ISSN: 1092-910X Vol 28 No. 1s (2025)

Weakly Quasi-Primary K- Modules

Muntaha Abdul-Razaq Hasan

Department of Mathematics ,College of Basic Education , Mustansiriyah University ,Baghdad-,Iraq.

Article History:

Received: 13-08-2024

Revised: 01-10-2024

Accepted: 17-10-2024

Abstract:

Important areas for study in the field of modules include prime modules . There has already been an introduction to the idea of quasi-prime modules . Our focus recently has been on weakly quasi-prime modules as a means for investigating one of these generalizations . The main objective of this work is to introduce a new type of module , namely weakly quasi-primary K-modules . A module D whenever $ann_KD = \sqrt{ann_K r D}$

For each $r \notin ann_K D$, is called weakly quasi-primary K-module, which is a generalization of weakly quasi-prime K-module ,whenever $ann_K D = ann_K r$ D for every $r \notin ann_K D$, then D is weakly quasi-prime K-module. Here the author obtain some characterize of weakly quasi-primary K-modules and investigated some properties of weakly quasi-primary K-modules. We prove relationships between weakly quasi-primary K-module and other modules, like prime module, quasi-prime module , weakly quasi-prime module and primary module are study in this paper.

Keywords: Prime modules , Quasi-Prime modules ,Primary modules ,Weakly quasi-primary modules.

1. Introduction

In this work, K be commutative ring with every ideal is prime and D be a unitary K-module. In [1] the concept of prime module was introduce ,where an K-module D is called prime if for each B submodule of D, $ann_K B = ann_K D$. It is proved in [2], that a K-module is primary if and only if $\sqrt{\operatorname{ann}_K D} = \sqrt{\operatorname{ann}_K B}$ for each sub-module B of D. In [3] Roman give another definition of primary Kmodules, where an K-module is primary if ann_K B is primary ideal for every non-zero submodule B of an K-module D. In [4], Fuchs define proper ideal J is primary if for $x y \in J$, then either $x \in J$ or $y^n \in J$ J for every x, y in K. Hasan, in [5] give a definition of weakly quasi-prime modules, where D is weakly quasi-prime modules if $ann_K D = ann_K rD$ for each $r \notin ann_K D$, the concept of weakly quasiprime K- module motivated us to introduce and study weakly quasi-primary K-module and we give several characterized by this module. A part 2 of this paper devoted to study the definition of weakly quasi-primary K-module and some description for this module. When D be multiplication K-module and $L \not\equiv ann_K r D$, where L be any proper ideal of the ring K, $r \in K$, then every sub-module of weakly quasi-primary K-module is weakly quasi-primary K-module, we investigate the condition make weakly quasi-primary K-module equivalent with prime K-module and weakly quasi-prime K-module and we end the section by the results of direct sum and direct summand of weakly quasi-primary Kmodule. In section 3 we study the relation between weakly quasi-primary K-module, quasi prime and primary K-module.

2. Weakly quasi-primary K-modules

The main goal for this section has been to establish a new concept known as weakly quasi-primary K-module . The study also explores the hereditary characteristics of weakly quasi-primary K-module.

ISSN: 1092-910X Vol 28 No. 1s (2025)

Definition (2-1):D is said to be weakly quasi-primary K- module if $ann_K D = \sqrt{ann_K rD}$, for every $r \notin ann_K D$.

Examples and Remarks (2.2):

1-Z as Z-module is weakly quasi-primary Z-module, since

$$ann_z Z=0 = \sqrt{ann_z rZ}$$
.

2- Z_6 as Z-module is not weakly quasi-primary module, since

$$ann_Z Z_6 = 6Z$$
 and $\sqrt{ann_Z 2Z_6} = \sqrt{3Z} = 3Z$, so $6Z \neq 3Z$.

3-Z_n as Z-module is weakly quasi-primary module if and only if n is prime number.

