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Abstract: 

 In this paper, we present a novel concept “Line k-Domination in Graphs”. 

The line k-domination number 𝛾𝑘𝑙(𝐺) is the minimum cardinality among all 

𝑘-dominating set of line graph 𝐿(𝐺) derived from the graph 𝐺. Throughout 

this investigation, we obtain various bounds on 𝛾𝑘𝑙(𝐺) by considering 

different parameters of the graph G such as vertices, edges, and other 

different domination parameters. 
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Line k-domination number. 

 

1. Introduction 

In study, we examine a simple connected graph 𝐺 = (𝑉, 𝐸), where 𝑉 represents the vertex set 

and 𝐸 the edge set. Utilizing the notation introduced by Harary [8], the order and size of the 

graph 𝐺 are denoted by |𝑉(𝐺)| = 𝑝 and |𝐸(𝐺)| = 𝑞, respectively. For a vertex 𝑢 ∈ 𝐺, the 

degree of a vertex 𝑢, denoted as deg⁡(𝑢), refers to the number of edges incident on 𝑢. The 

minimum and maximum degree of a vertex 𝑢 are denoted by 𝛿 and Δ, respectively. Similarly, 

for an edge 𝑒 = 𝑢𝑣 in the graph 𝐺, the degree of the edge 𝑒 is expressed as deg(e) = deg(u) + 

deg(v) − 2, and the minimum (maximum) degree of an edge 𝑒 is denoted by 𝛿′(Δ′). The open 

neighborhood of a vertex 𝑢 is represented as 𝑁(𝑢) and it is the set of vertices adjacent to 𝑢. 

Furthermore, the closed neighborhood of vertex 𝑢, denoted as 𝑁[𝑢], is defined as 𝑁[𝑢] =

𝑁(𝑢) ∪ {𝑢}. Additional information regarding the concept of neighborhood can be found in 

the reference [10]. The vertex(edge) covering number, denoted as 𝛼0(𝐺)(𝛼1(𝐺)), in graph 𝐺 

is defined as the minimum cardinality of a vertex(edge) cover. An independent set 𝑀 of vertices 

is independent if none of its vertices are adjacent. The independence number 𝛽0(𝐺) of  𝐺 is the 

maximum Cardinality of an independent vertex set. Similarly, a set 𝑁 of edges is independent 

if no two edges in 𝑁⁡share an adjacent, and the edge independence number 𝛽1(𝐺) represents 

the maximum cardinality of an independent edge set. The graph’s diameter, 𝑑𝑖𝑎𝑚(𝐺), is 

defined as the maximum distance between any pair of vertices. For further notation, one can 

refer [11].  

A line graph, denoted as 𝐿(𝐺), is generated from a graph 𝐺 where vertices in 

𝐿(𝐺)⁡corresponding to edges of 𝐺, In 𝐿(𝐺), two vertices are considered adjacent if the 

corresponding edges in 𝐺 share a common vertex, in the original graph (see [3]). 
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Figure 1. Graph and its Line graph. 

We recalling fundamental definitions within domination theory. 

A set 𝐷 ⊆ 𝑉(𝐺) is a dominating set if, for every vertex 𝑢 ∈ 𝑉(𝐺) − 𝐷, 𝑁(𝑢) ∩ 𝐷 ≠ 𝜙. The 

domination number 𝛾(𝐺) represents the minimum cardinality of a dominating set in 𝐺. In 

scenarios where each vertex in 𝑉(𝐺) has at least one neighbor in 𝐷, the subset 𝐷 ⊆ 𝑉(𝐺) is a 

total dominating set. The 𝛾𝑡(𝐺)  denotes total domination number which is minimum 

cardinality of total dominating set, as detail in [2]. Further, a subset 𝐷 ⊆ 𝑉(𝐺) called an 

independent dominating set if the induced subgraph  < 𝐷 > has no edges. The 𝛾𝑖(𝐺) denotes 

independence domination number which is minimum cardinality independence dominating set 

(refer to [9]).  

