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Abstract: 

In classical ring theory, a ring 𝒦 is classified as a Baer ring if, for any subset ℬ ⊆  𝒦 

the left (or right) annihilator 𝐿(ℬ) is generated by an idempotent element in ℛ This paper 

introduces the concept of fuzzy Baer subrings, extending the principles of Baer rings to 

the fuzzy setting by defining a fuzzy subset generated by an element and utilizing fuzzy 

left and right annihilators. Additionally, we develop the theory of fuzzy Rickart subrings 

by introducing the concept of fuzzy points, establishing that each fuzzy Baer subring 

inherently qualifies as a fuzzy Rickart subring. Further contributing to fuzzy algebra, we 

define fuzzy idempotent subrings, capturing broader generalizations in the fuzzy context. 

This research bridges classical and fuzzy set theories by adapting Baer rings, Rickart 

rings, and idempotent rings within the framework of fuzzy algebra. 

Keywords: Fuzzy subring, Fuzzy Baer Subring, Fuzzy Rickart Subring, Fuzzy 

Idempotent Subring 

 

 

1. Introduction 

Fuzzy set theory, introduced by Zadeh in 1965 [23], has become a crucial mathematical framework 

with extensive applications in fields such as medical diagnostics, computer networks, artificial 

intelligence, and several branches of mathematics, including fuzzy algebra, fuzzy topology, 

optimization, graph theory, and measure theory. It extends classical set theory by associating each 

element with a membership degree within the interval [0, 1], thus offering a structured approach to 

manage uncertainty and imprecision. The practical applications of this theory are well-documented 

across various domains [8, 18]. 
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The development of fuzzy algebraic structures began with Rosenfeld's introduction of fuzzy subgroups 

in 1971 [20], which paved the way for extensive research on fuzzy analogs of algebraic structures like 

rings, fields, modules, and topologies. Liu’s work on fuzzy subrings in 1982 [11] marked a key 

advancement, opening the door to the study of fuzzy ideals and algebraic extensions. Since then, 

various types of fuzzy subrings have been explored, each adding new layers of flexibility and capturing 

distinct aspects of uncertainty within algebraic frameworks. 

Notable advancements include Banerjee’s work on intuitionistic fuzzy subrings [3], which incorporate 

both membership and non-membership degrees for a more comprehensive representation of 

uncertainty, and Rasuli’s introduction of 𝒬 − and anti- 𝒬 −fuzzy subrings [1], utilizing 𝑡 −norms and 

𝑡 −conorms to integrate logical operators into fuzzy theory. Further contributions include Maheswari’s 

exploration of bipolar fuzzy sets [13], which account for both positive and negative membership 

degrees, and Dogra’s introduction of picture fuzzy subrings [7], which introduce a dimension of 

neutrality to address ambivalence in uncertain scenarios. Massa'deh [16] also extended the theory with 

bipolar 𝒬 −fuzzy soft Γ −semirings and their homomorphisms. 

In this paper, we extend these foundational concepts by introducing the theory of fuzzy Baer subrings, 

where we define fuzzy subsets generated by individual elements and utilize fuzzy left and right 

annihilators to extend the classical properties of Baer rings to the fuzzy domain. We also introduce 

fuzzy Rickart subrings, developing the concept of fuzzy points, and prove that every fuzzy Baer 

subring is naturally a fuzzy Rickart subring. The paper further contributes to fuzzy algebra by defining 

fuzzy idempotent subrings, thereby generalizing classical results in the fuzzy setting. 

Baer rings, initially introduced by Kaplansky in 1955 [9], are defined as rings in which, for any subset 

ℬ ⊆  ℛ, the left or right annihilator of ℬ is an ideal generated by an idempotent element. Baer rings 

have strong connections to functional analysis and operator algebras. Clark’s quasi-Baer rings [4] later 

emerged as a relaxation of these conditions, requiring only that the right annihilator of any right ideal 

is generated by an idempotent. Every Baer ring is thus also a quasi-Baer ring, reflecting their robust 

annihilator structure. 

