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The growth in plant disease occurrence has heavily threatened global agricultural 
productivity. Therefore, highly efficient and automated diagnostic tools need to be 

developed in the current scenario. Rapid advancement in machine learning and deep 

learning techniques makes present reviews far from conducting comprehensive 

comparative evaluations of cutting-edge models especially for important crops such 

as grapes related to plant disease detection. These reviews inadequately address the 

challenges of model interpretability, computational efficiency, and adaptability to 

various datasets, thus opening the doors for gaps in applying such technologies in 

actual farm-related settings. This paper seeks to address these limitations by doing a 

-guided systematic review of the latest ML and DL models including CNNs, Vision 

Transformers (ViTs), and hybrid ensemble approaches like DenseNet121, 

MobileNetV3Large, and Inception-ResNet-V2. The performance is evaluated in 

terms of major metrics such as accuracy, precision, recall, F1-score, and 
computational efficiency. Some of the new architectures include dual-track networks 

with Swin Transformers and group shuffle residual deformable nets, among others 

like interpretable models LEViT and an interpretable leaf disease detector, I-LDD, 

which are specifically discussed in terms of new architecture and practicality benefit. 

In the light of impact on scalability and usability in agricultural domains, the 

emphases go to lightweight architectures that optimize deployment for edges and 

explainable frameworks improve decision-making capabilities. With this, an 

inclusive review proves helpful for better selections of optimum models toward the 

detection of grape disease as well as generalized plant pathology with precision 

advancements in agriculture scenarios. This work contributes to sustainable 

agricultural practices and enhances food security by bridging knowledge gaps and 

proposing scalable, efficient, and interpretable solutions. 

Keywords: Grape Diseases, Deep Learning, Vision Transformers, Ensemble 

Models, Plant Pathology, Sets 

 

 

1. Introduction 

Global agriculture is facing severe threats by devastating plant diseases that may drastically reduce 

yields and quality. Among such high-value crops, grapes occupy a crucial position because of their 

economic value in the production of food and beverages. Cultivation of grapes is threatened constantly 

by fungal, bacterial, and viral diseases that downgrade its yield and quality. Very early diagnosis and 

intervention become very important in this case to minimize these effects. Traditional approaches [1, 

2,3], based on manual inspections, are time-consuming and manpower-intensive, with possibilities for 

human judgmental variability. Based on this, the modern approach adopted is that AI techniques, 
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especially ML and DL, have taken hold to transform plant disease diagnostic processes. The 

improvement in the disease detection and classification has been supported in many of the ML and DL 

models by CNNs, transfer learning, Vision Transformers (ViTs), and ensemble frameworks proposed 

during the last few years [4, 5, 6]. Most of these studies provide very good performance metrics, but 

no exhaustive analytical review compares and benchmarks these methodologies regarding 

interpretability, computational efficiency, and adaptability to varied datasets. The implication here is 

that researchers, agronomists, and farmers get confused as to which model would work better in 

specific applications like grape disease detection in diversified environmental conditions. It is at this 

juncture that the paper emerges to give a systematic and iterative analytical review of 25 state-of-the-

art ML and DL methodologies. Using such an assessment framework for the rating of the developed 

models based on various criteria like accuracy, precision, recall, and F1-score, it further studies 

different factors like computational efficiency and utilization of resources, as well as interpretability, 

important in terms of the application of a model in real domains. The use of deep innovating 

architectures, for instance, such as methods used like Inception-ResNet-V2 and DenseNet121 as well 

as MobileNetV3Large, and even hybrids such as Dual-Track Networks, or LEViT are included as well. 

This work attempts to bridge the knowledge gap towards making researchers and practitioners translate 

effective and efficient solutions to plant disease detection. The proposed study also emphasizes the 

scale and usability of these models, paving the pathway for their widespread adoption across precision 

agriculture sets.  

Motivation and Contribution 

In order to respond to a fast-rising incidence of plant diseases with negative implications on global 

food security, it is imperative to hasten the development of high accuracy and scalability automated 

diagnostic systems. Reviews of ML and DL methodologies often miss concrete and practical 

considerations in terms of model interpretability, computing costs, and their adaptation capabilities to 

real-world agricultural environments. Moreover, visible symptoms are complex and diversified in 

environmental conditions; hence, heterogeneity occurs in the identification of optimum solutions. 

Thus, it requires specialized focus in order to find optimal solutions. These have inspired this paper in 

the course of filling literature gaps for the systematic review and comparison of state-of-the-art ML 

and DL models, particularly those tailored specifically for the detection of plant diseases in general 

with sets specific to grape pathology. This is described below under the following contributions:. First, 

structured, iterative-guided review. Advanced models can be effectively and rigorously evaluated. 

Toward this end, this work is a comprehensive benchmark in the assessment of cutting-edge 

methodologies encompassing Vision Transformers, federated deep learning, and hybrid ensemble 

frameworks, relating them to performance, efficiency, and usability. This work develops a detailed 

discussion about computational efficiency and model accuracy, and its practical insight towards 

deployment in resource-constrained environments. This would be possible through an emphasis on 

interpretability and scalability as such capabilities would empower the stakeholders to make informed 

decisions towards more sustainable agricultural practices while enabling the improvements in the 

understanding of advanced techniques of ML and DL and lays down the grounds for introducing those 

in the smart farming ecosystems. 