Generalizing the concept of k-domination in [5-6], Fink and Jacobson from both domination 

and independence. A subset 𝐷 ⊆ 𝑉(𝐺) is 𝑘-dominating in 𝐺 if every vertex in 𝑉(𝐺) − 𝐷 is 

connected to at least 𝑘 vertices in 𝐷. The 𝛾𝑘(𝐺) denotes the 𝑘-domination number which is the 

minimum cardinality of 𝑘-dominating set of 𝐺. Various bounds on 𝑘-domination number 

discussed in [2-4, 7, 14]. The study by author in [13], the investigation of set-domination in 

line graph 𝐿(𝐺) of a graph 𝐺. This paper establishes bounds of 𝛾𝑠𝑑(𝐿(𝐺)) and provides exact 

values for certain standard graphs. Similarly, in [12] studied line double domination in graphs 

and found various bounds on 𝛾𝑑𝑑𝑙(𝐺) in relation to vertices, edges and other distinct parameters 

of 𝐺.  

This paper applies concept of k-domination of graph  𝐺⁡to its line graph 𝐿(𝐺). The line 𝑘-

domination number 𝛾𝑘𝑙(𝐺) is the minimum cardinality among all 𝑘-dominating sets of line 

graph 𝐿(𝐺). Within this investigation, numerous bounds on 𝛾𝑘𝑙(𝐺)  have been derived in terms 

of vertices, edges and other parameters of 𝐺. Furthermore, we establish relations between 

𝛾𝑘𝑙(𝐺)  and different domination parameters.   

2. Preliminaries 

Theorem 2.1.[15] If 𝐺 = (𝑝, 𝑞) is any graph, 𝛾(𝐺) ≥
𝑝

1+Δ(𝐺)
. 

Theorem 2.2.[1] If 𝐺 = (𝑝, 𝑞) is any graph, 𝛾(𝐺) ≥ 𝑝 − 𝑞. 
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3. Main Results 

In this section, numerous upper and lower bounds on 𝛾𝑘𝑙(𝐺) have been derived, considering 

vertices, edges, and various parameters of G. Additionally, relationships between 𝛾𝑘𝑙(𝐺) and 

distinct domination parameters are established. 

 I) Lower bounds on 𝛾𝑘𝑙(𝐺) 

Theorem 3.1. For any graph 𝐺 = (𝑝, 𝑞), 𝛾𝑘𝑙(𝐺) ≥
𝑞

Δ′(𝐺)+1
. 

Proof. Consider the vertex set 𝐴 = {𝑤1, 𝑤2, … , 𝑤𝑞}  of the line graph 𝐿(𝐺). Then there exists 

a minimal set 𝐴1 = {𝑤1, 𝑤2, … , 𝑤𝑠} ⊆ 𝐴 such that every vertex in 𝑉(𝐿(𝐺)) − 𝐴1 is adjacent to 

at least 𝑘⁡vertices of. Consequently, 𝐴1⁡stands as the minimal 𝑘-dominating set of 𝐿(𝐺). 

Clearly, |𝐴1| = 𝛾𝑘𝑙(𝐺). Since each vertex in 𝑉(𝐿(𝐺)) − 𝐴1 is adjacent to at least 𝑘 vertices of 

⁡𝐴1, every vertex in 𝑉(𝐿(𝐺)) − 𝐴1  contributes at least one to the sum of degree of vertices of 

⁡𝐴1. Hence, |𝑉(𝐿(𝐺)) − 𝐴1| ≤ ∑ deg⁡(𝑤𝑖)𝑤𝑖∈𝐴1
. For any graph 𝐺, there exists at least one edge 

𝑒 ∈ 𝐸(𝐺), which corresponds to a vertex in 𝐿(𝐺), such that deg(𝑒) = Δ′(𝐺) . 

We have,  𝑞 − 𝛾𝑘𝑙(𝐺) = |𝑉(𝐿(𝐺)) − 𝐴1| ≤ ∑ deg⁡(𝑤𝑖)𝑤𝑖∈𝐴1
.⁡      

                                                                     ≤ Δ′(𝐺) ⋅ 𝛾𝑘𝑙(𝐺) 

Thus, 𝛾𝑘𝑙(𝐺) ≥
𝑞

Δ′(𝐺)+1
.                                                                                                                                           

Corollary 3.2. For any graph 𝐺 = (𝑝, 𝑞), 𝛾𝑘𝑙(𝐺) ≥
𝑝−1

Δ′(𝐺)+1
. 