Throughout this paper, 𝒦 refers to an associative ring with an identity element.  For any non-empty 

subset 𝒮 ⊆  𝒦, the left annihilator of 𝒮 in 𝒦 is represented by 𝐿(𝒮) , while the right annihilator is 

denoted by 𝑅(𝒮). An element 𝑒 ∈ 𝒦 is said to be idempotent if 𝑒2 = 𝑒. Additionally, 𝐼 denotes an 

indexing set wherever needed.  

2. Preliminaries 

This section outlines the fundamental terms necessary for a comprehensive understanding of the paper. 

2.1 Definition [23] 

Let 𝜙 and 𝜓 be fuzzy subsets of 𝒦. The product of two fuzzy subsets is defined as follows: 

(𝜙𝜓)(𝑝) = {
sup
𝑝=𝑟𝑠

inf{𝜙(𝑟), 𝜓(𝑠)},                              𝑤ℎ𝑒𝑟𝑒 𝑟, 𝑠 ∈ 𝒦 ,

0 𝑖𝑓 𝑝 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑠 𝑝 = 𝑟𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠 ∈ 𝒦.
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2.2 Definition [23] 

let  Γ  be fuzzy subset of  𝒦. The level subset 𝒦. The level subset Γ𝑡 for 𝑡 ∈ [0, 1] is defined as the set 

Γ𝑡 = {𝑟 ∈ 𝒦 | Γ(𝑟) ≥ 𝑡}. 

2.3 Definition [20] 

Let Γ represent a fuzzy subset of a group 𝐺. The fuzzy subset Γ is called a fuzzy subgroup of 𝐺 if, for 

any 𝑔, ℎ ∈  𝐺, the following conditions hold: 

i.Γ(𝑔ℎ) ≥ min{Γ(𝑔), Γ(ℎ)}, 

ii.Γ(𝑔−1) ≥ Γ(𝑔). 

If 𝐺 is a group with identity 𝑒, then Γ(𝑔−1) = Γ(𝑔) ≤ Γ(𝑒). 

2.4 Definition [11] 

Let Ω represent a fuzzy subset of a ring 𝒦. The fuzzy subset Ω is called a fuzzy subring of 𝒦 if, for 

any 𝑟, 𝑠 ∈  𝒦, the following conditions hold: 

i.Ω(𝑟 − 𝑠) ≥ min{Ω(𝑟), Ω(𝑠)}, 

ii.Ω(𝑟𝑠) ≥ min{Ω(𝑟), Ω(𝑠)}. 

2.5 Definition [11] 

Let Ω represent a fuzzy subset of a ring 𝒦. The fuzzy subset Ω is called a fuzzy left (or right) ideal of 

𝒦 if, for any 𝑟, 𝑠 ∈  𝒦, the following conditions hold: 

i.Ω(𝑟 − 𝑠) ≥ min{Ω(𝑟), Ω(𝑠)}, 

ii.Ω(𝑟𝑠) ≥  Ω(𝑠) (𝑜𝑟 Ω(𝑟)),  

A fuzzy subset Ω is called a fuzzy ideal of the ring 𝒦 if it satisfies the conditions of being both a fuzzy 

left ideal and a fuzzy right ideal. 

2.6 Definition [21] 

For any fuzzy subsets Ω and Γ of a ring 𝒦, the sum (Ω + Γ ) is given by, 

(Ω + Γ)(𝑧) = sup
𝑧=𝑟+𝑠

(inf(Ω(𝑟), Γ(𝑠))), where 𝑧, 𝑠, 𝑟 ∈ 𝒦. 

2.7 Theorem [22] 

A fuzzy subset Ω of a ring 𝒦 is considered a fuzzy subring (or fuzzy ideal) of 𝒦 if and only if, for 

every 𝑝 ∈ 𝐼𝑚 Ω, the corresponding level subset Ω𝑝 is a level subring (or level ideal) of 𝒦. 