Proof :to prove n is prime number ,suppose n is not prime number ,so there is k ,w \in N;k,w < n ,n=kw ,so $ann_Z Z_n = \sqrt{ann_Z r Z_n}$; $r \notin ann_Z Z_n$,so $ann_Z Z_{KW} = kw$,but $\sqrt{ann_{rZ_{kW}}} = \sqrt{kw}$,while $kw \neq \sqrt{kw}$ implies that n must be prime number .The conversely ,it is clear.

 $4-Z_{p^{\infty}}$ is weakly quasi-primary K-module, since $ann_{Z}Z_{p^{\infty}}=\sqrt{ann_{K}\,rZ_{p^{\infty}}}=0$, for $r\notin ann_{K}Z_{p^{\infty}}$.

5-It is clear that not every divisible module over integral domain is weakly quasi-primary module.

6-Every weakly quasi-primary K-module is weakly quasi-prime K-module.

Proof :we must prove that ann_K D= ann_K rD for every r $\notin ann_K$ D Since rD \subseteq D, so ann_K D $\subseteq ann_K$ rD .Let $x \in ann_K$ rD $\subseteq \sqrt{ann_K rD}$, by [6]. Since D is weakly quasi-primary K-module so $x \in ann_K$ D leads to ann_K rD $\subseteq ann_K$ D, which mean D is weakly quasi-prime K-module.

But the converse is not true for example: every divisible module over integral domain is weakly quasi-prime module, see [5], but not weakly quasi-primary module (5 in Examples and Remarks 2.2).

We know that a ring K is called cosemiprime ring if and only if every proper ideal in K is semi-prime ,[6].

Now, we can give the following remark.

Remark (2.3):let K be cosemiprime ring ,then D is weakly quasi-prime K-module if and only if D is weakly quasi –primary K-module.

Theorem (2.4): Let L be an ideal of ring K; $r \notin ann_K LD, L \not\subseteq ann_K rD, D$ is weakly quasi-primary K-module if and only if $\sqrt{ann_K LD} = ann_K D$.

Proof : since $LD \subseteq D$ leads us to $ann_K D \subseteq ann_K LD$ and by [6], $ann_K LD \subseteq \sqrt{ann_K LD}$, so we have $ann_K D \subseteq \sqrt{ann_K LD}$. Let $x \in \sqrt{ann_K LD}$, so $x^n \in ann_K LD$ implies $x^n LD = 0$ equivalently to $x^n LD = 0$, leads us $x^n LD = 0$, so $x^n LD = 0$, but $L \not\subseteq ann_K rD$ so $x^n \in ann_K rD$, implies $x \in \sqrt{ann_K rD}$, but D is weakly quasi-primary K-module so $x \in ann_K D$, so we have the result.

Contrariwise ,if ann_K D= $\sqrt{ann_K LD}$, to prove D is weakly quasi-primary K-module ,since r D \subseteq D ,so ann_K D $\subseteq ann_K$ rD $\subseteq \sqrt{ann_K rD}$;r $\notin ann_K D$,let $x \in \sqrt{ann_K rD}$,so $x^n \in ann_K rD$,implies $x^n rD=0$ equivalently to L $x^n rD=0$,but the ring is commutative ,so $x^n rLD=0$,so $x^n r\in ann_K LD$ so by our hypothesis lead us to $x^n \in ann_K LD$,so $x \in \sqrt{ann_K LD}=ann_K D$,then we have the result.

Proposition (2.5): every prime K-module is weakly quasi-primary K-module.

ISSN: 1092-910X Vol 28 No. 1s (2025)

Proof: because $r D \subseteq D$, so $ann_K D \subseteq ann_K r D$, by [6] we have $ann_K D \subseteq \sqrt{ann_K r D}$. Let $x \in \sqrt{ann_K r D}$; $r \notin ann_K D$, then $x^n \in ann_K r D$, thus $x^n r D = 0$, implies $x^n r \in ann_K D$, since D is prime module implies by [7] $ann_K D$ is prime ideal, thus $x^n \in ann_K D$, leads us to $x \cdot x^{n-l} \in ann_K D$, so $x \cdot x^{n-l} D = 0$, suppose that $x^{n-l} = h \in K$, so $x \in ann_K h D$, but D is prime module so by [7] implies that $x \in ann_K D$, thus D is weakly quasi-primary K-module.