Proof. from Theorem 3.1, 𝛾𝑘𝑙(𝐺) ≥
𝑞

Δ′(𝐺)+1
. 

As we know, if 𝐺⁡is connected graph, 𝑞 ≥ 𝑝 − 1. 

Using this, we get required result.                                                                                                                     

Theorem 3.3. If 𝐺 = (𝑝, 𝑞) is any graph with 2 ≤ 𝑘 ≤ Δ(𝐺), 𝛾𝑘𝑙(𝐺) ≥ ⁡𝛾(𝐺) + 𝑘 − 2. 

Proof. Consider the vertex set 𝐴 = {𝑢1, 𝑢2, … , 𝑢𝑝} of a graph 𝐺 which contains a minimal set 

𝐷 that covers all the vertices of 𝐺. Then 𝐷 is minimal dominating set of 𝐺. Let 𝑆 ⊆ 𝑉(𝐿(𝐺)) 

be a minimum 𝑘-dominating set of 𝐿(𝐺). Take 𝑤 ∈ 𝑉(𝐿(𝐺)) − 𝑆 and 𝑤1, 𝑤2, … , 𝑤𝑘 as distinct 

vertices in 𝑆 that dominates 𝑤. As 𝑆 is a 𝑘-dominating set, every vertex in 𝑉(𝐿(𝐺)) − 𝑆  is 

dominated by at least one vertex in 𝑆 − {𝑤2, 𝑤3, … , 𝑤𝑘}. 

Therefore, since 𝑤 dominates each vertex in {𝑤2, 𝑤3, … , 𝑤𝑘}, we can form 𝑆′ = 𝑆 −

{𝑤2, 𝑤3, … , 𝑤𝑘} ∪ {𝑤} as dominating set of  𝐿(𝐺) that satisfies,      

                                      𝛾(𝐺) ≤ |𝑆′| = |𝑆 − {𝑤2, 𝑤3, … , 𝑤𝑘} ∪ {𝑤}|    

                                                           = 𝛾𝑘𝑙(𝐺) − 𝑘 + 2                                   

Thus, 𝛾𝑘𝑙(𝐺) ≥ ⁡𝛾(𝐺) + 𝑘 − 2.                                                                                                                       
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Theorem 3.4. For any graph 𝐺 = (𝑝, 𝑞) with 𝑘 ≥ 2, 𝛾𝑘𝑙(𝐺) ≥
𝑝

Δ(𝐺)
. 

Proof. Let set 𝐴 = {𝑢1, 𝑢2, … , 𝑢𝑝} represent vertex set of a graph 𝐺 then |𝐴| = |𝑉(𝐺)| = 𝑝. 

Now, consider set 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑞}  be the edges incident on vertices of 𝐴, and let 𝐵 =

{𝑤1, 𝑤2, … , 𝑤𝑞}  be the vertices of 𝐿(𝐺) corresponding to elements of 𝐸. Consequently, there 

exists a minimal set 𝐵1 = {𝑤1, 𝑤2, … , 𝑤𝑠} ⊆ 𝐵 such that every vertex in 𝑉(𝐿(𝐺)) − 𝐵1 is 

adjacent to at least 𝑘 vertices of 𝐵1. Thus, 𝐵1⁡serves as the minimal 𝑘-dominating set of 𝐿(𝐺). 

In this scenario where 𝑘 ≥ 2, we take 𝐴1 = {𝑢1, 𝑢2, … , 𝑢𝑚} ⊆ 𝐴 as the set containing all non-

end vertices in 𝐺. In 𝐵1, an edge is included, which is incident on a vertex 𝑢 with maximum 

degree in 𝐺. This construction ensures that, |𝐵1| ⋅ deg⁡(𝑢) ≥ 𝑝. Therefore, 𝛾𝑘𝑙(𝐺) ⋅ Δ(𝐺) ≥ 𝑝. 