2.8 Definition [17] 

Let Ω represent a fuzzy subset of 𝒦. The left fuzzy annihilator 𝐿(Ω) of the fuzzy subset Ω is defined 

as,  

𝐿(Ω)(𝑧) = {
max{𝑝 | 𝑧 ∈ 𝐿(Ω𝑝)},                           

0 𝑖𝑓 𝑧 ∉ 𝐿(Ω𝑝) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ∈ 𝐼𝑚 Ω.
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2.9 Definition [17] 

Let Ω represent a fuzzy subset of 𝒦. The right fuzzy annihilator 𝑅(Ω) of the fuzzy subset Ω is defined 

as,  

𝑅(Ω)(𝑧) = {
max{𝑝 | 𝑧 ∈ 𝑅(Ω𝑝)},                           

0 𝑖𝑓 𝑧 ∉ 𝐿(Ω𝑝) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ∈ 𝐼𝑚 Ω.
 

If ℛ is commutative ring, then 𝐿(Ω) = 𝑅(Ω). 

2.10 Theorem [17] 

If Ω and Γ are fuzzy subsets of 𝒦, then, 

i.Ω ⊂ 𝐿(𝑅 (Ω)), 

ii.if Ω ⊂ Γ then 𝑅(Γ) ⊂ 𝑅(Ω) and 𝐿(Γ) ⊂ 𝐿(Ω), 

iii.𝑅(Ω) = 𝑅 (𝐿 (𝑅 (Ω))). 

2.11 Definition [14] 

Let {Ω𝛼 | 𝛼 ∈ 𝐼} be a family of fuzzy subsets of ring 𝒦. The direct sum of these fuzzy subsets is 

denoted by ∑ Ω𝛼𝛼∈𝐼  and for all 𝑟 ∈ 𝒦 defined as,  

(∑ Ω𝛼

𝛼∈𝐼

) (𝑟) = sup {inf
𝛼∈𝐼

 {Ω𝛼(𝑟𝛼)} | 𝑟 = ∑ 𝑟𝛼

𝛼∈𝐼

} 

2.12 Theorem [14] 

If {Ω𝛼 | 𝛼 ∈ 𝐼} is a collection of fuzzy subrings (or fuzzy ideals) of 𝒦, then ∑ Ω𝛼𝛼∈𝐼  is a fuzzy subring 

(or fuzzy ideal) of ring 𝒦 and Ω𝛼 ⊆ ∑ Ω𝛼𝛼∈𝐼  for all 𝛼 ∈ 𝐼. 

2.13 Theorem [14] 

If {Ω𝑖 | 𝑖 ∈ 𝐼} is a collection of subrings of 𝒦, then ∩
𝑖∈𝐼

Ω𝑖 forms a fuzzy subring of 𝒦. 

2.14 Theorem [19] 

Let Ω represent a fuzzy subset of 𝒦. For an element 𝑟 ∈  𝒦 and 0 < 𝛽 ≤ 1, the fuzzy point 𝑟𝛽 

associated with Ω is defined by the following rule: 

𝑟𝛽(𝑠) = {
𝛼    𝑖𝑓 𝑠 = 𝑟,
0    𝑖𝑓 𝑠 ≠ 𝑟.

 

3. Fuzzy Baer Subring 

This section outlines a fuzzy framework for introducing the concepts of fuzzy Baer subrings and fuzzy 

Rickart subrings. Within this framework, we introduce the idea of a fuzzy subring generated by an 

element. Additionally, we utilize the concept of fuzzy left (or right) annihilators, as introduced by 

Medhi [17]. Furthermore, the fundamental properties of fuzzy Baer subrings and fuzzy Rickart 

subrings are examined in detail in this section. 
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3.1 Definition 

A fuzzy subring Ω of 𝒦 is said to be generated by an element 𝑎 in 𝒦 if and only if, 

Ω𝑎 = {𝑟 ∈ 𝒦 | Ω(𝑟) = Ω(0)} = 𝑎𝒦 

3.2 Example 

Consider a fuzzy subring Ω: ℤ → [0, 1] defined by 

Ω(𝑟) = {
0.8    𝑖𝑓 𝑟 ∈ 2ℤ,
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

The set {𝑟 ∈ ℛ | Ω(𝑟) = Ω(0)} = 2ℤ. Therefore, Ω represents a fuzzy subring of ℤ generated by the 

element 2 ∈ ℤ. 

3.3 Theorem 

If Ω is a left fuzzy ideal of ring 𝒦, then 𝐿 (Ω) is a left fuzzy ideal of 𝒦. 