But the contrariwise is not true for example :let $D=Z \oplus Z_n$, so $ann_K D = \sqrt{ann_K r(Z \oplus Z_n)} = 0$ such that $r \notin ann_K (Z \oplus Z_n)$, so D is weakly quasi-primary module, but D is not prime module, see [7].

Proposition (2-6):let D be multiplication K-module and $L \nsubseteq ann_K r$ D ,where L be any proper ideal of the ring K ,r∈ K ,then every sub-module of weakly quasi-primary K-module is weakly quasi-primary K-module.

Proof : let D be weakly quasi-primary K-module and B be non-zero submodule of D ,to prove that B is weakly quasi-primary module ; $r \notin ann_K B$. Since $rB \subseteq B$, so $ann_K B \subseteq ann_K rB$, thus $ann_K B \subseteq \sqrt{ann_K rB}$.

Let $x \in \sqrt{ann_K rB}$, so $x^n \in ann_K rB$, implies $x^n r B = 0$, since M is multiplication, so there exist L of K, such that B=LD, leads us $x^n rLD=0$ equivalently to $x^n LrD=0$, so $x^n L \in ann_K rD$, since $L \not\subseteq ann_K rD$, so $x^n \in ann_K rD$, leads us to $x \in \sqrt{ann_K rD}$, but D is weakly quasi-primary, so $x \in ann_K D \subseteq ann_K B$, which mean $x \in ann_K B$, so we have the result.

Theorem (2-7): the direct sum of two weakly quasi-primary K-module is also weakly quasi-primary K-module.

Proof: let D = $D_1 \oplus D_2$, where D_1 and D_2 are two weakly quasi-primary K-module to prove that D is weakly quasi-primary K-module. We must achieve $ann_K D = \sqrt{ann_K rD}$, for every $r \notin ann_K D$.

$$\sqrt{ann_K r D} = \sqrt{ann_K r (D_1 \oplus D_2)} = \sqrt{ann_K (r D_1 \oplus r D_2)}, \text{ see}[8].$$

$$= \sqrt{ann_K r D_1 \cap ann_K r D_2}, \text{ by}[8]$$

$$= \sqrt{ann_K r D_1} \cap \sqrt{ann_K r D_2}$$

$$= ann_K D_1 \cap ann_K D_2 = ann_K (D_1 \oplus D_2) = ann_K D.$$

By Mathematical induction we have the following:

Corollary (2-8):let D be an K-module ,if D is weakly quasi-primary K-module ,then for any positive integer n,D^n is weakly quasi-primary K-module, where D^n is the direct sum of n copies of D.

Recall that a sub module B of an K-module D is called a direct summand of D if and only if there exist a sub-module C of D such that $D=B \oplus C$,[9]

Remark (2-9): a direct summand of weakly quasi-primary K-module is not weakly quasi-primary K-module, for example :let $D=Z \oplus Z_8$, it is clear that $ann_K D = \sqrt{ann_K rD} = 0$, but Z_8 is not weakly quasi-primary K-module, see (3 in examples and Remarks 2-2).

Theorem (2-10): let L be an ideal of K ,which is not contained in ann_KD ,D be multiplication K-module ,then the following statement are equivalent

- **1-**D is prime K-module.
- **2-**D is weakly quasi-primary K-module.
- **3-** D is weakly quasi-prime K-module.