Thus, we get result.                                                                                                                                               

Theorem 3.5. For any graph 𝐺 = (𝑝, 𝑞) and⁡𝑘 be any positive integer with 𝑘 ≥ Δ(𝐿(𝐺)), 

𝛾𝑘𝑙(𝐺) ≥ 𝑞 − 𝑠, where 𝑠 is number of vertices of degree Δ(𝐿(𝐺)). 

Proof. The lict graph has 𝑞⁡vertices corresponding to edges incident on vertices of 𝐺. Let 𝑆 =

{𝑤1, 𝑤2, … , 𝑤𝑠}  contains a vertices of degree Δ(𝐿(𝐺)). The proof is divided into two cases. 

Case (1): If |𝑆| = 1. In this case, the result hold trivially. 

Case (2): If |𝑆| > 1, 

Subcase (1). For 𝑘 ≥ Δ(𝐿(𝐺)), if the members of 𝑆 are adjacent to each other: In this scenario, 

a 𝑘-dominating set contain |𝑆| − 1 from 𝑆. We get required result. 

Subcase (2). For 𝑘 ≥ Δ(𝐿(𝐺)), if the members of 𝑆 are not adjacent to each other: In this case, 

there exists 𝑘  members from V(𝐿(𝐺) other than member of 𝑆 adjacent to every vertex of 𝑆. 

we get, 𝛾𝑘𝑙(𝐺) ≥ 𝑞 − 𝑠.  

II) Upper bounds on 𝛾𝑘𝑙(𝐺) 

Theorem 3.6. If 𝐺 = (𝑝, 𝑞) is any graph with 𝑘 ≤ 𝛿(𝐺), 𝛾𝑘𝑙(𝐺) + 𝛾(𝐿(𝐺)) ≤ 𝑞. 

Proof. For every 𝑘 ≤ 𝛿(𝐺), there exist set 𝑆 = {𝑤1, 𝑤2, … , 𝑤𝑟} ⊆ 𝑉(𝐿(𝐺)), be the minimal 𝑘-

dominating set of 𝐿(𝐺). Let’s assume that there exists vertex 𝑤 ∈ 𝑆 that is not adjacent to any 

vertices in 𝑉(𝐿(𝐺)) − 𝑆. This would imply that 𝑤 is adjacent to at least 𝑘 vertices in set 𝑆. 

Consequently, 𝑆 − {𝑤} is a minimal 𝑘-dominating set and |𝑆 − {𝑤}| < |𝑆|. However, this 

contradicts our initial that 𝑆 is minimal 𝑘-dominating set. Hence, every vertex in 𝑆 must be 

adjacent to at least one vertex in 𝑉(𝐿(𝐺)) − 𝑆. 

Thus, 𝑉(𝐿(𝐺)) − 𝑆 is the dominating set. Therefore, there exists a minimal set 𝐴 ⊆ 𝑉(𝐿(𝐺)) −

𝑆 that covers all the vertices in 𝑉(𝐿(𝐺)). This implies that 𝐴 is 𝛾-set of 𝐿(𝐺) and which 

conclude that, |𝐴| + |𝑆| ≤ |𝐸(𝐺)|. Hence, 𝛾𝑘𝑙(𝐺) + 𝛾(𝐿(𝐺)) ≤ 𝑞.                                                                                               

Corollary 3.7.  For any graph 𝐺 = (𝑝, 𝑞) with 𝑘 ≤ 𝛿(𝐺), 𝛾𝑘𝑙(𝐺) ≤
𝑞⋅Δ(𝐿(𝐺))

1+Δ(𝐿(𝐺))
. 
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Proof. From Theorem 2.1 for any graph 𝐺, 𝛾(𝐺) ≥
𝑝

1+Δ(𝐺)
, it also holds for line graph 𝐿(𝐺) of 

𝐺. So, we get  𝛾(𝐿(𝐺)) ≥
𝑞

1+Δ(𝐿(𝐺))
.  