Proof:  

We have, Ω is a left fuzzy ideal of ring 𝒦. Let 𝑟, 𝑠 ∈ 𝒦. It suffices to prove that 𝐿 (Ω)(𝑟 − 𝑠) ≥

min{𝐿 (Ω)(𝑟), 𝐿 (Ω)(𝑠)} and 𝐿 (Ω)(𝑟𝑠) ≥ 𝐿 (Ω)(𝑠). Consider 𝐿 (Ω)(𝑟) = 𝑝 and 𝐿 (Ω)(𝑦) = 𝑞. Since 

Ω is a fuzzy ideal of ring 𝒦, by Theorem 2.7, Ωmin{𝑝,𝑞} is an ideal of ring 𝒦. Hence, 𝑟 − 𝑠 ∈

𝐿 (Ωmin{𝑝,𝑞}). Therefore, 𝐿 (Ω)(𝑟 − 𝑠) ≥ min{𝑝, 𝑞} = min{𝐿 (Ω )(𝑟), 𝐿 (Ω)(𝑠)}. Thus, 𝐿 (Ω)(𝑟 −

𝑠) ≥ min{𝐿 (Ω)(𝑟), 𝐿 (Ω)(𝑠)}. 

Additionally, Ωmax{𝑝,𝑞} is an ideal of ring 𝒦. Hence, 𝑟𝑠 ∈ 𝐿 (Ωmax{𝑝,𝑞}). Thus, 𝐿 (Ω)(𝑟𝑠) ≥

max{𝑝, 𝑞} = max{𝐿 (Ω)(𝑟), 𝐿 (Ω)(𝑠)} ≥ 𝐿 (Ω)(𝑠). Hence, 𝐿 (Ω) is a left fuzzy ideal of 𝒦. 

3.4 Example 

Consider a fuzzy ideal Ω: ℤ6 → [0, 1] defined by 

Ω(𝑟) = {
0.9    𝑖𝑓 𝑟 ∈ {0, 2, 4},
0.1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

The left fuzzy annihilator 𝐿 (Ω): ℤ6 → [0, 1] given by 

𝐿 (Ω) = {
0.9    𝑖𝑓 𝑟 ∈ {0, 3},
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

It can be easily observed that 𝐿 (Ω) is a left fuzzy ideal of ℤ6. 

3.5 Definition 

A fuzzy subring Ω of 𝒦 is said to be generated by an idempotent 𝑒 in 𝒦 if the set 

{𝑟 ∈ 𝒦 | Ω (𝑟) = Ω (0)} = 𝑒𝒦. 

3.6 Theorem 

Let 𝑒 be an idempotent in a ring 𝒦. A fuzzy subring Ω is generated by an idempotent 𝑒 if and only if 

𝐿 (Ω) is the fuzzy subring generated by an idempotent 1 − 𝑒. 
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Proof:  

Let Ω be fuzzy subring of 𝒦 generated by an idempotent 𝑒. Hence, we have {𝑟 ∈ 𝒦 | Ω(𝑟) = Ω(0)} =

𝑒𝒦. By Definition 2.8, the left fuzzy annihilator 𝐿 (Ω), is defined as: 

𝐿 (Ω)(𝑧) =  {
max{𝑡 | 𝑧 ∈ 𝐿 (Ω𝑡)],                          

0 𝑖𝑓 𝑧 ∉ 𝐿 (Ω𝑡) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ 𝐼𝑚 Ω.
 

Consider 𝑟 ∈  𝒦  such that 𝐿 (Ω)(𝑟) = 𝐿 (Ω)(0). Hence 𝑟 ∈ 𝐿 (Ω𝑡) for  𝑡 = sup
𝑧 ∈ 𝒦

{Ω(𝑧)} and Ω(𝑒𝒦) =

Ω(0). Therefore 𝑒𝒦 ⊆ Ω𝑡 and 𝑒𝒦𝑟 = 0. Then 𝑒𝑟 = 0 and 𝑟 = (1 − 𝑒)𝑟 ∈ (1 − 𝑒)𝒦. 