ISSN: 1092-910X Vol 28 No. 1s (2025)

Proof: $1 \rightarrow 2$, by proposition (2-5)

- $2 \rightarrow 3$, by (6 in examples and remarks (2-2)
- $3 \rightarrow 1$, to prove $ann_K D = ann_K B$, for every B be non-trivial submodule of D. Since B⊆ D, so $ann_K D \subseteq ann_K B$.Let $x \in ann_K B$, so by [7] we have $x \in ann_K r$ B, for every $r \notin ann_K B$, implies that $x \ r$ B=0,but D is multiplication K-module ,so B=LD, where L be an ideal of a ring K. Thus $x \ r$ LD=0,which mean $x \ L \subseteq ann_K r$ D,but D is weakly quasi-prime K-module and L⊈ $ann_K D$, implies $x \in ann_K D$

3-Relation of weakly quasi-primary K-module with quasi-prime and primary K-module.

This section we delve into the relationships between weakly quasi-primary module and different types of module, like quasi-prime and primary K-modules. Recall that in [7] an K-module D is said to be quasi-prime K-module if and only if ann_KB is a prime ideal for every non-zero submodule B of D and the author obtain some characterization of quasi-prime K-module, where the definition of quasi-prime K-module equivalent with $ann_KB = ann_KrB$, for each sub-module B of D, $r \in K$, $r \in E$ in general not every weakly quasi-primary module is quasi-prime module for example: Z_{P^∞} is weakly quasi-primary K-module, see (4 in examples and remarks(2-2)), but Z_{P^∞} is not quasi-prime K-module [7]. But if we put the condition in proposition (3-1) we have the result.

Proposition (3-1): let L be an ideal of commutative ring ,where L $\nsubseteq ann_K D,D$ be multiplication K-module ,then every weakly quasi-primary K-module is quasi-prime K-module.

Proof : by [7] we must prove that $ann_K B = ann_K rB$, for each submodule B of D such that $rB \neq 0$; $r \in K$. Since $rB \subseteq B$, so $ann_K B \subseteq ann_K rB$. Let $x \in ann_K rB$, then x r B = 0, but B is multiplication K-module, so B = LD, for L be ideal of K, thus x r LD = 0, implies $x L \subseteq ann_K rD \subseteq \sqrt{ann_K rD}$, but D is weakly quasi-primary K-module, so $x L \subseteq ann_K D$, where $L \not\subseteq ann_K D$, implies $x \in ann_K D$, so $x \in ann_K B$, which mean B is quasi-prime K-module.

Proposition (3-2): let D be multiplication K-module, then every quasi-prime K-module is weakly quasi-primary K-module.

Proof: by[7] we have every multiplication quasi-prime K-module is prime K-module and by proposition(2-5)we have the result.

Now, we give the following theorem from proposition(3-1)and proposition(3-2)

Theorem (3-3): let L be an ideal of commutative ring ,where L $\nsubseteq ann_K D$,D be multiplication K-module, then D is weakly quasi-primary K-module if and only if D is quasi-prime K-module.

Proposition (3-4): every cyclic quasi-prime K-module is weakly quasi-primary K-module.

Proof: from [7] and proposition (2-5) we have the result.

Roman in[3] give a definition of primary K-module ,where an K-module is primary if $ann_K B$ is primary ideal, for every non-zero sub-module B of K-module D ,where an ideal L is primary ideal if for x y \in L,implies eather x \in L or $y^n \in$ L;n>0,[8].

Theorem (3-5): let D be multiplication, Let L be an ideal of ring K; $r \notin ann_K LD$, $L \not\subseteq ann_K rD$, then D is primary K-module if and only if D is weakly quasi-primary K-module.

Proof: to prove D is weakly quasi-primary K-module, since r D \subseteq D, so ann_K D $\subseteq ann_K$ rD $\subseteq \sqrt{ann_K rD}$. Let $x \in \sqrt{ann_K rD}$, implies $x^n \in ann_K rD$, which mean $x.x^{n-l} \in ann_K rD$, but D is primary, so either $x \in ann_K rD$ or $x^{n-l} \in ann_K rD$. if $x \in ann_K rD$, then xrD = 0, which mean $xr \in ann_K D$, where $r \notin ann_K D$, implies $x \in ann_K D$, so we have the result. If $x^{n-l} \in ann_K rD$, so

ISSN: 1092-910X Vol 28 No. 1s (2025)

 x^{n-1} rD=0,which mean x. x^{n-2} rD=0 ,by n –copies we have $x \in ann_K D$. Thus D is weakly quasi-primary K-module.