Using this in Theorem 3.6, we obtain 

                                                             𝛾𝑘𝑙(𝐺) +
𝑞

1+Δ(𝐿(𝐺))
≤ 𝑞.  

Thus, 𝛾𝑘𝑙(𝐺) ≤
𝑞⋅Δ(𝐿(𝐺))

1+Δ(𝐿(𝐺))
.                                                                                                                               

Corollary 3.8. For any graph 𝐺 = (𝑝, 𝑞) with 𝑘 ≤ 𝛿(𝐺), 𝛾𝑘𝑙(𝐺) ≤
1

2
∑ 𝑑𝑖

2 − 𝑞𝑝
𝑖=1 . 

Proof. From Theorem 2.2 for any graph 𝐺, 𝛾(𝐺) ≥ 𝑞 − 𝑝, it also holds for line graph 𝐿(𝐺) 

of⁡𝐺. So, we get 𝛾(𝐿(𝐺)) ≤ 𝑞 − [
1

2
∑ 𝑑𝑖

2 − 𝑞𝑝
𝑖=1 ], where 𝑑𝑖’s are degree of vertices in 𝐺.                            

 Therefore,  𝛾(𝐿(𝐺)) ≤ 2𝑞 −
1

2
∑ 𝑑𝑖

2𝑝
𝑖=1 . 

Using this in Theorem 3.6, we have 

                                                           𝛾𝑘𝑙(𝐺) + 2𝑞 −
1

2
∑ 𝑑𝑖

2𝑝
𝑖=1 ≤ 𝑞. 

Thus, 𝛾𝑘𝑙(𝐺) ≤
1

2
∑ 𝑑𝑖

2 − 𝑞𝑝
𝑖=1 .                                                                                                                      

Theorem 3.9. If 𝐺 = (𝑝, 𝑞) is any graph, 𝛾𝑘𝑙(𝐺) ≤ 𝛼0(𝐺) + 𝛽0(𝐺) + 𝛾(𝐿(𝐺)). 

Proof. For any graph 𝐺 = (𝑝, 𝑞), let 𝛼0(𝐺) is the size of the minimum vertex cover of 𝐺, which 

ensures every edge in 𝐺 is incident to at least one vertex in this set. This implies that the vertices 

in the line graph 𝐿(𝐺) corresponding to these edges are dominated. Let 𝛽0(𝐺) be the size of 

the largest independent set in 𝐺, where no two vertices are adjacent, meaning the edges incident 

to these vertices are not directly connected in 𝐺. The vertices in 𝐿(𝐺) corresponding to these 

independent edges can be included without redundancy. Let 𝛾(𝐿(𝐺)) be the domination 

number of 𝐿(𝐺). 

Combining these, we construct a 𝑘-dominating set for 𝐿(𝐺) by considering the vertices 

corresponding to edges incident to the vertex cover 𝛼0(𝐺), the independent set 𝛽0(𝐺), and the 

dominating set in 𝐿(𝐺)  (𝛾(𝐿(𝐺))). The vertices from the vertex cover ensure coverage of 

edges, the independent set adds non-redundant vertices, and the domination set in 𝐿(𝐺) ensures 

every vertex in 𝐿(𝐺)  is sufficiently dominated. Since the 𝑘-domination number  

𝛾𝑘𝑙(𝐺)⁡requires that every vertex in 𝐿(𝐺)⁡not in the dominating set is adjacent to at least 𝑘 

vertices in the set, the combined set from 𝛼0(𝐺), 𝛽0(𝐺), and 𝛾(𝐿(𝐺)) ensures all vertices in 

𝐿(𝐺) are sufficiently covered. Therefore, we have 𝛾𝑘𝑙(𝐺) ≤ 𝛼0(𝐺) + 𝛽0(𝐺) + 𝛾(𝐿(𝐺). 

Theorem 3.10. If 𝐺 = (𝑝, 𝑞) is any graph, 𝛾𝑘𝑙(𝐺) ≤ 𝑝 + 𝛽0(𝐺). 

Proof. Case (1): If 𝐺 is a tree, then 𝑝 ≥ 𝑞 − 1, and the result holds clearly. 

