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1. Introduction

L.A. Zadeh [50], who also created several fuzzy set operators,initially introduced the concept of a
fuzzy set. According to Zadeh’s precise definition, a set ”A” can be distinguished from other fuzzy
sets in X by a membership function fA(x) that quantifies the quantity of x in ”A” When applied to
crisp sets, fuzzy set operations permanently reduce to their corresponding counterparts. The logical
extensions of crisp set operations are proposed by Atanassov [1] with membership and non-
membership functions called intuitionistic fuzzy set (IFS). The Smarandache [30] proposed
neutrosophic set(NS) now includes a deterministic independent membership function. The main
distinction between NS and IFS is the actual membership function in NS as opposed to the falsity of
membership and non-membership of IFS and the indeter-minacy of membership function in IFS. Truth
membership, indeterminacy membership, and false membership are the three parts of NS, and they are
all independent of one another. The decision-making research with various attributes based on FS, IFS
and NS has made significant strides lately. Mardain et al. [24] and Kahrman et al. [19] evaluated the
approaches and applications of fuzzy multiple criteria decision-making. Recently, there has been a lot
of interest in NS because it is a generalization of IFS and FS and can be utilized to more effectively
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ex-plain ambiguous information [7, 26, 27, 32, 46]. By extending the indeterminacy membership, truth
membership, and false membership to the interval numbers, Wang et al. [41] defined the interval
Neutrosophic (INS). The Normal intuitionistic fuzzy numbers NIFNs to multi-criteria decision-making
(MCDM) problems; meanwhile, some new aggregation operators are pro-posed by [36]. Finally, their
proposed method is compared to the existing techniques under a numerical example to verify its
feasibility and rationality. [8], the Bonferroni mean (BM), which combines the max and min operators
with the logical ”or” and ”and” operators as opposed to this, when the input arguments are real, non-
negative integers. The average mean (AM) and geometric mean (GM) of the aggregation operators are
fundamental functions on which many extensions have been created. To rank the arguments before
aggregation, Yager [40] developed the ordered weighted averaging (OWA) operator. This inspired
other writers[11, 39] to research the ordered weighted geometric (OWG) operator. The argument given
is a continuous interval with a value determined by comparison to a limited set of arguments.[23]
discuss fuzzy relative knowledge distances using fuzzy granularity spaces with proper-ties
corresponding to fuzzy knowledge distances. Further, several experimental analyses were conducted
to show that precise knowledge distances (fuzzy) contain different structure information. [9]The new
logic for homogeneous group DM was introduced to select robotic systems using extended TOPSIS.
[15]] discussed the picture of fuzzy mean operators and their applica-tions in DM. [4]The new concept
of the Spherical Distance Measurement Method for Solving MCDM Problems under PFS was recently
introduced. [25]discusses g-rung CDNN weighted averaging (q-rung CDNNWA), g-rung CDNN
weighted geometric (q-rung CDNNWG), g-runggeneralized CDNN weighted averaging (g-rung
GCDNNWA) and g-rung generalized CDNN weighted geometric (g-rung GCDNNWG).
Additionally,their develop an algorithm for solving MADM problems using these operators. Several
real-world examples illustrate how en-hanced score values can be applied. Sensor robots are said to
rely heavily on computer science and machine tool technology. [13]introduces the concept of cubic
spherical neutrosophic sets (CSNSs), a geometric representation of neutrosophic sets, as well as a
specification of its operational principles. In CSNs, two aggregation operators are investigated. The
shape of CSNSs represents the evaluation values of alternatives for criteria in an MCDM strategy
based on the two aggregation operators and cosine distance for CSNSs. The cosine distance between
an alternative and the ideal alternative is used to rank them, and the best alternative(s) can be selected.
Their outcome the result concludes by demonstrating the use of the suggested method. proves to be
more effective than PFS by assuming higher values for the three degrees of membership. However,
the CF set (CFS), proposed by[18]. [48] suggests a variety of novel Bonferroni Mean and Weighted
Bonferroni Mean operators to aggregate the SR-Fuzzy values for the various decision-maker
preferences. Finally, a comparative study of the developed and existing approaches has been discussed
to evaluate the pertinency and practicality of the proposed DM technique. [21]discussed interval-
valued picture fuzzy geometric Bonferroni mean (IVPFGBM) and interval-valued picture fuzzy
weighted geometric Bonferroni mean (IVPFWGBM) under interval-valued picture fuzzy (IVPF)
environments is studied.