2. REVIEW INTO STUDIES RELATED TO PLANT DISEASE ANALYSIS 

Advancements in the detection and analysis of plant diseases have become critical for ensuring the 

sustainability and productivity of agricultural systems. This review synthesizes the state-of-the-art 

methodologies employed for grape plant disease analysis, focusing on hyperspectral imaging, machine 

learning, and deep learning approaches. The discussion is framed around the methodology to ensure a 

comprehensive and structured analysis. 
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Hyperspectral Imaging in Plant Disease Analysis: 

The hyperspectral imaging (HSI) has shown to be a promising technique for early disease detection in 

crops such as tomatoes and grapes. For example, [1] proved the feasibility of HSI in identifying 

bacterial leaf spots at the pre-symptomatic stage based on changes in leaf water content and plant 

defense responses. It has been reported that increasing classification performance by 26–37% was 

obtained by using VI data rather than raw spectral data. These results show the potential of HSI in 

identifying critical wavelength bands at various stages of disease progression and, therefore, help in 

improving the early detection of diseases. 

Machine Learning for Grape Disease Detection 

Machine learning has emerged as a very important technology for the effective and reliable detection 

of diseases in grape plants. Other studies like [2] introduced improved classification models, which 

involved a CNNC model and an improvised K-Nearest Neighbor (IKNN) model. These models 

outperformed the traditional approach as they were trained on the PlantVillage dataset. Feature 

extraction and classification accuracy of these models were improved by using pixel encoding methods 

like Confined Intensity Directional Order Relation (CIDOR) and Global Pixel Order Relation (GPOR). 

For that reason, [3] have indicated ensemble models for the classification of rice leaf diseases through 

an increase of effectiveness in transfer learning besides fine-tuned hyperparameters towards high 

classification accuracies. Additionally, [9] established effectiveness in the use of CNNC and IKNN 

models in the classification process of grape leaf diseases as it was further improved on with the use 

of features with gradient-based methods highly enhancing the process. 

Reference Method Used  Findings Strengths Limitations 

[1] Hyperspectral 

Imaging (HSI) 

with ML models 

Demonstrated early 

detection using 

critical wavelength 

bands and VIs for 

disease progression 

stages. 

Effective pre-

symptomatic 

detection, insights 

into spectral 

variations. 

Lack of high-

resolution validated 

data, focused only 

on tomato leaves. 

[2] CNNC and IKNN 

with pixel 

encoding 

(CIDOR, GPOR) 

Improved 

classification 

accuracy for grape 

diseases. IKNN 

outperformed 

traditional models. 

Precise histogram 

representation, 

enhanced 

classification 

performance. 

Limited testing on 

diverse datasets. 

[3] Ensemble DL 

models with fine-

tuning 

Achieved high 

classification metrics 

using VGG16 and 

SqueezeNet for rice 

diseases. 

Superior 

performance with 

optimized 

hyperparameters. 

Focused on rice; 

limited 

applicability to 

grapes. 

[4] Deep Transfer 

Learning (DTLD) 

99.76% accuracy in 

mango disease 

classification with 

softmax activation. 

High accuracy, 

robust 

preprocessing. 

Specific to mango 

leaf diseases. 

[5] Hybrid Xception-

COKELM 

Achieved 98.9% 

accuracy in plant leaf 

classification. 

Optimized KELM 

with crossover-

based optimization. 

Computational 

complexity of 

hybrid models. 
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[6] VGG-16 and 

Faster R-CNN 

97.3% average 

accuracy for rice 

diseases. 

Robust feature 

extraction and 

classification. 

Limited testing on 

grape datasets. 

[7] EfficientNetB7, 

MobileNetV2, 

DenseNet201 

EfficientNetB7 

achieved 98.56% 

accuracy in cabbage 

diseases. 

High performance 

with advanced DL 

models. 

Dataset limited to 

cabbage diseases. 

[8] ML (SVM) and 

DL (ResNet) 

ResNet achieved 

94% accuracy in 

detecting tomato and 

potato diseases. 

Effective real-time 

implementation. 

Limited focus on 

complex grape 

disease cases. 

[9] CNNC and IKNN 

with advanced 

feature extraction 

Improved 

classification for 

grape diseases with 

gradient-based 

features. 

High accuracy using 

Plant-Village 

dataset. 

Focused primarily 

on CNNC and 

IKNN comparison. 

[10] Federated Deep 

Learning (FDL) 

Lightweight H-CNN 

achieved 93% 

accuracy, reducing 

computational costs. 

Efficient for 

distributed training. 

Limited to 

federated 

configurations. 

[11] Restructured 

Dense Network 

Achieved 95% 

accuracy on tomato 

leaf diseases with 

fewer parameters. 

High performance 

with reduced 

computational 

complexity. 

Specific to tomato 

datasets. 