Case (2): If 𝐺 is not a tree. 
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Consider the vertex set 𝑉(𝐺) = {𝑢1, 𝑢2, … , 𝑢𝑝} of graph 𝐺. There exists a maximum set 𝐴 =

{𝑢1, 𝑢2, … , 𝑢𝑡} ⊆ 𝑉(𝐺) of vertices such that 𝑁(𝑢) ∩ 𝑁(𝑣) = {𝑦}, ∀𝑢, 𝑣 ∈ 𝐴 and𝑦 ∈ V(𝐺) − 𝐴. 

This implies that 𝐴 is maximum independent set of vertices in 𝑉(𝐺) and |𝐴| = 𝛽0(𝐺). Since 𝐴 

is independent, no two vertices in 𝐴 are adjacent. Consequently, in 𝐿(𝐺), the vertices 

corresponding to edges incident to vertices in 𝐴 are not adjacent. This property of 𝐴 ensures 

that adding these vertices to our 𝑘-dominating set does not create redundancy. 

To construct a 𝑘-dominating set in 𝐿(𝐺), let 𝐵 be the set of vertices in 𝐿(𝐺) corresponding to 

edges incident to any vertex in 𝐺. Clearly, |𝐵| = 𝑝, as each vertex in 𝐺 can be covered by 

considering the edges incident to it. Adding the vertices corresponding to the independent set 

𝐴 without redundancy, we form the set 𝐷𝑘 = 𝐴 ∪ 𝐵 as the 𝑘-dominating set. 

Thus, 𝛾𝑘𝑙(𝐺) ≤ 𝑝 + 𝛽0(𝐺). 

Theorem 3.11. If 𝐺 = (𝑝, 𝑞) is any graph, 𝛾𝑘𝑙(𝐺) ≤ 𝛼0(𝐺) + 𝑝. 

Proof. Case (1): If 𝐺 is a tree, then 𝑝 ≥ 𝑞 − 1, and the result holds clearly. 

Case (2): If 𝐺 is not a tree. 

Let 𝐶 be a minimum vertex cover of 𝐶 with |𝐶| = 𝛼0(𝐺). Each edge in 𝐺 is thus represented 

in 𝐿(𝐺) by a vertex connected to at least one vertex corresponding to an edge incident to a 

vertex in 𝐶. The 𝑘-dominating set in 𝐿(𝐺) can be formed by including vertices corresponding 

to all edges incident to vertices in the vertex cover 𝐶 and vertices corresponding to the 

remaining edges incident on vertices of 𝐺. Each vertex in 𝐶 contributes to covering edges 

incident to it. If a vertex in 𝐺 is not in the vertex cover, it still has its incident edges covered by 

other vertices in the cover set. This ensures sufficient coverage for 𝑘-domination set of 𝐿(𝐺). 

Since each edge in 𝐺 is either incident to a vertex in 𝐶 or contributes a vertex in 𝐺, this 

guarantees that the total size of the 𝑘-dominating set of L(G)⁡does not exceed 𝛼0(𝐺) + 𝑝. Thus, 

𝛾𝑘𝑙(𝐺) ≤ 𝛼0(𝐺) + 𝑝. 

Theorem 3.12. If 𝐺 = (𝑝, 𝑞) is any graph, 𝛾𝑘𝑙(𝐺) ≤ 𝑑𝑖𝑎𝑚(𝐺) + 𝛽0(𝐺) + Δ′(𝐺). 

Proof.  Let 𝐴 = {𝑒𝑖⁡|⁡1 ≤ 𝑖 ≤ 𝑠}⁡be the edges lying on the longest path between two vertices 

𝑢⁡and 𝑣 of 𝐺. Additionally, let 𝐵 = {𝑢1, 𝑢2, … , 𝑢𝑡} be maximum independent set of  𝐺 and 𝐶 =