Their problem of how to aggregate this interval-valued picture fuzzy data using the Bonferronimean
is therefore an important one and it is the paper’s primary focus. [48] paper proposes anovel modified
Delphibased spherical fuzzy analytical hierarchy process (SFAHP) integrated spherical fuzzy
combinative distance-based assessment (SFCODAS) methodology to the vending machine location
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selection (VMLS) problem. To validate the applicability of the proposed methodology, comparison
analysis is presented with the results of the spherical fuzzy weighted aggregated sum-product
assessment (SFWASPAS) method.proposed the robust aggregation operators (AOs) of PFSs based on
Dombi aggregation models,namely “picture fuzzy Dombi Bonferroni mean” (PFDBM), “picture fuzzy
Dombi weighted Bonferroni mean” (PFDWBM), “picture fuzzy Dombi geometric Bonferroni mean”
(PFDGBM),and picture fuzzy Dombi weighted geometric Bonferroni mean” (PFDWGBM) operators.
To ratify the reliability and versatility of our current approaches, by contrasting the findings of existing
approaches with the results of developed techniques. [14] developed multi attribute group decision-
making (“MAGDM”) method is presented to evaluate, on the basis of conflicting attributes
(environmental, economic, and technical), the alternatives in a renewable energy technology (RET)
selection problem in an intuitionistic fuzzy MCDM.

However, since the normal distribution cannot be explained by the IFS and INS, more and more people
are getting interested in the study of normal fuzzy information. To understand the phenomenon of the
normal distribution, Yang and Ko [41] first established the normal fuzzy numbers (NFNs). Finding
aggregation functions that can be utilized to simulate the numerous possible correlations between the
criteria in multi-criteria situations is quite exciting because there are so many potential correlations
between the criteria. Here the capabilities of the aggregation operators known as the Bonferroni mean
included in recent research on the Bonferroni mean are [5, 10]are discussed. In the recently, numerous
innovative MADM techniques have emerged and found applications in various Decision Making (DM)
scenarios with uncertainties[31],[2],[6],[29], [20], [49], [29],[3], [16]. Recently, many authors have
used the idea of neutrosophic set in MCDM methods. The concept of the neutrosophic set was
introduced by Smarandache [30], which is distinguished by the role of truth-membership function,
indeterminacy-membership function, and falsity-membership function. Therefore the neutrosophic set
theory can be used to rationalize the confusion associated with ambiguity in an analogous way to
human thought. This handles vague data as distributions of possibilities in terms of membership
functions. Using the concept of triangular neutrosophic additive reciprocal preference relations. [16]
developed a novel method for the group decision-making problem under the neutrosophic
environment. The objective of this paper is to measure the relative importance of the criteria and to
select the best performence of the machine using cubic neutrosophic FMCDM.

Motivation and Contributions

Many researchers proposed different aggregation expressions, methodologies, and models by using
several extensions of the triangular norms such as Frank aggregation, Einstein Aggregation tools,
operations of Aczel Alsina aggregation tools, and Hamacher aggregation tools. To our knowledge, no
work has been studied for a weighted bonferroni mean operator for selection performance machine by
using cubic neutrosophic FMCDM. The contributions of the paper as

follows:

(1) Opinion has been collected from three experts to make decision matrix

(IT) In this study considers the 15 alternatives D1 to D5 and criteria {1 to (5

(111) To determine the relative performance of the criteria.

(IV) The outcome of the results to find the most significant similarity value is taken to be

the best alternative by using neutrosophic cubic FMCDM.
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2 Preliminaries

Here in this section the basic definition required for the study is discussed.
[20] Let’s assume a fixed universe X and its subset csA. The set

CSAp = < X,CSH(X),csv(X),csn(X);p >: X € X

Where csu,csv,csn @ X — [0,1] are functions such that cspa+csvat+cesya< 3 and p € [0,1]. The radius p
of the sphere with center (csp(x),csv(x),cs7(X)) inside the cube or cube inside the sphere is called cubic
spherical neutrosophic set (CSNS) csvA,. This sphere represents the membership degree,
indeterminacy degree, and non-membership degree of x € X.

Let {< csui,1,csvi,1,csmi,1 >,< CSWi,2,C8Vi,2,¢s7i,2 >,....,< CSHi,Ki,Csvi,Ki,cszi,ki > } be a collection of
NSs assigned for any x; in X. We construct the center of the sphere by

ki G k; ven ki L
Zj:l CSHi,j Zj:] CSV; Zj:] CS1); 5
N , >

< esp(x;), esv(x;), esn(x;) =<

and the radius using
pi = minnmax1<j<kiq(csp(xi — csp2i,j + (csv(xi) — csvi,j)2 + (csn(xi) — csni,j)2,10
Then the spheres inside the cube or cube inside the sphere is
csA, ={< Xi,CSH(Xi),csv(xi),csn(Xi);p >: Xi € X}

Definition 2.1 [8] Let ay (u = 1,2,....,n) be a collection of crisp data, where a,> 0, for all u, and r,s >
0, then we call

n

B™*(ay, as,...,a,) = ﬁ .'“‘Zl aral
. 1)
the Bonferroni mean(BM).
Especially, if s = 0 then by Eq.(1), the BM reduces to the generalized mean operator[12] as follows:

L
40

n
r,0 _ E E : 0
B ' (a]?a'g""aaﬂ) - - u a’l.'
n (n—1) -
—

v#U

_ (1 S a;) "
n = (2)