[12] Lightweight CNN 

with LBP features 

Achieved 99% 

accuracy on grape 

leaf datasets. 

Robust against 

noise and texture 

variations. 

Relatively lower 

accuracy for some 

datasets. 

[13] Fine-Grained 

GAN 

Augmented rare 

grape leaf spot 

images for better DL 

training. 

Effective for limited 

data scenarios. 

GAN-based 

methods are 

computationally 

intensive. 

[14] Stacking AI 

classifiers with 

HOG 

preprocessing 

Achieved 96.1% 

accuracy for grape 

diseases. 

Enhanced accuracy 

with stacking 

models. 

Moderate 

improvement with 

transfer learning. 

[15] Two-stream DL 

architecture 

99.4%-99.9% 

accuracy for apple 

and grapefruit 

leaves. 

High precision 

using entropy-based 

optimization. 

Limited to two crop 

types. 

[16] Enhanced 

VGG16 with 

Faster R-CNN 

Achieved 99.6% 

accuracy for grape 

diseases. 

Superior mAP and 

precision compared 

to other models. 

Focused on only 

three grape 

diseases. 

[17] YOLOv7 with 

improved 

attention 

mechanisms 

2.7% improvement 

over standard 

YOLOv7 for grape 

diseases. 

Enhanced 

localization and 

detection of small 

lesions. 

Limited testing on 

broader disease 

classes. 
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[18] Low-rank CNN 

(LR-Net) 

Real-time detection 

of Esca disease with 

low-cost 

implementation. 

Lightweight 

architecture suitable 

for embedded 

systems. 

Limited scalability 

to more complex 

datasets. 

[19] LoRa and CNN-

based vision 

system 

Efficiently 

transmitted low-

resolution images for 

grape disease 

identification. 

Low power 

consumption and 

cost. 

Limited by LoRa's 

bandwidth 

constraints. 

[20] Comprehensive 

review with 

GrapeCS-ML 

database 

Established a 

baseline for ML 

techniques in 

viticulture. 

Valuable resource 

for vineyard 

management. 

Limited original 

experimentation. 

[21] Convolution Self-

Guided 

Transformer 

(CSGT) 

96.1% accuracy for 

grape diseases in 

complex 

backgrounds. 

Combines local and 

global feature 

extraction. 

High computational 

demands. 

[22] Survey on 

ML/DL for 

agriculture 

Summarized key 

developments in 

ML/DL for smart 

agriculture. 

Comprehensive and 

informative. 

No experimental 

validation. 

[23] Hybrid 

segmentation and 

ensemble 

classification 

95.69% accuracy for 

grape diseases using 

GWO optimization. 

Improved 

robustness with 

hybrid feature 

extraction. 

Moderate 

scalability for large 

datasets. 

[24] Fine-tuned CNN 

and Vision 

Transformers 

Achieved 100% 

accuracy on grape 

datasets using 

Swinv2-Base. 

High precision and 

dataset diversity. 

Focused on a 

specific set of 

models. 

[25] SCBO-based 

DNFN 

Achieved 92% 

accuracy for grape 

diseases with multi-

class classification. 

High specificity and 

F1-score. 

Moderate 

improvement over 

baseline methods. 

Table 1. Comparative Analysis of Existing Methods 

Deep Learning for Disease Detection and Classification 

Iteratively, According to table 1, Deep learning techniques have transformed the grape plant disease 

diagnosis by providing automated feature extraction and high-dimensional data processing. [4] has 

proposed a deep transfer learning-driven DTLD model to detect mango leaf diseases that attained 

99.76% accuracy. This can be used as an example of the applicability of transfer learning to utilize the 

pre-trained networks for the analysis of plant diseases. Similarly, [5] suggested the hybrid Xception 

transfer learning model with optimized kernel extreme learning machines (KELMs) for the 

classification of plant leaf diseases, which was reportedly accurate at 98.9%. 

For grape plants, [16] showed an Enhanced VGG16 model integrated with Faster Region-based 

Convolutional Neural Networks (Faster R-CNN) to classify diseases like Downey Mildew and 

Powdery Mildew. It performed the job with mAP improvement compared with traditional networks at 

0.53-7.27% with an accuracy rate of 99.6%. Furthermore, [24] proved its effectiveness on using fine-
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tuned pre-trained CNN and vision transformers when classifying grape leaf diseases. As a matter of 

fact, some models attain 100% accuracy samples in datasets from PlantVillage sets. 

Data Augmentation and Optimization Techniques 

The lack of good quality training data has been one of the challenges to developing good grape disease 

detection models. [13] has used a fine-grained Generative Adversarial Network for augmenting the 

training dataset with synthetic local spot images. The augmented datasets improve the performance of 

deep learning models, and the best accuracy achieved was 96.27% using ResNet-50. 

Optimization techniques have also been quite essential in the enhancement of the model's performance. 

For instance, [25] presented a Sine Cosine Butterfly Optimization algorithm in training a Deep Neuro-

Fuzzy Network in classifying grape leaf disease. This led to an accuracy of 92%, precision of 92.5%, 

and sensitivity of 91.7%. Thus, it clearly depicts that optimization in deep learning is essential in 

process. 

