

t  

          

 

 

                                                                   

 

 

 

 

 

 

Graphical Plot of function ϕ(t) 

𝜙(𝑡) 

t 
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Then it can be verified that all the conditions of Theorem 2.2 are satisfied and x = (0, 0) is the unique fixed point 

of T. Further, notice that map T does not satisfy the condition (i) of Theorem 2.1 of [3] for (x, y) = ((4, 5), (5, 4)) 

as well as for (x, y) = ((5, 4), (4, 5)). 

                    Following Theorem is just another version of Theorem 2.1 which includes the results of Babu and 

Kameswari [1] and Bisht [3].  

Theorem 2.3. Let (X, d) be a T- orbitally complete metric space and the self-map T of X satisfies the condition 

(2.1). Then the sequence }{ nx defined by
0xTx n

n = is Cauchy in X and .,lim Xzzxnn =→ If T is 

orbitally continuous at z then z is unique fixed point of T. 

Following theorem generalizes the main result of Bisht [3], it can be proved in the same manner as Theorem 2.1 

is proved. 

Theorem 2.4. Let (X, d) be a T- orbitally complete metric space and self mapT of Xbe such that for all ,, Xyx   

               

),(),(
2

1
yxdTxxd  implies )),,((),( yxmTyTxd                                                  (2.12) 

where . Then T has a unique fixed point in X. 

From Theorem 2.1 we can derive some corollaries.  

Corollary2.1. Let T be a self-map of a complete metric space satisfying the condition (2.1) where

0t allfor  )(:),0(),0(: → tt is an increasing and right continuous function. Then T has a unique 

fixed point in X. 

Corollary2.2. Let T be a self-map of a complete metric space satisfying the condition (2.1) where

0t allfor  )(:),0(),0(: → tt is upper semi-continuous from the right on ).,0(  Then T has a 

unique fixed point in X. 

3. Application to Iterated Function Systems. 

The Banach Contraction Principle (BCP) finds a significant application in the theory of Iterated Function Systems 

(IFS) and the study of fractals. Fractals, a term introduced by Benoît Mandelbrot, describe complex geometric 

structures that exhibit self-similarity across different scales. In other words, when these structures are magnified, 

their smaller components appear similar or identical to the entire object, maintaining the same pattern regardless 

of the level of zoom. 

The mathematical foundation for self-similar fractal sets was established by Hutchinson, who introduced the 

formal concept of IFS—a collection of contraction mappings on a complete metric space. This framework allows 

for the construction of a unique compact set, known as the attractor or fractal, which remains invariant under the 

action of these functions. Barnsley later expanded Hutchinson's work by applying it more broadly, illustrating 

how fractals can be generated using simple mathematical rules with repeated iteration. 

By applying BCP within the context of IFS, it is possible to guarantee the existence and uniqueness of such 

attractors. This connection not only strengthens the theoretical understanding of fractals but also provides practical 

methods for generating them, with applications spanning computer graphics, natural modeling, and various 

scientific simulations. 

 Let (X, d) be a metric space and H(X) be the class of all non-empty compact subsets of X. We recall the 

following distance functions. 

}:),(sup{),( AxBxdBAD = where }.:),(inf{),( BbbadBxd =  

The Hausdorff - Pompeiu metric h on H(X) is defined as 

)},(),,(max{),( ABDBADBAh == for all ).(, XHBA   
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The fundamental result on which the basic theory of IFS is based stems from Banach contraction principle (Bcp). 

Indeed an IFS consists of a complete metric space (X, d) together with a finite set of contraction maps.  

The basic result of Huchinson and Barnsley says that if all the self-maps nTTT ,...,, 21  

Of X are Banach contractions then the operator defined as 

,),()(...)()()(
1

21 XAATATATATAT i

n

i
n ==

=

  

is a Banach contraction on H(X) endowed with metric H Consequently, T


has a unique fixed point in H(X), which 

is called fractal in the sense of Barnsley.  

The theory developed by Hutchinson and Barnsley has been generalized and extended by various researchers 

through the replacement of the classical Banach contraction principle (BCP) with other fixed-point theorems in 

metric spaces (see, for example, [6], [21–23], [26–27], [29–30]). These efforts have broadened the applicability 

of fractal construction methods by allowing for more generalized contractive conditions. In this context, we make 

use of Theorem 1.2 to construct a fractal set via an iterated function system (IFS). The application of this theorem 

enables the generation of self-similar structures beyond the scope of traditional contraction mappings. By doing 

so, it not only preserves the essence of the original approach introduced by Hutchinson and Barnsley but also 

offers a more flexible framework for analyzing fractal geometry within a generalized metric setting. This 

highlights the significance of alternative fixed-point results in advancing the theory and applications of iterated 

function systems. 