If r=1and s =0, then Eq.(2) reduces to the well-known average mean(AM):

1 n
Bl:o(al: A2, ..y (I.-n) - = Z Qyy
n —1 (3)

https://internationalpubls.com 121



Advances in Nonlinear Variational Inequalities
ISSN: 1092-910X
Vol 28 No. 2s (2025)

Based on the usual geometric mean(GM) and the BM, we introduce the geometric Bonferroni mean
such as:

Definition 2.2 Let r,s > 0, and au(u = 1,2,....,n) be a collection of non-negative numbers. If

n

e 1 1
GB™(ay,as,...,a,) = . H (pa,, + qa,) ="
“ u=1
UFEv (4)

then we call GB"* the geometric Bonferroni mean(GBM).

Obviously, the GBM has the following properties:

(1)  GB"(0,0,...,0) = 0.

(2) GB"(a,a,...,a) = a, if ay = a, for all u.

(3) GB"%(a1,az,...,an) > GB"*(dy,d,...,dn), i.e.,GB"* is monotonic, if a,> dy, for all u.
(4) minu{au} < GB"*(a1,a2,....,an) < maxu(au).

Furthermore, if s = 0, then by Eq.(1), it reduces to the geometric mean:

n n

1 1 1
GB™(ay,as,...,a,) = - (pa,) =0 = | | (ay)"
pqu H
u#v (5)

Definition 2.3 [37, 38] Let au = (CNMaw, Ve )(U = 1,2) and a = (CN4,Va) be three AIFNS, then we have
(1) ;@ az = (CNpig, + CNpin, — CNpio, CN gy, Vay Vasy )

(2) a1 B as = (CNpo,CNitay, Vay + Vay — VayVns )-

(3)da = (1—(1=CNp),v)) , A>0

(4) o = (CN;LQ. 1—(1— ’Uﬂ))‘) A>0

Moreover, the relations of these operational laws are given as:

(3) co eaﬂzl = (¥ ﬂ}n--_;,

(6) as X oy = a1 X as.

(7) Aoy @ Aae = Aoy €D aw).
(8) ar @ a3 = (a1 @ a2)™.
(9) (A1 + Az)er = Ao @D Azan.
(10) aM+r2 = oM (R at2,

To rank any two AIFNS oy = (CNJw,Va)(U = 1,2), Xu and Yager[37] gave a straightforward method:

Definition 2.4 [47] Let A =< cSW;,CSViesyipr >,A1 =< CSW,CSViy,csmupir > and A2 =<
CSHi2,CSViz, cs112;pi2 > be three CSNS over the universal set X, 7 € {MI NI, MAXI }and a > 0. Then
the following operations are defined as follows

1. MUyA2 = (;MAXI{(,’:S,U.M, CSlira }, ;"LJI]\*"I{(',S‘UM, csv/\z} , ﬂ-ﬁn:fi{(:,e;'rpu, €S2 } ’\/{pM. a2 })2
AUy Ag = (MAXI{CS,u.M, CS[ly2 }, lcsupg, €SV, ]'leAXf{CzS‘??)\] ; Csn,\g}; 'y{pm . pA2}>
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3. A= Ao+ iff pi1 = pioand CSPi1 = CSH2,CSVa1 = CSVi2,CS721 = €512
4. A1 € A2 1ff pi1 € pr2and esudi S CSW;2,C5Vi1 S CSVi2,C57,1 2 5172
5. A@A2 = (CSH1+CS2—CSHU1+CSHL2,CSVi1+CSVi2—CSV1+CSVip, esmartesno— csnAl + csnA2i;pll +

rhol2 — pAl + rhoA2)

6. AL @ A2 = (esullesul2, csvAlesvi2, csnilesni2;pAlpA2)

7. aX = (1 — (1 —espy)*, 1 — (1 —csvy)®, 1 — (1 —esyp) 1 —(1—pa)*)

8. A% = (Csp™,csvi%, esmi p%i).

3. Cubic Spherical Neutrosophic Geometric Bonferroni Mean Operator(CSNGBMO)
Here the aggregate value and properties of CSNGBM and CSNGWBM operator are discussed.