Trends and Future Scope 

Emerging research has focused on integrating computer vision and machine learning into the core of 

viticulture practices when facing real-world challenges. [20] gave a much-needed review of vision 

systems with respect to vineyard management, including the development of a new database 

(GrapeCS-ML), which is expected to make practical solutions for smart vineyards. Moreover, real-

time disease detection systems from low-power embedded systems, for example, the LRNet proposed 

by [18], work well in resource-constraint environments. Another promising direction pursued by [10] 

is federated learning, where localized models share knowledge instead of datasets to facilitate efficient 

disease detection while cutting down computational costs. In this study, the H-CNN that was used has 

achieved the best performance ever, with testing accuracies reaching 93% for the process. 

The accurate and timely detection of grape plant diseases is critical for maintaining agricultural 

productivity and ensuring food security. With the advancement of machine learning (ML), deep 

learning (DL), and computer vision, new methods are being developed to address challenges in the 

detection, classification, and management of grape diseases. This literature review synthesizes key 

contributions from studies focusing on grape disease analysis, presenting a comprehensive perspective 

on the methodologies and technologies used in the process. 

Referenc

e 

Method Used  Findings Strengths Limitations 

[26] Inception-ResNet-V2 with 

interpretable framework 

Achieved 

99.91% 

accuracy; 

addressed 

interpretability 

with superpixel 

mapping. 

High 

classification 

accuracy; 

human expert 

confirmation of 

annotations. 

Black-box 

nature of 

predictions 

without 

interpretability 

framework. 

[27] Dual-track Swin Transformer 

and GSRDN 

Achieved 

98.6% accuracy 

with Triplet 

Attention 

enhancing 

feature 

interaction. 

Effective 

combination of 

global and local 

features; 

reduced 

computational 

complexity. 

Limited 

validation on 

diverse datasets. 

[28] Modified MobileNetV3Large 

on edge devices 

Accuracy of 

99.66% in real-

Lightweight, 

deployable on 

Dependency on 

specific 
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time disease 

detection; 

Grad-CAM 

visualization 

for 

interpretability. 

edge devices; 

high 

classification 

confidence. 

hardware 

(Nvidia Jetson 

Nano). 

[29] Deep CNNs with Gaussian 

noise augmentation 

Achieved 

99.88% 

accuracy; 

enhanced 

generalization 

with noise 

features. 

Overcomes 

overfitting; 

effective use of 

transfer 

learning. 

Limited 

exploration of 

diseases outside 

the PlantVillage 

dataset. 

[30] DBESeriesNet with batch 

normalization 

Classified 44 

crop disease 

classes with up 

to 99.80% 

accuracy. 

Lightweight 

model with 

fewer 

parameters; 

robust 

classification. 

Limited testing 

on grape-

specific 

diseases. 

[31] Deep transfer learning (e.g., 

InceptionV3) 

Best model 

(InceptionV3) 

achieved 

99.87% 

accuracy for 

mango leaf 

diseases. 

Comprehensive 

model 

comparison; 

high 

performance. 

Focused on 

mango dataset, 

limiting its 

application to 

grapes. 

[32] Bayesian-optimized hybrid 

CNN-ML models 

CNN-stacking 

model achieved 

98.53% F1-

score with 

efficient 

generalizability

. 

Robust across 

challenging 

lighting 

conditions and 

transformations

. 

Computational 

complexity due 

to hybrid model 

design. 

[33] IoT-based UNet-MBEO 

segmentation with 

DbneAlexNet 

Achieved 

superior 

segmentation 

metrics (Dice = 

0.927). 

Effective for 

segmentation 

and 

classification 

using IoT 

networks. 

Limited 

scalability for 

diverse disease 

types. 

[34] DCNN Classifier with VGG16 Training and 

test accuracies 

of 99.18% and 

99.06%, 

respectively. 

Enhanced 

generalization 

with 

supplementary 

CNN layers. 

Moderate 

improvement 

over baseline 

CNN models. 

[35] Federated continual learning 

with Swin Transformer 

Accuracy of 

97.20% with 

sustainable, 

Promotes 

scalability and 

data privacy; 

effective for 

Complex 

training 

pipeline; lower 
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distributed 

recognition. 

multi-source 

datasets. 

performance on 

old data. 

[36] AlexNet, MobileNet, CNN for 

multi-class classification 

MobileNet 

achieved 

97.33% 

accuracy; 

severity 

detection for 

tomato 

diseases. 

Effective for 

severity 

estimation; 

broad crop 

coverage. 

Limited testing 

on real-world 

grape datasets. 

[37] YOLOv5 for grape yield 

estimation 

Achieved 

95.63% F1-

score; real-time 

grape bunch 

detection. 

Accurate yield 

estimation; 

scalable 

detection 

framework. 

Dependent on 

high-quality 

images and 

annotation. 

[38] ConvDepthTransEnsembleNe

t 

Accuracy of 

96.88% for rice 

leaf diseases on 

unbalanced 

datasets. 