We will use following lemmas to obtain the main Theorem of the section.  

Lemma 3. 1. [2]. If (X, d) is a complete metric space then (H(X), h) is also a complete metric space. 

Lemma 3.2. Let XXT →: be a continuous self-map of a metric space X satisfying the condition (2.1). Then 

for all ),(, XHBA  the map )()(: XHXHT → defined by }:)({)( BxxTBT = satisfies the following 

condition on ),)(( hXH  

),())(,(
2

1
BAhATAh  implies )),,(())(),(( BAMBTATh h (3.1) 

where )]}.(,()(,([
2

1
),(,(),(,(),,(max{)),( ATBhBTAhBTBhATAhBAhBAM h +=  

Proof. Let )(, XHBA  and .0 Ax  By compactness of A and B, there exists By 0 such that 

).,(inf),( 000 yxdyxd By=  

These yields 

)).,((inf)),(()),((inf 0000 yxdyxdyxd ByBy  =   

Using the definitions of Haus Dorff distance and supremum we have, 

).,()),((infsup)),((inf 0 BAMyxdyxd hByAxBy  
 

By the monotone non-decreasing property of , it follows that 

)).,(())),((inf(sup))),(((inf 0 BAMyxdyxd hByAxBy   
 

0x being arbitrary in the above inequality, it is that 
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)).,(()),(((infsup BAMyxd hByAx  
 

Therefore, 

)),,(()),((infsup)),((infsup BAMyxdyxd hByAxByAx   
and 

)).,(()),((infsup)),((infsup BAMyxdyxd hAxByAxBy   
 

Now for all ,,, ByAx   

),(),(
2

1
yxdTxxd  implies ),,())(,(

2

1
))(,(

2

1
BAhATAhATAD   

also 

),(),(
2

1
yxdTyyd  implies ).,())(,(

2

1
))(,(

2

1
BAhBTBhBTBD   

Further, 

).,(infsup),(infsup)(),(( )()( TyTxdTyTxdBTATD ByAxBTTyATTx  ==  

As XXT →: satisfies (2.1), ))(,(
2

1
))(,(

2

1
ATAhATAD  implies  

)).,(()),((infsup))(),(( BAMyxdBTATD hByAx   
 

Analogously, )(,(
2

1
))(,(

2

1
BTBhBTBD  implies  

)).,(()),((infsup))(),(( BAMyxdBTBTD hAxBy   
 

Moreover, ))}(),((),(),(({max))(),(( ATBTDBTATDBTATh = and symmetry of ),( BAh leads us to 

conclude that for all ),(, XHBA   

),())(,(
2

1
BAhATAh  implies )).,(())(),(( BAMBTATh h This completes the proof. 

Lemma 3.3. Let (X, d) be a metric space and ,),()(: NnXHXHTn → be continuous maps on ),)(( hXH

satisfying the following condition for all ),(, XHBA   

),())(,(
2

1
BAhATAh n  implies )),,(())(),(( , BAMBTATh

nThnnn  (3.2) 

where ))]}.(,())(,([
2

1
)),(,()),(,(),,(max{),(, ATBhBTAhBTBhATAhBAhBAM nnnnTh n

+=  

Define )()(: XHXHT →


by 

),()(...)()()(
1

21 ATATATATAT i

n

i
n

=

== 


for each ).(XHA (3.3) 

ThenT


satisfies the following condition for all ),(, XHBA   
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),())(,(
2

1
BAhATAh 


implies )),,(())(),((

,
BAMBTATh

Th



 (3.4) 

where ))]}(,())(,([
2

1
)),(,()),(,(),,(max{),(

,
ATBhBTAhBTBhATAhBAhBAM

Th


 += and   

)..,..,32,1:(max nnn ==   

Proof. We shall relay on the mathematical induction and property of metric h to prove the lemma. For N =1, the 

statement is evident. For N = 2,  

}.))(),()),(),((max{))()(),()(())(),(( 22112121 BTATBTAThBTBTATAThBTATh = 


 