Conversely, suppose 𝐿 (Ω) is fuzzy subring generated by an idempotent 1 − 𝑒. Consider 𝑟 ∈ 𝒦 such 

that Ω(𝑟) = Ω(0). Therefore 𝑟 ∈ Ω𝑘 for some 𝑘 = sup
𝑧 ∈ 𝒦

{Ω(𝑧)}. Hence there exist an element (1 − 𝑒)𝑠 

for some non zero 𝑠 ∈ 𝒦 such that 𝑟(1 − 𝑒)𝑠 = (𝑟 − 𝑟𝑒)𝑠 = 0. Thus 𝑟 = 𝑟𝑒 ∈ 𝑒𝒦. 

3.7 Example 

Let 𝑒 = 3 be idempotent of ℤ6 and Ω be fuzzy subring of ℤ6 generated by idempotent 𝑒 = 3 defined 

by, 

Ω(𝑟) = {
0.9    𝑖𝑓 𝑟 ∈ {0, 3},
0.1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then 

𝐿 (Ω)(𝑟) = {
𝑖𝑓    𝑟 ∈ {0, 2, 4},
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

It is clearly observed that 𝐿 (Ω) is the fuzzy subring generated by an idempotent 1 − 𝑒 = 1 − 3 =

−2 = 4 in ℤ6. 

Kaplansky [9] introduced the concept of a Baer ring. A ring 𝒦 is defined as a Baer ring if the left (or 

right) annihilator of every nonempty subset of 𝒦 is a left (or right) ideal generated by an idempotent 

in 𝒦. The following is a fuzzy framework for fuzzy Baer subrings, utilizing the notion of a fuzzy 

subring generated by an idempotent and the fuzzy left (or right) annihilator of a ring. 

3.8 Definition 

Let ℬ be a fuzzy subring of ring 𝒦. If for any subset Ω ⊆  ℬ the left annihilator 𝐿 (Ω) is generated by 

an idempotent in 𝒦, then ℬ is called the fuzzy Bear subring of ring 𝒦. 

3.9 Example 

Let ℬ be a fuzzy subring of ℤ4 defined by 

ℬ(𝑟) = {
0.8    𝑖𝑓 𝑟 ∈ {0, 2},
0.1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

For any subset of Ω ⊆  ℬ the left annihilator 𝐿 (Ω) is given by 

𝐿 (Ω)(𝑟) = {
𝑘    𝑖𝑓 𝑟 ∈ {0, 2},
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

     0 ≤ 𝑘 ≤ 0.8 
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Since the set {𝑟 ∈  ℤ4 | 𝐿 (Ω)(𝑟) = 𝐿 (0)} = {0, 2} is not generated by an idempotent in ℤ4. Hence ℬ 

is not the fuzzy Baer subring of ℤ4 

3.10  Example 

Let ℬ be a fuzzy subring of ℤ5 defined by 

ℬ(𝑟) = {
0.9       𝑖𝑓 𝑟 = 0,
0.2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

For any subset of Ω ⊆  ℬ the left annihilator 𝐿 (Ω) is given by 

𝐿 (Ω)(𝑟) = {
𝑘       𝑖𝑓 𝑟 = 0,
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

     0 ≤ 𝑘 ≤ 0.9 

Since the set {𝑟 ∈  ℤ5 | 𝐿 (Ω)(𝑟) = 𝐿 (0)} = {0} is generated by an idempotent in ℤ5. Hence ℬ is the 

fuzzy Baer subring of ℤ5. 

3.11  Theorem 

Let Ω be a fuzzy Baer subring of 𝒦. If 𝜓 ⊆  𝒦 is any fuzzy subset of Ω, then 𝜓 is also a fuzzy Baer 

subring of 𝒦. 

Proof: 

Straightforward. 

3.12  Theorem [23] 

If {Ω𝑖 | 𝑖 ∈ 𝐼} is a family of left fuzzy ideals of 𝒦, then ∩
𝑖 ∈ 𝐼

Ω𝑖 is a fuzzy left ideal of 𝒦. 