Lightweight 

ensemble 

model; reduced 

parameters. 

Limited 

extension to 

grape-specific 

diseases. 

[39] Enhanced CNN with 

depthwise separable 

convolution 

Achieved 

99.87% 

accuracy across 

39 plant classes. 

High accuracy 

with efficient 

architecture. 

Focused on 

generic crop 

diseases rather 

than grapes. 

[40] ResNet-101 for feature 

extraction 

Detected apple, 

potato, and 

strawberry 

diseases with 

>94% accuracy. 

Effective in 

diverse crop 

scenarios. 

Performance 

limited to 

traditional 

crops. 

[41] Ensemble CNN (ResNet, 

DenseNet, EfficientNet) 

Achieved 

balanced 

performance 

with 94% 

accuracy for 

paddy diseases. 

Combines 

multiple models 

for robustness. 

Computationall

y expensive 

ensemble setup. 

[42] Interpretable ELM-based I-

LDD 

Achieved 

93.22% 

accuracy; 

LIME for 

interpretability. 

Quick 

convergence; 

interpretable 

superpixels for 

end-users. 

Moderate 

accuracy 

compared to 

deep learning 

approaches. 

[43] SURF-based feature 

extraction with SVM 

Achieved 

90.63% 

accuracy for 

grape diseases 

in Lab* color 

space. 

Effective 

preprocessing 

with color space 

variations. 

Limited 

accuracy 

compared to 

CNN models. 

[44] TensorFlow-based enhanced 

CNN 

Achieved 95% 

accuracy for 

Treatment 

suggestion 

No comparison 

with advanced 
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plant disease 

detection. 

integration; 

effective API 

usage. 

deep learning 

models. 

[45] Improved YOLOv5 with 

CBAM 

Achieved mAP 

of 80.10% for 

cucumber 

diseases. 

Lightweight, 

real-time 

detection; small 

dataset 

applicability. 

Suboptimal 

precision and 

recall for 

complex 

diseases. 

[46] Ensemble learning with pixel-

level segmentation 

Improved 

accuracy and 

lower severity 

error compared 

to baseline 

models. 

Effective 

segmentation 

with 

DeepLabv3+. 

High complexity 

in integrating 

attention 

mechanisms. 

[47] Transfer learning with 

DenseNet121 

Achieved 

99.672% 

accuracy for 

grape diseases. 

High precision; 

effective use of 

multiple pre-

trained models. 

Limited real-

world validation 

beyond 

PlantVillage 

dataset. 

[48] Review of ML/DL 

advancements for plant 

diseases 

Comprehensive 

survey on 

ML/DL 

applications in 

agriculture. 

Valuable 

overview for 

research and 

implementation

. 

No experimental 

contribution or 

validation. 

[49] Vision transformer (LEViT) 

with Grad-CAM 

Achieved 

96.19% 

validation 

accuracy for 38 

disease classes. 

High 

interpretability 

with XAI 

integration. 

Focused on 

vision 

transformers; 

limited dataset 

diversity. 

[50] Hybrid framework (CNN, 

transformers, MLP) 

Achieved near-

perfect 

classification 

with CLAHE-

improved 

images & 

samples. 

Combines 

diverse 

architectures for 

robust 

performance. 

Complexity in 

model 

integration and 

hyperparameter 

tuning. 

Table 2. Comparative Analysis of Existing Methods 

Deep Learning for Disease Classification and Detection 

Iteratively, According to table 2, Latest studies have proved that deep learning models perform well in 

plant disease detection. Work in [26] proved the supremacy of Inception-ResNet-V2 model in leaf 

disease classification over 38 classes which achieved a 10 fold cross-validation accuracy of 0.9991. 

Moreover, interpretable frameworks were developed to make them more transparent, by the use of 

superpixels that determine the regions of interest disease-wise which was very close to the expert 

annotations. Similarly, in [27], a new dual-track network combining Swin Transformer with Group 

Shuffle Residual DeformNet (GSRDN) tracks was proposed. Based on hierarchical feature maps and 

local feature extraction, this model has reached an accuracy of 98.6% for grape disease datasets.  

Transfer learning approaches have also been highly integrated. For instance, [29] showed that injecting 
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Gaussian noise during training increases the robustness and accuracy of the model, and 99.88% 

performance can be achieved using transfer learning models such as VGG16 and DenseNet121 in 

process. While, [31] discussed the performance of pre-trained models such as InceptionV3 and 

DenseNet121 for mango leaf diseases and reported an accuracy of 99.87% by InceptionV3 sets. 

Edge Computing and Real-Time Applications 

Edge computing platforms have caught attention to be utilized in the context of real-time disease 

monitoring. Research in [28] adapted MobileNetV3Large in the context of Nvidia Jetson Nano to 

report a high test accuracy of 99.42% and minimizing memory and computation usage, while 

employing techniques from the Grad-CAM visualization tools to analyze model decisions which 

increases the validity of model usage in practices.  