Theorem 3.1 Let r,s > 0, and CSNGBM is {Au = (CNW, CNpiw,CNV,,,CNry) (u = 1,2,3,...,n) be a
collection of CSNGM, then the aggregated value by using the CSNGBM is

n

CSNGBM™ (A1, Mgy ooy A) = (1 - (1 ~ JI (1 = (0 = CNpw ) (1 = CNpy, )*) 7D

=1
nFEY

uFr

(1 -1l a- (c‘-vp.\u)f(cm.)““"“‘“) .
H.n":]

(] B H (1— 'Cr:'\"'f‘illC-‘:\"'ﬂ_‘iuj"-:!-l 1)

u,v=1
uFv
n -+
(1 - (1 ~ I (1 - (1= CNr ) (1 = CNry )70 n)
=1

uFEv

Proof: By the operational laws (1) and (3) described in Definition 3, We have r,, = (1 — (1 —
CNWw)', CNp",CNViy; 1 — (1 = CNrw)") s = (1 — (1 — CNpw)®,

CNp"7,CNV,%;1 — (1 — CNrz,)%) and then

M@ Sw=1—(1—-CNpuw) +1— (1 —CNpu)®— (1 — (1 —CNpw)'(1—(1-

CNpPuuCNp®iu+1 — (1 = CNry)'+ 1 — (1 = CNri)*— ((1 — (1 = CNrw)®)(1 — (1 — CNr,)%),CN
Let,

Buv = 18 = (1-(1-CNu)"(1-CNu)%, (CNp 2 CNp®u) H(1=(1-CNr ) (1-

CNriu)s, CNvAruCNvisu)

https://internationalpubls.com 123



Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X
Vol 28 No. 2s (2025)

CSNGBM'r,s) (A1, Aa, s M) = . i - (ﬂ_lll CNH;:"?’ 1— ug(l — CNPﬁeu.l,)”‘%‘”
utv v
ﬁ CNUEE%’ 1-— ﬁ (1— ijrﬁuu)ﬁ)
e ke ,
Since,
R (s, ® s) T = ( [T (= (= Oy (1= ONpa )y 70,1 = [ (1 = CNpa N, )
pe e e
ﬁ (1 — CNuy,CNuy, ) 7ot f[ (1— (1= CNry,) (1 — CNry,)")7oT
P ) e
® Bun T = ( H CNH”(”'I H (1 CNpg,, )@
oy oy o
ﬁ CM<_1 - ﬁ (1 —CN?«B%)”(J—-U)
P P

By using the operational law,

n

I

n

1

1
i — nn—1
CSNGBM'r, 5)(Ai; Aoy oo M) = —— u@l(r,\u D sy, ) 7T
rl#?}
1
n n(n—1) r+s
- (1 - (1 ~JJa-a-conmya CN;LA“)S) )
u,v=1
uFv
s n rJlr.';
x[1= J] (1= CNps,CNp, ) 7D
u,v=1
u#v
1
n L r+s
X (1 - H (1— CN’UAuC]V’U,\u)“(”*”)
u,u=1
u#v

x(l_(l_

Where 0 < 1,

u,v=1

uFv
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n r+s
D<1- (1 - (1 T -a-onpm - czm,f)“””) =

u,v=1

uFv
1
n ) s
(1 - JIa- CNP/\HCNPAU)“(””) <1,
u,v=1
uFv
1
" 1 r+s
(1 - H (1— CN’U,\HCN'UAH)w(n+1)) <1
u,v=1
uF#v
and
1
n 1 L
(1 ) (1 - [[a-t-cnnya —CNW)S)W) <1
u,v=1
uFv

Then we have,

1- (1 - (1 ~JT - - CNw,) (1 = CNpy,)*)D
u,v=1

uF#v

(1= T1 a-cxmennyms

w,o=lu#v
1

n 48 n
+G II(lCWmAme””) *(1GIIHHONmfuwmewW

w,o=lu#v u,v=1
u#v
1
n L r+s
<t1—|1—[1=J] A= @ =CNpy,) (1= CNpy, )"y
u,v=1
uFEv

n ) 1
+G_IIU—U—CNMJU—CNMNVW“
u, =1

uFv

u,v=1

uFv

+1— (1 - H (1—(1—CNry,)(1- C'Nr)\u)”)n(n—w) ”

+ (1 - H (1= (1= CN7ry, ) )1 = (1 — CNry,)*)

uFv
Which completes the proof.

Properties of CSNGBM:
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CSNGBM™ (A1, Ag, s Aa) = R) A

u=1
— {ﬁ CN,u.{?, (1-— ﬁ(l - ONPM)%), (1-— ﬁ(l _ Cf\*r’b')\u)f_l*). ﬁCNri:—‘
u=1 u=1 u=1 u=1

1. Idempotency: If all ai (i = 1,2,...,n) are equal. i.e., ai= a = (CNH, CNpq,CNv,,CNr,) V i, then
CSNGBM™ (o, g, ...,ap) = CSNGBM™ (a, a ..., a)

1 n L
N P + q ( ®(p”‘ @ Qr})n(”U)

ij=1
i#i

1 n L
- p + q ( ®((p + q)(}f) n(n—1)

ij=1
i#j

n(n—1)
n(n—1)

((-p + q)a)