Proof:  

Let Ω = ∩
𝑖 ∈ 𝐼

Ω𝑖 and 𝑟, 𝑠 ∈ 𝒦. Since intersection of any family of fuzzy subrings is fuzzy subrings, so 

it is enough to prove that Ω(𝑟𝑠) ≥ Ω(𝑠). Consider Ω (𝑟𝑠) = ∩
𝑖 ∈ 𝐼

Ω𝑖 (𝑟𝑠) = inf
𝑖 ∈ 𝐼

{Ω𝑖(𝑟𝑠)} ≥

inf
𝑖 ∈ 𝐼

{Ω𝑖(𝑠)} = ∩
𝑖 ∈ 𝐼

Ω𝑖(𝑠) = Ω(𝑠) 

3.13  Theorem 

If {Ω𝑖 | 𝑖 ∈ 𝐼} is a family of right fuzzy ideals of 𝒦, then ∩
𝑖 ∈ 𝐼

Ω𝑖 is a fuzzy right ideal of 𝒦. 

Proof: 

Straightforward. 

3.14  Theorem 

If {Ω𝑖 | 𝑖 ∈ 𝐼} is a family of fuzzy ideals of 𝒦, then  ∩
𝑖 ∈ 𝐼

Ω𝑖 is a fuzzy ideal of 𝒦. 

Proof: 

It follows directly from Theorem 3.12 and Theorem 3.13. 
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3.15  Theorem 

If ℬ is fuzzy Baer subring of 𝒦 and Ω𝑖 ⊆  ℬ is any family of subsets of ℬ, then ∩
𝑖 ∈ 𝐼

Ω𝑖 is also fuzzy 

Baer subring of 𝒦. 

Proof:  

It follows directly from Theorem 3.11 and Theorem 3.14. 

3.16  Theorem 

If {Ω𝑖 | 𝑖 ∈ 𝐼} is collection of fuzzy Baer subrings of 𝒦, then ∑ Ω𝛼𝛼∈𝐼   is a fuzzy Baer subring of 𝒦. 

Proof:  

It is enough to prove that 𝐿 (∑ Ω𝛼𝛼∈𝐼 ) = ∩
𝑖 ∈ 𝐼

𝐿 (Ω𝛼). Since Ω𝛼 ⊆  ∑ Ω𝛼𝛼∈𝐼 , we have 𝐿 (∑ Ω𝛼𝛼∈𝐼 ) ⊆

𝐿 (Ω𝛼). Hence, 𝐿 (∑ Ω𝛼𝛼∈𝐼 ) ⊆  ∩
𝑖 ∈ 𝐼

𝐿 (Ω𝛼). 

Let ∩
𝑖 ∈ 𝐼

𝐿 (Ω𝛼) (𝑟) = 𝑝, which implies 𝐿 (Ω𝛼)(𝑟) ≥ 𝑝. Let 𝐿 (Ω𝛼 )(𝑟) = 𝑝𝛼. Therefore 𝑟 ∈

𝐿((Ω𝛼)𝑝𝛼
). If 𝑞 = sup

𝛼 ∈ 𝐼
 {𝑝𝛼} and (Ω𝛼)𝑞 ⊆ (Ω𝛼)𝑝𝛼

. Thus 𝐿((Ω𝛼)𝑝𝛼
) ⊆ 𝐿 ((Ω𝛼)𝑞), and therefore 𝑟 ∈

𝐿 ((Ω𝛼)𝑞). Hence 𝑟 ∈  ∩
𝛼 ∈ 𝐼

𝐿 ((Ω𝛼)𝑞) ⊆ 𝐿 (∑ (Ω𝛼)𝛼∈𝐼 𝑞
) ⊆ 𝐿(∑ Ω𝛼𝛼∈𝐼 )𝑞 ⊆ (𝐿 (∑ Ω𝛼𝛼∈𝐼 ))

𝑞
, which 

implies 𝐿 (∑ Ω𝛼𝛼 ∈ 𝐼 )(𝑟) ≥ 𝑞 ≥ 𝑝𝛼. It follows that 𝐿(∑ Ω𝛼𝛼 ∈ 𝐼 )(𝑟) ≥ 𝐿(Ω𝛼)(𝑟) and 

𝐿(∑ Ω𝛼𝛼 ∈ 𝐼 )(𝑟) ≥  ∩
𝛼 ∈ 𝐼

𝐿 (Ω𝛼)(𝑟). Thus,  ∩
𝛼 ∈ 𝐼

𝐿 (Ω𝛼) ⊆ 𝐿 (∑ Ω𝛼𝛼 ∈ 𝐼 ). Hence 𝐿 (∑ Ω𝛼𝛼 ∈ 𝐼 ) =

∩
𝛼 ∈ 𝐼

𝐿 (Ω𝛼). By Theorem 3.15,  ∑ Ω𝛼𝛼 ∈ 𝐼  is a fuzzy Baer subring of 𝒦. 