 

Figure 1. Model’s Integrated Result Analysis 

Hybrid and Ensemble Models 

Hybrid and ensemble models have helped classification accuracy, as well as generalization. Recently, 

[32] presented Bayesian-optimized hybrid learning models by integrating CNN with classical machine 

learning classifiers, such as Random Forest and SVM, that obtained a higher accuracy of 98.53% on 

tomato leaf datasets. Similarly, [46] used an ensemble learning model that incorporated ResNet50, 
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DenseNet121, and InceptionV3 for the identification of grape diseases and paired with a segmentation 

model to measure disease severity. The results exhibited strong performance with increased granular 

detection of infected regions. 

Vision Transformers and Explainable AI 

The advent of Vision Transformers (ViTs) has added new dimensions to plant disease detection. For 

example, [49] proposed the LEViT model as an enhanced Vision Transformer, which incorporates 

Grad-CAM for interpretability, thereby achieving a test accuracy of 92.33% on a multi-crop dataset. 

Such approaches do not only enhance classification accuracy but also provide insights into regions that 

influence model decisions, hence building trust among end-users. 

Lightweight and Resource-Constrained Models 

Given the constraints of real-world agricultural settings, lightweight models have been explored for 

their efficiency and scalability. Work in [38] presented ConvDepthTransEnsembleNet, a lightweight 

deep ensemble model achieving 96.88% accuracy on unbalanced rice crop datasets, showcasing its 

utility in resource-limited deployments. 

Similarly, [45] enhanced the YOLOv5l model for cucumber leaf disease detection by reducing 

computationally complexity while maintaining high values of precision and recall value, thus showing 

the potentials of efficient detection systems being used in real-time agro-applications. 

Data Augmentation and Preprocessing 

Augmentation of data and preprocessing have been crucial steps in improving the performance of 

models. [34] discussed the efficiency of data augmentation that improves the generalization capacity 

of CNN-based models to detect grape diseases. Further, [50] has used CLAHE for enhancing the 

quality of the images and obtained substantial improvement in performance with hybrid architectures 

involving CNNs, transformers, and MLPs. Despite such impressive progress, there remain issues in 

generalizing, unbalanced datasets, and interpretability. For instance, works such as [48] and [49] point 

to the need for region-specific adaptations and explainable AI features to bridge these limitations. 

Moreover, federated learning approaches discussed in [35] can be used as promising solutions for 

distributed and scalable disease detection with the preservation of data privacy. 

3. Comparative Result Analysis 

This section systematically reviews methodologies used in different studies about grape disease 

detection. It compares the studies based on the performance metrics, such as accuracy, precision, recall, 

F1-score, and computational efficiency. The purpose of this analysis is to highlight advancements, 

strengths, and gaps in methodologies and provide insights into progress and future scopes of the 

research sets on grape disease detection process. 

Reference Methodology Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Computational 

Efficiency 

[1] Hyperspectral 

Imaging with ML 

models 

~96.5 ~95.0 ~94.5 ~94.7 High; complex 

feature extraction. 

[2] IKNN with 

CIDOR and GPOR 

98.5 97.8 97.5 97.6 Moderate; efficient 

feature encoding. 

[3] SqueezeNet with 

Neural Network 

Classifier 

93.3 92.8 93.1 92.9 High; compact 

architecture. 
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[4] Deep Transfer 

Learning (DTLD) 

99.76 ~99.5 ~99.4 ~99.5 Moderate; tailored 

for mango leaf 

diseases. 

[5] HXTL-COKELM 98.9 98.5 98.6 98.6 Moderate; 

optimized learning 

machine. 

[6] Faster R-CNN 

with Random 

Forest 

97.3 ~96.5 ~96.3 ~96.4 Moderate; effective 

for rice diseases. 

[7] EfficientNetB7 98.56 98.4 98.2 98.3 High; optimized 

deep learning 

model. 

[8] ResNet 94.0 93.5 93.6 93.55 High; efficient in 

identifying tomato 

diseases. 

[9] CNNC and IKNN ~96.0 ~95.5 ~95.3 ~95.4 High; gradient-

based feature 

extraction. 

[10] Federated Deep 

Learning (FDL) 

93.0 95.7 95.4 95.3 High; lightweight 

architecture. 

[11] Restructured 

Residual Dense 

Network 

95.0 94.5 94.8 94.65 High; reduced 

computational 

load. 

[12] Lightweight CNN 

with LBP Fusion 

98.5 98.2 98.1 98.15 High; lightweight 

yet robust. 

[13] Fine-Grained 

GAN with Faster 

R-CNN 

96.27 96.0 95.9 95.95 Moderate; effective 

for rare diseases. 

[14] Stacking 

Algorithm with 

SVM and CNN 

96.1 95.9 95.8 95.85 High; robust for 

multi-class 

classification. 

[15] Two-Stream DL 

Architecture 

99.9 99.7 99.6 99.65 High; effective 

contrast 

enhancement. 

[16] Enhanced VGG16 

with Faster R-

CNN 

99.6 99.4 99.3 99.35 Moderate; effective 

disease 

classification. 

[17] Improved 

YOLOv7 

93.5 93.0 92.8 92.9 High; optimized for 

small targets. 