Cptg

= ran

=

2. Commutativity: If ai = (CNPa, CNpai,CNV,;,CNry) (i = 1,2,...,n) be a collection of CSNGM.
Then if CSNGBMPY(a,...,an) = IFGM%P(a,...,an). Now,

n

1 .
CSNGBM" (o, ..., 0) = —— Doy @ o, )T
(o ) p+q(gg( |
i#j

piq(ggmw@ndmiﬁ
i#j
= CSNGM"(ay, g, ..., ().
3. Monotonicity: Let ai = (CNHai, CNpai, CNV4i,CNr) (i = 1,2,...,n), and fi =
(CNWgi, CNpgi,CNVgi,CNrgy) (i = 1,2,...,n) be two collections of CSNGBM, (CNp,;i <
CNpg;, CNpoi > CNpgi, CNVei > CNgi, CNFoi < CNIrg) V i, Then
CSNGBMP9(as,....,an) < CSNGBMPA(By, .., Bn)
4.Boundedness: Let Ay = (CNWw, CNpiw,CNV,,,CNr,) (u =1,2,...,n) be a collection of CSNGM and let

A~ = (Min{CNpy,}, Max{CNp,,}, Max{CNuv,,}, Min{CNry,})

A= (Maz{CNp,, }, Min{CNp,,}, Min{CNuv,, }, Max{CNr,,})
Then 1~ < CSNGM"%(41,42,...,4n) < A™.
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Theorem 3.2 Let r,s > 0, and CSNGWBM is Au(CNPw,CNV,y, CNpju, CNr ) (U =
1,2,3,...,n) be a collection of CSNGWM, then the aggregated value by using the CSNGWBM

T

CHMW@MWM&WJH:GGIU1(1KWMJWWWMWWWW“
u,w=1

u#v

(1 o H (1 - (CN,O/\H)w”)r((Cl’\fp)\v)ﬂh,-).‘:’) n(ra.l—1)

u,v=1

utv

(1 o H (1 - (C‘NTFU)\”_ )w,,_ )T ( (CJV—"U/\P )U',, )Q) n-(nl—l)

u,v=1

u#v

G_(L-Hﬂ—ﬂ—wwmwwu—Wwamw%

u,v=1

uFv

Proof: By the operational laws (1) and (3) described in Definition 3, We have riu = (1 — (1 —
(CNuw)wu)r,((CNpAuw)wu)r,((CNvAw)wu)r,1  — (1 — (CNriAw)wu)r) siv = (1 - (1 -
(CNuv)wv)s,((CNpAv)w)r,((CNviv)wv)s,1 — (1 — (CNriv)wv)s) and then

Nu @ s =1 - (1 = (CNpu)™)" + 1 — (1 = CNw)™)* = (1 = (1 = (CNpw)™)'(1= (1 -
(CNuiv)wv)s),((CNpAu)wu)r((CNpiv)wv)s + 1 — (1 — (CNrAv)wu)r+ 1 — (1 — (CNru)")s— ((1 — (1 —
(CNr)"™)*)(1 — (1 = (CNr)"™)?), (CNvAu)wu)r((CNvAv)wWv)s)

Let,

Suv =riu @ siv=(1 — (1 — (CNulu)wu)r(1 — (CNuiv)wv)s,(((CNpiu)wu)r((CNpAv)wv)s), +(1 — (1 —
(CNru)wu)r(1 — (CNrAv)wv)s,((CNvAu)wu)r((CNvAv)wv)s)

CSNGWBM"™ (A1, Mgy oy An) = = ( H C‘f\/',u,g(’ﬁ H (1— C'Npgq,_")“(”%”
U,:;é; 1 ?1,1 ,u;é :1)]
H CNug ”(”_ H (1-— CVvﬁ)
g i |
Since,
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w,v=1 w,v=1 u,v=1
uFv uFv uFv
n
1
n T —_—
— | | _ - p—1
H CNUS’ML 1 (1 C]\‘ Ir‘qui- ) n(n )
u,v=1 u,v=1
utv u#v

n L n ’ | L
® (T'A,, &5 5/\11)n(n—lj = ( H (1 — (1 — (CNM/\“)u.u )T(l _ (CN,(LAT,)H”)S)”("—U

uv=l w,v=1
u#v wtv
1-— H (1 — (C’j\,ﬂp)‘ )wu(cmp/\ )u;) L(n ol
w,p=1
uFv
H (1- (CN'U/\")?UH(CNU,\T)W”)MJT’
u,v=1
et
[T a-a-©Nn)mya- (cwmwv)%—tn)
u,p=1
uF v

By using the operational law,

n

- 1 1
CSNGWBM™ (A1, Ao, o M) = = — ) (ra, @ sx,) 7@

u,v=1

u#v

- n('n,l—l) T-}—s
- (1 N (1 B H (1 - (1 - (CN!"L*u)w”)T(]- - (CN‘LLAU)?‘U?;)S) )
w,w=1
uFE
1
n 1 .
’ (1 - (1= (Cpr\u)w”(ONPA.U)M”)”(n1))
u,v=1
% (1 H (1 - (CNU/\ )uu(CNU/\ )u‘1!)1:(?1.1+1))
’11.,7;:1
uF#v
n (1171) %
(1= (1= TLo-a-exnpra=exnyr) )
w,v=1