3.17  Definition 

Let Ω be a fuzzy subring of ring 𝒦. If for any fuzzy point 𝑥𝛼 of Ω, where 𝑥 ∈  𝒦 and 0 < 𝛼 ≤ Ω (𝑥), 

the left annihilator 𝐿 (𝑥𝛼) is generated by an idempotent in 𝒦, then Ω is fuzzy Rickart subring of 𝒦. 

3.18  Example 

Let Ω be a fuzzy subring of ℤ defined as, 

Ω(𝑟) = {
0.9       𝑖𝑓 𝑟 ∈ 2ℤ ,
0.2      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

For any 𝑥 ∈  ℤ and 0 < 𝛼 ≤ Ω(𝑟), the fuzzy point 𝑥𝛼 is defined as, 

𝑥𝛼(𝑦) = {
𝛼        𝑦 = 𝑥 ,
0        𝑦 ≠ 𝑥.  

Then, 

𝐿 (𝑥𝛼)(𝑦) = {
𝛼               𝑦 = 0 ,
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

And {𝑦 ∈  ℤ | 𝐿 (𝑥𝛼)(𝑦) = 𝐿(𝑥𝛼)(0)} = {0} is generated by an idempotent in ℤ. Hence, Ω is fuzzy 

Rickart subring of ℤ. 
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3.19  Example 

Let Ω be a fuzzy subring of ℤ8 defined as, 

Ω(𝑟) = {
0.8       𝑖𝑓 𝑟 ∈ {0, 2, 4, 6} ,
0.2                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

For 2 ∈  ℤ8 and 0 < 0.1 ≤ Ω(2), the fuzzy point 20.1 is defined as, 

20.1(𝑦) = {
0.1        𝑦 = 2,
0         𝑦 ≠ 2.

 

Then,  

𝐿 (20.1)(𝑦) = {
0.1        𝑦 ∈ {0, 4} ,
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

and {𝑦 ∈ ℤ8 | 𝐿 (20.1)(𝑦) = 𝐿(20.1)(0)} = {0, 4} is not generated by an idempotent in ℤ8. Hence, Ω 

is not fuzzy Rickart subring of ℤ8. 

3.20  Theorem 

Every fuzzy Baer subring is fuzzy Rickart subring. 

Proof: Straightforward. 

4. Fuzzy Idempotent Subring 

In this section, we present a fuzzy framework for identifying a fuzzy subset as a fuzzy idempotent 

subset and explore some of its fundamental properties. This framework provides a systematic approach 

to analyze and characterize idempotent behaviors within fuzzy subrings, enhancing our understanding 

of their structural and functional attributes. 

4.1 Definition 

A fuzzy subset 𝜓 of a ring 𝒦 is said to be fuzzy idempotent subset if and only if 𝜓2 = 𝜓. 

4.2 Theorem 

Let 𝑒 be an idempotent in a ring 𝒦. Consider a fuzzy subset 𝜓 of 𝒦 defined as, 

ψe(𝑥) = {
𝑡0     𝑖𝑓 𝑥 ∈  〈𝑒〉,
𝑡1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝑡0 > 𝑡1. Then, 𝜓𝑒 is a fuzzy idempotent subring of 𝒦. 