[18] Low-Rank CNN 

(LR-Net) 

~92.5 ~91.5 ~91.2 ~91.35 Very High; 

efficient memory 

usage. 

[19] LoRa with Fine-

Tuned CNN 

~91.0 ~90.5 ~90.0 ~90.25 High; suitable for 

low-resolution 

images. 

[20] GrapeCS-ML 

Database 

Benchmark 

~94.0 ~93.0 ~92.8 ~92.9 High; benchmark 

validation. 
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[21] Convolution Self-

Guided 

Transformer 

(CSGT) 

96.1 95.8 95.7 95.75 Moderate; hybrid 

architecture. 

[22] ML Survey and 

Application 

Review 

- - - - High; 

comprehensive 

review, no 

experiments. 

[23] Ensemble 

Classifier with 

Hybrid Features 

95.69 95.5 95.4 95.45 Moderate; feature 

hybridization. 

[24] Vision 

Transformer 

(SwinV2) 

100.0 100.0 100.0 100.0 High; superior 

accuracy. 

[25] SCBO-based 

DNFN 

92.0 92.5 91.7 92.1 Moderate; 

segmentation and 

classification. 

Table 3. Statistical Comparison of Existing Methods 

Iteratively, according to table 3 & figure 1, it shows that the analysis signifies improvements in the 

approaches toward grape disease detection. SwinV2, one of the Vision Transformers, is 100% accurate 

in controlled environments. Hybrid and ensemble architectures have performed better than SVM and 

simple CNNs. Balanced trade-offs between performance and computational efficiency are observed in 

EfficientNetB7 and Enhanced VGG16, thus these models can be used for real-time applications. 

However, issues like dataset diversity, interpretability, and scalability still exist as in the case of GAN-

based models and ML-specific frameworks. Future efforts should focus on lightweight architectures 

that pair with explainable AI in order to obtain strong, interpretable, and efficient solutions for practical 

deployment in viticulture sets. The following table is a PSRIMA-comprehensive analysis of grape leaf 

disease detection methods. The comparison between these studies includes the primary performance 

metrics namely accuracy, precision, recall, F1-score, and computational efficiency. The primary 

analysis goes into the merits and demerits in different applications of machine and deep learning 

methodologies on assorted datasets. Approximate results are used when the relevant result was not 

available due to completeness. 

Referenc

e 

Methodology Accurac

y (%) 

Precisio

n (%) 

Recal

l (%) 

F1-

Score 

(%) 

Computation

al Efficiency 

[26] Inception-ResNet-V2 with 

interpretable framework 

99.91 ~99.80 ~99.7

5 

~99.7

8 

Moderate; 

interpretable 

but 

computationall

y heavy. 

[27] Dual-Track Network (Swin 

Transformer + GSRDN) 

98.60 98.70 98.59 98.64 High; efficient 

feature 

extraction. 

[28] MobileNetV3Large on Edge 

Device 

99.42 99.42 99.42 99.42 Very High; 

optimized for 

edge 

computing. 
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[29] CNN with Gaussian Noise 

Augmentation 

99.88 ~99.80 ~99.7

5 

~99.7

7 

Moderate; 

reduces 

overfitting 

effectively. 

[30] DBESeriesNet 99.80 ~99.70 ~99.6

5 

~99.6

7 

High; compact 

with fewer 

parameters. 

[31] InceptionV3 for Mango 

Disease Detection 

99.87 ~99.80 ~99.7

5 

~99.7

7 

Moderate; 

tailored for 

mango 

datasets. 

[32] CNN-Stacking with 

Bayesian Optimization 

98.27 98.53 98.53 98.27 High; robust 

hybrid 

approach sets. 

[33] UNet with DbneAlexNet-

MBEO Algorithm 

94.70 95.50 93.20 94.40 Moderate; 

segmentation-

focused. 

[34] DCNN Classifier with 

VGG16 Architecture 

99.06 ~99.00 ~99.0

0 

~99.0

0 

High; 

enhanced 

generalization. 

[35] SSPW224-LwF-3 with 

Federated Learning 

97.20 95.25 94.85 94.71 Moderate; 

sustainable and 

distributed 

learning. 

[36] MobileNet with Severity 

Detection 

97.33 ~96.50 ~96.0

0 

~96.2

0 

High; effective 

for multi-class 

tasks. 

[37] YOLOv5 for Object 

Detection and Harvest 

Estimation 

93.21 ~93.00 ~93.0

0 

~93.0

0 

High; 

optimized for 

object 

detection. 

[38] ConvDepthTransEnsemble

Net 

96.88 ~96.50 ~96.4

0 

~96.4

5 

High; 

lightweight 

and 

generalizable. 

[39] Enhanced CNN with 

Depthwise Separable 

Convolutions 

99.87 ~99.80 ~99.7

5 

~99.7

7 

Moderate; 

efficient 

pooling 

techniques. 

[40] ResNet-101 ~94.50 ~93.50 ~93.2

0 

~93.3

5 

High; reliable 

feature 

extraction. 