Where 0 <1,
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- T+s5
0 S 1— (1 — (]. — H (1 - (]- — (CN'[LA“)U»"?L)T(]_ — (CN,(L/\_")U’*")S)n(nl))
u,v=1
uFv
1
- 1 T+s
(1 - H (1 - (CN,O,\H)wu(cj\,’p)\v)w.u)n(n1)>
=1
uFv
: 1 'ris
(1 — H (1 — (Cj\fr'i))\u)w”(CIV’U)\U)U”J) ”(,H_”)
'{J,'r;:l
UFv

and

7 ,ulr\
(1 - (1 — [T (1= (= (CNry,)™) (1 - (CNT-,\L_)‘“")S)M) <1
u, =1

uFEv

Then we have,

n 3
1 — (1 — (1 - H (1 — (1 - (C_[V’(L,\h)wu)r(l _ (C]\fru/\_”)w"')s)n(n1))
u,v=1
uFv
1
- 1 r+s
+ (1 - H (]- - (CNP)\")“’“ (Cf\'rp)\v)w”)”("—l))
u,v=1
uFv
1
- 1 r+s
- (1 N H (1 B (CN'U/\u)wu(CN’U/\U)“’”)n(n+1))
u,v=1
ﬁ#v
- 1 r'i.q
+(1—-1(1-— H (1= (1= (CNry, )™ (1 = (CNry, ™)) 7D
u, =1

uF#v
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n s
<1-— (1 — (1 — H (1 — (1= (C'Npy, ) )P(1 — (CN gy, )" )
e
n T'is
+(1— H (1= (1 =(CNpx,)"™)" (1 = (CNuy,)"")*) )
e
™ 1'-J|-.5'
— ( — H (1= (1= (CNry, ") (1 = (CNry,)")*) )
Mu;é:vl
n =
+(1— H (1= (1= (CN7ry)")" )1 = (1= (CN7ry,))) )
u,v=1

uFv
Which completes the proof.

Properties of CSNGWBM:
1. Idempotency: If all 2y (u=1,2,...,n) are equal. i.e., 2u=1 = (CNu,;, CNp;,CNv,;,CNr;) V u, then
CSNGWBM"™ (A1, Az, ooy Ap) = CSNGWBM™ (X, A, ..., A)
= — ( é(""z (DSA)'”(”IU)
r+s u,v=1
1 (éb(( + )T
— S -1
r+s u,v=1
uFv
n(n—1)
1 n(n—1)
— - g) A\
o)
1
= S(r + 5)A
= A

2. Commutativity: If @ = (CNpgy, CNpy, CNuyt, ON7ye) (w = 1,2, .,m e g collec-

tion of CSNGWM. Then if CSNGWBM"3(4s,...,An) = CSNGWBM®*'(4s,...,An). Now,

r+ s
w,v=1

uFEv

1 T
CSNGW BM™(\y, ..., \y) = ( ) (ra, @ s,\v)ﬁ)

n

1 ( : )
— : v n(n—1
Cr+s ® (sx, ®7x,)

u,v=1

uFv
— CSNGWBM" (A1, Aay s A
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3. Monotonicity: Letha = (CNpy", CNpY*, CNvy*,CNry*) (u = 1,2,..., n, and f =
(CNpg:,CNpg:, CNug*, CNrg) (u=1,2, ..., ™ be two collections of CSNGWM, (CN iy <
CNpg",CNp\* = CNpyg*,CNvy" > CNvg",CNry* < CNrg*)V U Then
CSNGWBM"S(4y,...,An) < CSNGWBM"(S,..., fn)

4. Boundedness: LetM: = (CNuy, CNpy, CNugr, ONvyy) (u = 1,2, ... 1) pe 5 collec-
tion of CSNGWM and let

A" = (Min{CNpy"}, Max{ PFCNpy"*}, Maz{CNvy"}, Min{CNry"})

ot = (Maz{CNp W }, Min{ PFCN o }, Min{C Noy™ b, Max{C Nry™p)

Then 1~ < CSNGWBM"(11,42,...,4n) < A*. Which can be obtained easily by the monotonicity. If the
values of the parameters r and s change in the CSNGWM,

3.1.A MCDM Method

In this section the proposed algorithm for solving MCDM by using Cubic Spherical Neutrosophic
Geometric Weighted Bonferroni Mean operator is discussed.

In the cubic spherical neutrosophic environment, a MCDM method is suggested in this section. The
suggested approach is used to solve a MCDM problem that has been taken from the literature to
demonstrate its effectiveness in the following example. Following are the steps of the suggested
method that we can present:

Step 1: Suppose there are k alternatives that A = {A1,Ao,....... A} expert has evaluated in light of a list
with j criteria as C = {c1,C2,......,Cj}. Step 2: For each criterion, the expert chooses the weight vector
and converts the assessment results of the alternatives into CSNV s. Step 3: If there are any cost criteria,
based on their values, the complement operation is used.