Contrariwise , by [2],an K-module D is primary if and only if $\sqrt{ann_KD} = \sqrt{ann_KB}$.Since $B \subseteq D$,so $ann_KD \subseteq ann_KB \subseteq \sqrt{ann_KB}$ *. Let $x \in \sqrt{ann_KD}$, so $x^n \in ann_KD$, implies $x^nD = 0$. Thus $x^nrD = 0$, so $x^n \in ann_KrD$, which mean $x \in \sqrt{ann_KrD}$, but D is weakly quasi-primary K-module ,implies $x \in ann_KD$, therefore by *we obtain $x \in \sqrt{ann_KB}$. conversely ,let $x \in \sqrt{ann_KB}$, so $x^n \in ann_KB$, which mean $x^nB = 0$, but D is multiplication ,so there exist an ideal L of a ring K ,such that B = L D. Thus $x^nLD = 0$, which mean $x^nLD = 0$, lead us $x^n \in ann_KLD$, so $x \in \sqrt{ann_K}LD$ and by theorem (2-4), we obtain $x \in ann_KD$, so $x \in \sqrt{ann_KD}$, which mean that D is primary K-module.

Note that ,the condition M is multiplication in theorem(3-5)is necessary as it is show in the following example: $Z_{P^{\infty}}$ is weakly quasi-primary K-module, see examples and remarks(4 in 2-2), but $Z_{P^{\infty}}$ is not primary ,since $\sqrt{ann_K Z_{P^{\infty}}}$ =0, but $\sqrt{ann_K (\frac{1}{P^2} + Z)}$ = $\sqrt{P^2}Z$ = $PZ \neq 0$.

Conclusion

In this article ,we introduced a novel concept called weakly quasi-primary K-module and achieved several intriguing findings , including various new characterizations for that notion .The link between weakly quasi-primary K-module with other modules is adopted and we found the conditions for equivalence of weakly quasi-primary K-modules with other modules.

Acknowledgement

The author thanks the editor and anonymous reviewers for their useful comments and suggestions. Additionally, the author would like to thank Mustansiriyah University

(www.uomustansiriyah.edu.iq)Baghdad-Iraq .for its support in the present research.

Refrences

- [1] J.Dauns.1980."Prime Modules and One- Sided ideals in Ring Theory and Algeba III", Proceeding of the Third Oklahoma Conference, Dekker, New yourk (1980):.301-344.
- [2] L.H.ALomairy."On Coprimary Modules.".Journal of AL-Nahrain university13,no.3 (2010):.175-177.
- [3] J.Roman and F.,Roard.2005."Advanced Linear Algebra", Irvine, Usa.
- [4] L.Fuch.."On Quasi-Primary Ideals, Acta Sci.Math. Szeged 11 (1947):174-183.
- [5] Hasan, M., Abdul-Razaq." On Weakly Quasi-prime Modules.", Ibn-AL-Haitham Journal for Pure and Applied Sciences .25, no.1 (2011):421-426.
- [6] Hasan, M. Abdul-Razaq. "Cosemiprime Ring." Journal of Global Scientific Research 8, no. 1 (2023):2847-2850.
- [7] Hasan,M.Abdul-Razaq.1999."Quasi-Prime Module and Quasi-Prime Submodules", M.Sc.thesis,university of Baghdad,Iraq.
- [8] Andersone.F..W.and Fulle,K.R.1973."Ring and Categories of Modules ." University of Oregon.
- [9] Kash,F.1982." Modues and Rings ."Academic Press,London,New York.