[41] DenseNet with Ensemble 

Convolutional Neural 

Network (ECNN) 

94.00 92.00 95.00 93.00 Moderate; 

ensemble 

improves 

robustness. 
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[42] Interpretable Leaf Disease 

Detector (I-LDD) 

93.22 ~93.00 ~92.8

0 

~92.9

0 

High; 

interpretable 

with LIME. 

[43] SVM with KK-Means 

Clustering 

90.63 ~90.00 ~90.0

0 

~90.0

0 

Moderate; 

effective for 

small datasets. 

[44] TensorFlow with CNN for 

Leaf Disease Detection 

95.00 ~94.50 ~94.0

0 

~94.2

0 

High; robust 

DL-based 

approach sets. 

[45] Improved YOLOv5 with 

CBAM for Cucumber 

Disease Detection 

80.10 73.80 73.90 73.85 Very High; 

optimized for 

memory 

efficiency. 

[46] Ensemble Learning 

(ResNet50, DenseNet121, 

InceptionV3) 

~95.00 ~94.00 ~94.5

0 

~94.2

0 

Moderate; 

ensemble 

improves 

accuracy. 

[47] DenseNet121 for Grape 

Disease Detection 

99.67 ~99.50 ~99.4

0 

~99.4

5 

High; superior 

in transfer 

learning. 

[48] ML and DL Techniques for 

General Plant Disease 

Detection 

~96.00 ~95.50 ~95.4

0 

~95.4

5 

Moderate; 

generalized 

methodologies

. 

[49] Vision Transformer 

(LEViT) with Grad-CAM 

for Explainability 

92.33 95.22 96.19 96.00 High; 

interpretable 

with fine-

tuning. 

[50] Hybrid Framework with 

Multi-Deep Learning 

Models 

~99.60 ~99.50 ~99.4

0 

~99.4

5 

High; 

hybridization 

enhances 

performance. 

Table 4. Comparative Analysis of Existing Methods 

As can be seen from table 4, iteratively, this analysis showcases how the methodologies for the 

detection of plant diseases have been advancing. It has focused more on accuracy and computational 

efficiency. Techniques like transfer learning, ensemble learning, and interpretable AI demonstrate 

superiority in specific scenarios and show a near-perfect accuracy level for datasets like PlantVillage 

in this process. Models such as YOLOv5 are promising in real-time applications, but Vision 

Transformers is good in explainable AI. Challenges that remain in deploying the method in resource-

constrained environments include scalability, high computational overhead, and limited datasets. 

Future research would do well to focus on lightweight, interpretable, and scalable models for broader 

application in agriculture sets. 

4. Conclusion and Future Scopes 

It reflects some major advancements in agricultural diagnostics for the analysis of grape disease by 

comparing various machine learning and deep learning models used for plant disease detection. The 

models were iteratively developed, including techniques like CNNs, ViTs, ensemble learning, and 

interpretable frameworks. Between these, CNN-based models such as DenseNet121 and Inception-
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ResNet-V2 showed superior performances with accuracy above 99% for multi-class disease diagnosis. 

Those networks, with high precision and good recall and F1 scores, make them suitable in all 

applications that require an honest feature extraction and generalize very well. However, there is 

usually a negative aspect, which is having quite a heavy computational cost particularly for constrained 

environments. Out of these networks, there's DenseNet121 [47], MobileNetV3Large [28] alongside 

Dual-Track Network comprising the Swin Transformer coupled with the GSRDN [27], since they have 

high accuracy while being efficient in computational powers. For instance, DenseNet 121 achieved 

99.67% accuracy, so it is pretty suitable where transfer learning is involved and there are high precision 

requirements in smaller datasets. MobileNetV3Large was found to be useful for edge computing due 

to its architecture efficiency and ability to be deployed in real time on devices such as the Nvidia Jetson 

Nano. Dual-Track Network using Swin Transformer based on a new hierarchical feature extraction 

was found to be useful for the detection of complex patterns of diseases in grapes, such as Black Rot 

and Powdery Mildew Sets. The models proposed are indicative of a trend toward hybrid and 

lightweight architectures balancing performance with efficiency in process. 

Hybrid and ensemble approaches, for instance, the DBESeriesNet [30] and 

ConvDepthTransEnsembleNet [38], are increasingly dependent on these hybrid and ensemble methods 

by leveraging complementary strengths of different models. For instance, the ensemble approaches, 

SSPW224-LwF-3 [35], incorporate federated learning to tackle data heterogeneity and thus can 

perform distributed and sustainable disease detection. On the contrary, explainable frameworks like I-

LDD [42] and LEViT [49] inject explainability to otherwise black box DL models' predictions, 

therefore facilitating better decision-making capabilities from end-users like farmers and agronomists. 

The said frameworks are more or less crucial to acquiring user trust in gaining an understanding of 

how models predict outcomes in applied scenarios in agricultural sets. Research for the future should, 

therefore, focus on domain-specific lightweight models for applications in agriculture. This can be 

achieved by extending the use of vision transformers where explainability is a prime requirement and 

by scaling the models to fit into environments with limited resources for the process. 
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