Step 4: Evaluation findings for each choice that are expressed as CSNV s are transformed,using
suggested weighted aggregation operations.

Step 5: The variation in CSNV between each alternative’s aggregate value and the ideal alternative’s
positive value < 1,0,0;1 > is determined.

Step 6: The alternative with the greatest similarity value is taken to be the best.
3.2Numerical Example: Selection of Best Machine using CSNVs

Machines are the tools that enable people to operate more efficiently and quickly. To simplify our daily
lives, we use machines. Our tasks can be performed by machines more effectively. These devices
typically shift the direction of the force, reduce the amount of force needed to perform a certain amount
of work, or change one form of motion or energy into another. Modern power tools, automated machine
tools, and power machinery that is operated by humans are all examples of tools and machines. Engines
are devices that convert heat or other forms of energy into mechanical energy. Give 15 potential names
for the machine you want to choose, such as Machine-o-matic, Techtronic, Mechmaster, Autowizard,
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Machinamate, robopro, Electra Tech, Turbo Engineer, Cyborginator, Prodroid, Automatrix,
Megamech, Gear Guru, Electric Craft, and MachinaX. Additionally, there are three experts: E1, E2,
and E3. These experts are:1) Industry Professionals 2) production and sales 3) technical advisers. The
following variables should be analyzed to establish which of these classes the need for new machines
fits into (A1) purpose; (A2) performance; (A3) dependability and durability; (A4) scalability and
future-proofing; and (A5) cost-effectiveness.

Step-1: The alternatives’ language terms are shown in Table 1.

Table 1: Linguistic scale

Linguistic Scale
T(Truth Value) (Indeterminacy Value) F(False Value)

VVG(Very Very Good) 1 0 0

VG(Very Good) 0.9 0.1 0.1
G(Good) 0.8 0.15 0.2
P(Poor) 0.7 0.25 0.3
EX(Exemplary) 0.6 0.35 0.4
VP(Very Poor) 0.5 0.5 0.5
VVP(Very Very Poor) 0.4 0.65 0.6
MEX(Most Exemplary) 0.3 0.75 0.7
VEX(Very Exemplary) 0.2 0.85 0.8
O(Outstanding) 0.1 0.9 0.9

Step-2: The language choices made for the options are shown in Table 2.

Table 2: The decision matrix of each attribute

(1 2 3 a4 &
DI  VVG EX P G G

D2 G G VG P P
El D3 VG P MEX VG EX
D4 P VP O VP VG
D5 EX VG VEX VEX VVG
D6 VG O VG MEX VP
D7 VEX VG G VG VEX
E2 D8 MEX G VVP VP MEX
D9 VVG P MEX EX O

D10 VG VVG VP VEX VG
D11 EX VVG VP VEX VG

D12 P P VP VG P
E3 D13 O VG G MEX EX

D14 VP MEX EX VG VG

DI5 G VG VVG G VP
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Step-3: The decisio

n matrix for each alternative is shown in Table 3.

Table 3: The cubic spherical decision matrix

1 2 a3 ¢! 5
T 1 F T 1 F T 1 F T 1 F T 1 F

DI 1 0 0 06 03504 0.7 02503 0.8 0.150.2 0.8 0.150.2
D2 0.8 0.150.2 0.8 0.150.2 0.9 0.1 0.1 0.7 02503 0.7 02503

E1 D3 09 0.1 0.1 0.7 02503 03 0.750.7 09 0.1 0.1 0.6 03504

D4 0.7 02503 05 05 05 0.1 09 09 05 05 05 09 0.1 0.1
D5 0.6 03504 09 0.1 0.1 02 08508 02 08508 1 0 O

D6 09 0.1 0.1 0.1 09 09 09 0.1 0.1 0.3 0.750.7 05 05 0.5
D7 0.2 08508 09 0.1 0.1 0.8 0.150.2 09 0. 0.1 02 0.850.8

E2 D8 03 07507 0.1 09 09 04 0.6506 0.5 05 05 03 0.750.7

D91 O O 07 02503 03 0.750.7 0.6 03504 0.1 09 09
D1009 01 01 1 O 0 05 05 05 0.2 08508 09 0.1 0.1

DI10.6 03504 09 0.1 0.1 0.8 0.150.2 0.1 09 09 05 05 0.5
DI120.7 02503 0.7 02503 05 05 05 09 0.1 0.1 0.7 02503

E3 D130.1 09 09 09 0.1 0.1 0.8 0.1502 0.3 0.750.7 0.6 03504

DI140.5 05 05 03 0.750.7 0:6 03504 09 0.1 0.1 09 0.1 0.1
D150.8 0.1502 09 0.1 0.1 1 0 O 0.8 0.1502 05 05 0.5

Step-4: The cubic spherical decision matrix’s arithmetic average is shown in Table 4.

Step-5:The maximum radius lengths are shown in Table 5 and are determined using a decision matrix.