{𝑒𝑗⁡|⁡1 ≤ 𝑗 ≤ 𝑚} be edges such that 𝑒𝑗 incident on  𝑢𝑗  , for all  𝑢𝑗 ∈ 𝐵. Set 𝐷 = {𝑒𝑟⁡|⁡1 ≤ 𝑟 ≤ 𝑙}  

consist of edges adjacent to an edge of maximum degree other than the element of 𝐴 and 𝐶 

such that |𝐷| ≤ Δ′(𝐺). The elements of 𝐴, 𝐶 and 𝐷 are the member of 𝐿(𝐺). These sets provide 

sufficient coverage for the 𝑘-dominating set for 𝐿(𝐺).                                                   

Consider the set 𝐴1 ∪ 𝐶1 ∪ 𝐷1, where 𝐴1 ⊆ 𝐴, 𝐶1 ⊆ 𝐶 and 𝐷1 ⊆ 𝐷 forms a minimal 𝑘-

dominating set of 𝐿(𝐺). It follows that, |𝐴1 ∪ 𝐶1 ∪ 𝐷1| ≤ |𝐴| + |𝐶| +|D|. This implies that, 

)()()()( '
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III) Relations of 𝛾𝑘𝑙(𝐺) with different domination parameter 

Theorem 3.13. For any graph 𝐺 = (𝑝, 𝑞), 𝛾𝑘𝑙(𝐺) + 𝛾𝑖(𝐿(𝐺)) < 𝑞 + 𝛽1(𝐺). 

Proof. Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑞} be the edge set of 𝐺 then there is maximum set 𝐸1 ⊆ 𝐸 such that 

𝑁(𝑒𝑖) ∩ 𝑁(𝑒𝑗) = 𝜙  for all 𝑒𝑖, 𝑒𝑗 ∈ 𝐸1. This implies 𝐸1 forms a maximal independent set of 

edges and |𝐸1| = 𝛽1(𝐺). The elements of 𝐸1 corresponds to the vertices of 𝐿(𝐺), then there 

exists minimal subset  𝐸2 of  𝐸1 such that every element of  𝑉(𝐿(𝐺)) − 𝐸2 is adjacent to at 

least one vertex of 𝐸2, and  𝐸2 is an independent set. This implies that  𝐸2 is an independent 

dominating set of  𝐿(𝐺) with  |𝐸2| ≤ |⁡𝐸1|. Consequently, we have 𝛾𝑖(𝐿(𝐺)) ≤ 𝛽1(𝐺) and we 

know that, 𝛾𝑘𝑙(𝐺) < 𝑞. Thus, we get required result. 

Theorem 3.14. For any graph 𝐺 = (𝑝, 𝑞), 𝛾𝑘𝑙(𝐺) + 𝛾(𝐺) ≥ 𝛾𝑡(𝐺). 

Proof. Let 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑝} be the vertex set of 𝐺, then there exists minimal dominating 

set 𝐴 = {𝑣1, 𝑣2, … , 𝑣𝑠} of 𝐺 such that |𝐴| = 𝛾(𝐺). 

The proof is divided into two parts. 

Case (1): If 𝛾(𝐺) = 𝛾𝑡(𝐺), result hold trivially. 

Case (2): If 𝛾(𝐺) ≠ 𝛾𝑡(𝐺), the set  𝐴  ensures that all vertices in 𝐺⁡are adjacent to at least one 

vertex in 𝐴. However, this does not guarantee that 𝐴 total dominating set, as vertices in 𝐴 need 

to be dominated as well. The set 𝐷𝑘 ensures that each vertex in 𝐿(𝐺) (representing an edge in 

𝐺) is adjacent to at least 𝑘 vertices in 𝐷𝑘. This property helps in ensuring that edges (and their 

corresponding vertices) in 𝐺 are sufficiently added to the set 𝐴 to obtain total dominating set. 

Therefore, the total domination number 𝛾𝑡(𝐺) is bounded above by the sum of the domination 

number and the 𝑘-domination number of the 𝐿(𝐺). 

4. Conclusion 

In this paper, 𝑘-domination in line graph is defined. Theorems related to line 𝑘-domination are 

derived and the relation between other different domination parameters. Also, obtained many 

bounds on 𝛾𝑘𝑙(𝐺) in terms of vertices, edges and other different parameters of 𝐺. 
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