As 1T and 2T satisfy condition (3.2). Therefore, 

),())(,(
2

1
1 BAhATAh  implies )),(())(),((

1,11 BAMBTATh Thn and 

),())(,(
2

1
2 BAhATAh  implies )).,(())(),((

2,22 BAMBTATh Thn  

Hence, we get 

)),((),,((max())(),((
21 ,2,1 BAMBAMBTATh ThTh 

}]))()(,())()(,([
2

1
)),()(,()),()(,(),,({(max 21212121 ATATBhBTBTAhBTBTBhATATAhBAh  +=

))]}(,())(,([
2

1
)),(,()),(,(),,(max{ ATBhBTAhBTBhATAhBAh


+=  

                             )),,((
,

BAM
Th
= where }.,max{ 21  =  

 As a consequence of all the above results, we present the following theorem by means of which we 

construct a fractal set as a unique fixed point of IFS using condition (2.1). Our result generalizes the several 

results, among other, [21], [26-27]. 

Theorem 3.1.Let (X, d) be a complete metric space, ,),()(: NnXHXHTn →  be continuous maps on 

),)(( hXH and satisfy the condition (3.2) for all ).(, XHBA  Further, let the map )()(: XHXHT →


 

defined by (3.3) satisfies the condition (3.4). Then the map T


has a unique fixed-point A in H(X) which is also 

called an attractor or a fractal. Moreover ABT n

n =→ )(lim


for all ).(XHB  

Proof. Since (X, d) is a complete metric space therefore by lemma 3.1 (H(X), h) is also a complete metric space. 

Further, by lemma 3.3 the map T


satisfies the condition (3.4). Therefore, by the application of theorem 2.1, T


has a unique fixed point also called an attractor or a fractal. 

We finally pose the following questions. 

Question 1. Can we obtain Theorem 2.1 by replacing the condition (2.1) by the following condition:  

For all  ,, Xyx   

),(),(
2

1
yxdTxxd  implies )},,(),,(),,(),,(),,(max{),( TxydTyxdTyydTxxdyxdTyTxd   (3.5) 
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where .  

Precisely, we conjecture the following. 

Theorem 3.2. Let (X, d) be a T- orbitally complete metric space and T be a self-map of X such that condition (3.5) 

is satisfied then T has a unique fixed point in X.  

Question 2. Can we obtain Theorem 3.1 by replacing condition (3.2) by a more general condition.  

Indeed, it means whether the following is valid. 

Theorem3.3. Let (X, d) be a complete metric space, ,),()(: NnXHXHTn →  be continuous maps on 

),)(( hXH and satisfy the following condition, for all ),(, XHBA   

),())(,(
2

1
BAhATAh n  implies

)}.)(,(),(,(),(,(),(,(),,(max{))(),(( ATBhBTAhBTBhATAhBAhBTATh nnnnnnn   

Further, let the map )()(: XHXHT →


 defined by (3.3) satisfies the following condition  

),())(,(
2

1
BAhATAh 


implies

))},(,()),(,()),(,()),(,(),,(max{))(),(( ATBhBTAhBTBhATAhBAhBTATh


  

where )..,..,32,1:(max nnn ==   

Then the map T


has a unique fixed-point A in H(X). Moreover ABT n

n =→ )(lim


for all ).(XHB  

Conclusion: 

In this paper, we have explored the classical Banach Contraction Principle (BCP), its various generalizations, and 

significant applications, particularly in the context of fixed-point theory and iterated function systems (IFS). The 

generalizations studied, including those by Edelstein, Rakotch, Boyd and Wong, Browder, Matkowski, Ri, and 

others, demonstrate the evolution of contractive conditions beyond simple linear constraints to more flexible 

gauge functions. Central to our discussion is the introduction and validation of Suzuki-type φ-contractions within 

T-orbitally complete metric spaces. The results presented in Theorems 2.1 through 2.4 not only encompass 

existing theorems in the literature but also expand their applicability by eliminating the need for continuity or 

completeness conditions in some cases. These extensions allow the identification of unique fixed points under 

broader settings, enhancing the utility of fixed-point theory in abstract and applied mathematics. Further, the 

application of these generalized contraction principles to IFS provides a novel approach to generating fractal sets, 

reaffirming the relevance of BCP-based results in mathematical modeling of self-similar structures. By employing 

Hausdorff–Pompeiu metrics and leveraging compactness, we establish the existence of unique attractors in fractal 

spaces through Theorem 3.1. The paper concludes by proposing conjectures for even broader generalizations of 

the current theorems. These open questions aim to stimulate further research into relaxing contractive constraints 

and expanding the scope of fixed-point results. Overall, this work bridges classical theory with modern extensions, 

contributing to both theoretical enrichment and practical applications in fields where recursive mappings and 

invariance play a critical role. 
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