Table 4: Arithmetic average of cubic spherical decision matrix

(1 (2 ¢3 ¢4 5]

0.80
0.50
0.37
0.53
0.73

0.18 0.20 0.67 0.33 033 0.73 0.25 0.27 0.20 0.83 0.80 0.63 0.37
0.48 0.50 0.83 0.15 0.17 0.70 0.27 0.30 0.63 0.37 0.37 047 0.53
0.63 0.63 0.57 0.42 043 0.57 043 043 057 045 043 0.53 045
0.47 047 0.63 0.37 0.37 0.57 042 043 0.60 040 040 0.53 045
0.25 0.27 0.73 0.28 0.27 0.70 0.28 0.30 0.63 0.37 0.37 0.77 0.23

0.37
0.53
0.47
0.47
0.23

Table 5: Maximum radius lengths based on decision matrix

¢1 c2 ¢3 ¢4 5
0.34 0.99 0.28 1.09 0.33
0.56 0.21 0.36 0.47 0.5
0.92 0.82 0.5 0.58 0.44
0.81 0.6 0.82 0.52 0.76
0.28 0.47 0.91 0.77 0.47

Step-6: The score value attained by CSNGBM operators and the order of alternatives are shown in

Table 6.

Table 6: The score value obtained by CSNGBM operators and the ranking of alternatives

https://internation

a & 8 & & RANK
5 0.51120.47010.44420.52490.4785(2>{4>(5>{1>(3

0.50.51210.494 0.44410.56410.4819{2>(3>{5>{1>{4
2 0.34180.315 0.29610.35650.3207(2>¢4>{5>{1>(3
1 0.49810.45120.43390.54140.4734(2>(4>{5>{1>(3
3
1
2

54
14
34
4.9
2,
14
14

0.51410.41030.39150.51080.4697(2>(4>{5>{1>{3
0.52780.5  0.45760.54680.4896(2>(3>(5>{1>{4
0.53770.50280.47550.56030.5168(2>{4>{5>{1>(3

p
p
p
p
p
p
p
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p=4,0=2 0.50740.46270.43940.53950.4777{2>(4>{5>{1>{3
p=4,0=3 0.51130.46920.44340.531 0.4796{2>(4>{5>{1>(3
p=1,0=4 0.53910.50110.46720.51470.4928¢1>{3>{5>{2>{4

Step-7: The score value attained by CSNGWBM operators and the order of choices are shown in Table
7.

1 2 3 ¢4 5 RANK
p=5.q=5 0.8383  0.8284  0.8094 0.8409 0.8261 (2>(3>(5>(1>C4
p=1.g=0.5 0.8206  0.8029  0.7864  0.8500  0.8154 2>(4>(5>(1>(3
p=3.g=2 0.8281  0.8131 07973  0.8387  0.8201  (2>(4>(5>(1>C3
p=d.g=1 08203 07077 07875 0.8272 08069  (2>(5>(4>(1>(3
p=2.g=3 0.8490  0.8021  0.8355 0.8313 06274 (1>(4>(2>(3>CH
p=l.g=1 08408 08263 08114 08545 08319  (2>(4>(5>(1>(3
p=l.g=2 0.8468  0.8350 0.8173  0.8591  0.8393  (2>(4>(5>(1>(3
p=4q=2 0.8282  0.8041  0.7970 08339 08166 (2>(4>(5>(1>(3
p=4q=3 08324 08162 08023 08383 08221  (2>(4>(5>(1>(3
p=l.g=4 0.8508  0.8424  0.8242 09055 0.8417  (2>(3>(5>(1>(4

Table 8: The ranking results with different methods

Method Ranking
CSNGBM 2>0>05>01>3
CSNGWBM 2>A>05>(1>33

Conclusion

This study, we have developed the Cubic Spherical Neutrosophic Geometric Bonferroni Mean
Operator (CSNGBM) and the Cubic Spherical Neutrosophic Geometric Weighted Bonferroni Mean
Operator (CSNG-WBM) under the Neutrosophic fuzzy MCDM. The cubic neutrosophic environment,
in which criterion values concerning alternatives are evaluated by the form of (CSNGBM) and CSNG-
WBM) values and the criterion weights are known information and were used to apply the two
aggregation operators to MCDM problems. To rank the alternatives and choose the best one(s) based
on the measure values, we used the distance between an alternative and the ideal alternative. A
numerical example is then given to show how the developed approach is applied. Because it can handle
not only incomplete information but also indeterminate information and inconsistent information that
frequently exist in real situations, the proposed (CSNGBM) and (CSNG-WBM) methods is suitable
for real scientific and engineering applications. The methods suggested in this paper can give DM more
useful options. We will address group DM issues involving incomplete decision contexts and
preference relations in the selection process in the future. We will also apply Fuzzy pilothinic approach
aggregation operators to resolve real-world problems in other domains, such as expert systems,
information fusion systems, and medical diagnoses.
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