Proof: 

Since 〈𝑒〉 is the principal ideal generated by the idempotent element 𝑒 ∈  𝒦, it follows that 〈𝑒〉 is a 

subring of 𝒦. Consequently, 𝜓𝑒 is a fuzzy subring of 𝒦. To establish that 𝜓𝑒 is a fuzzy idempotent 

subring, we need to prove that 𝜓𝑒
2(𝑥) = 𝜓𝑒(𝑥) for all 𝑥 ∈  𝒦. 

i.If 𝑥 ∈  〈𝑒〉, there exist some 𝑟 ∈  𝒦 such that 𝑥 = 𝑒𝑟 = 𝑒. 𝑒𝑟. Thus, 

𝜓𝑒
2(𝑥) = min{𝜓𝑒(𝑒), 𝜓𝑒(𝑒𝑟)} = 𝑡0 = 𝜓𝑒(𝑥).  

ii.If 𝑥 ∉  〈𝑒〉 then, 
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𝜓𝑒
2(𝑥) = min{𝜓𝑒(𝑢), 𝜓𝑒(𝑣)} = 𝑡1 = 𝜓𝑒(𝑥), for some 𝑢, 𝑣 ∉  〈𝑒〉.   

Hence, 𝜓𝑒 satisfies the condition of being a fuzzy idempotent subring of 𝒦. 

 

4.3 Example 

Consider the fuzzy subset 𝜓3 of the ring ℤ6 defined for the idempotent element 3 ∈ ℤ6 as follows: 

ψ3(𝑥) = {
0.7       𝑖𝑓 𝑥 ∈ {0, 3},
0.3          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, 𝜓3 is a fuzzy idempotent subring of the ring ℤ6. 

4.4 Theorem 

A fuzzy subring of the form 

ψ0(𝑥) = {
𝑡0          𝑖𝑓 𝑥 = 0,

𝑡1    𝑥 ∈ 𝒦 − {0},
 

with 𝑡0, 𝑡1 ∈ 𝐼𝑚 𝜓 and 𝑡0 > 𝑡1 is always a fuzzy idempotent subring of the ring 𝒦. 

Note that 1 − 𝜓𝑒 is fuzzy subset of 𝒦 defined as, (𝜓𝑒)(𝑥) = 1 − 𝜓𝑒(𝑥) 

4.5 Theorem 

Let 𝑒 be an idempotent and 𝜓𝑒 be the fuzzy idempotent subset of the ring 𝒦, then (1 − 𝜓𝑒) is the 

fuzzy idempotent subset of the ring 𝒦. 

Proof: 

Let 𝑥 ∈  𝒦 and 𝜓𝑒 be the fuzzy idempotent subset of the ring 𝒦. Thus, we have 𝜓𝑒
2(𝑥) = 𝜓𝑒(𝑥) for 

all 𝑥. Now consider, 

(1 − 𝜓𝑒)2(𝑥) = (1 − 𝜓𝑒) ∘ (1 − 𝜓𝑒)(𝑥) = sup
𝑥=𝑦𝑧

{min{(1 − 𝜓𝑒)(𝑦), (1 − 𝜓𝑒)(𝑧)}}

= 1 − sup
𝑥=𝑦𝑧

{min{𝜓𝑒(𝑦), 𝜓𝑒(𝑧)}} = 1 − (𝜓𝑒 ∘ 𝜓𝑒)(𝑥) = 1 − 𝜓𝑒
2(𝑥) = 1 − 𝜓𝑒(𝑥)

= (1 − 𝜓𝑒)(𝑥) 

Hence, (1 − 𝜓𝑒) is a fuzzy idempotent subset of the ring 𝒦. 

5. Conclusion 

Classical concepts from ring theory have been extended into fuzzy subrings in this paper by 

introducing the concepts of fuzzy Baer subrings, fuzzy Rickart subrings, and fuzzy idempotent 

subrings. The gap between traditional algebraic structures and fuzzy set theory has been bridged by 

utilizing the concepts of fuzzy subsets generated by an element, fuzzy left and right annihilators, and 

the notion of fuzzy points. The understanding of fuzzy analogs of Baer and Rickart rings has been 

deepened, and the broader potential of fuzzy algebra in capturing uncertainty within algebraic 

frameworks has been highlighted. The introduction of fuzzy idempotent subrings has further 

generalized classical results, opening new avenues for research in fuzzy ring theory and its applications 

across various fields. Significant contributions have been made to the expanding body of knowledge 
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in fuzzy mathematics and its relationship with classical ring theory, encouraging further exploration 

of fuzzy structures in algebraic contexts. 
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