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Abstract 

In this study, an MBA model which can select a single machine for production 

and simultaneously consider many criteria is proposed. In this paper we 

present the description of the machine scheduling problem (MSP), which is 

the set of n tasks accomplished by a single machine. The task will be to 

minimise a function with reference to the criteria that are enumerated below: 

∑C_j – total time whereas R_L – range of lateness; T_max – maximum of 

tardiness. Proofs have been made to conclude that this problem is NP hard. 

The matter we are concerned with calls for the emergence of a number of 

subissues, all of which will be discussed in more detail later on. In the 

theoretical part of our investigation, we have shown that the SPT rule offers a 

viable solution to the issue that we are attempting to solve. Furthermore, we 

have shown that it is possible to implement certain manifestations of the 

dominance rule (DR). In order to solve the suggested MSP tricriteria, the 

Branch and Bound (BAB) algorithm is used throughout the practical portion 

of the evaluation process. The objective of this approach is to identify a set of 

solutions that are not only successful but also efficient for 

1//(∑C_j,R_L,T_max) up to n=18 jobs. In addition, the BAB method is used 

in conjunction with DR for a maximum of n=39 tasks within a reasonable 

amount of time in order to uncover estimated effective solutions for the 

problem at hand. 

Keywords: Simulated machine issue, Multiple criteria, overall completion 

duration, maximum delay, Latency variety, Branch and Bound. 

 

 

1. Introduction 

Scheduling difficulties belong to the broad category of problems referred to as combinational 

optimization. It can be defined as an orderly approach to choosing among different alternatives often 

used in many manufacturing and service industries. Resource allocation is the way of assigning 

resources to tasks and time periods also the goal of optimising one or more criteria in addition (Pinedo, 

2008 [1]). Scheduling theory has been a significant research focus in several practical domains such 

as manufacturing systems, computer science, industrial management, transportation, agriculture, 

hospitals, and others (Agin, 1996[2]). Resources and tasks are referred to as machine jobs, respectively. 

Scheduling means the assignment of scarce resources in excess to a definite number of operations, 

besides in a given period of time.e. Assets include different things like apparatus in a workshop, tracts 

at an airport, workers at a construction site, and processing units in a computing system. Employment 

includes matters under the area of industry, takeoff and descents of aeroplanes, sequences of 

construction projects, and computation of computer programming. The purpose of scheduling is to 

allocate human resources for the job with the purpose of achieving on or several goals with the best 
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results. There are myriad sorts of problem classes in manufacturing scheduling. Processing facilities 

can be categorised into single-chain machine, simultaneous-chain machine, flow-chain machine, and 

job-chain machine [4]. 

In recent years, there has been a significant amount of interest in the multicriteria scheduling issue. 

Nagar et al. (1995) have produced a detailed survey of multicriteria models throughout this time. A 

effective resolution of two different kinds of problems is shown by the results. The first one covers the 

difficulties associated with minimising the order of criteria in a lexicographical style. Several examples 

of hierarchical minimisation difficulties may be found in the research carried out by Smith (2), Nagar 

et al. (1995) (5), and Hoogeveen (2005) (7). Additionally, the concurrent technique incorporates two 

distinct approaches. The first type will calculate all of the possible schedules and then choose the one 

that has the best aggregate function goals value. This will be done by combining each of the criteria. 

Calculating the absolute worth of such goals is the task that remains to be done. The simultaneous 

minimisation of a variety of goal functions is a method that may be used to solve a great deal of 

scheduling challenges simultaneously. The article by Hoogeveen (2005) [7] provides a complete 

analysis of the most important discoveries on multicriteria scheduling. Van Wassenhove and Gelders 

(1980) [8] were the ones that launched the first inquiry in the subject of simultaneous computing to be 

conducted. Researchers evaluated the effectiveness of overall completion times and maximum 

tardiness in relation to a single machine challenge by putting them through a series of tests. Multiple 

criteria are discussed in further depth in the references. (9, 10, 11). 

During the duration of this investigation, we investigate the challenge of minimising a certain set of 

multicriteria while simultaneously scheduling n tasks on a single computer. There is only one computer 

that can handle all of the n tasks at the same time, thus each and every one of them can only be handled 

by that one machine. In task j, the processing time and the due date are connected to one another. At 

approximately instance zero, all of the works are available to be examined at the same time 

concurrently. Obtaining a collection of Pareto-optimal solutions to the problem of 1//F 

(∑C_j,R_L,T_max) has been accomplished. In the second part, we will investigate the mathematical 

formulation of the issue that involves the interval 1//P∑C_j,R_L,T_max. A new upper and lower limit 

for the BAB will be suggested in the third portion of the research paper. There are two heuristic 

techniques that are provided in the fourth part in order to find a solution that is close to optimum for 

the issue that has been specified. In the fifth part, the results, which include both a conceptual analysis 

and a comparison, are described in depth. Further, the most significant findings and a few suggestions 

will be offered in the sixth paragraph, which will also include some recommendations. 

1.1 Important Notations 

This report makes use of a few indications: 

n : Number of jobs. 

𝑝𝑗 : Processing time of jobs j. 

𝑑𝑗 : Due date of jobs j. 

𝐶𝑗 : Completion time of job j, where 𝐶𝑗 = ∑ 𝑝𝑘
𝑗
𝑘=1 . 

∑𝐶𝑗 : Total completion time. 

𝐿𝑗 : Lateness of job j, 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗 . 

𝑅𝐿 : Range of lateness, 𝑅𝐿 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛. 

𝑇𝑗 : Tardiness of job j, 𝑇𝑗 = 𝑚𝑎𝑥{𝐿𝑗 , 0}. 

𝑇𝑚𝑎𝑥 : Maximum Tardiness of all jobs, 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑇𝑗}. 

DR : Dominance Rules 

WDR : In addition, out DR. 
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1.2 Machine Scheduling Problem 

In this paper we need some basic definitions. 

Definition (1) [12] and [15]: Assuming that there is a scheduling problem P, any schedule 𝜎 ∈ 𝑆, that 

fulfils the requirements of that issue P is considered viable, wherein S is the collection of all programs.  

Definition (2) [7] and [16]: When there is no reasonable schedule 𝜋 that meets simultaneously 𝑓(𝜋) ≤
𝑓(𝜎)and 𝑔(𝜋) ≤ 𝑔(𝜎), wherein no less than both of the inequality is rigorous, then a viable schedule 

𝜎 is Pareto optimum, or non-dominated (efficient) In addition regard to the achievement criteria 𝑓 as 

well as 𝑔. 

Definition (3): (Shortest Processing Time (SPT) rule) [4] and [17]: Jobs are sequenced in non-

decreasing order of processing times (𝑝𝑗), (i.e. 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛). This set of rules was applied to 

resolve the issue 1//∑𝐶𝑗. 

Definition  (4): Earliest Due Date (EDD) rule [7]: The descending sequence of operations is based 

on their due date (𝑑𝑗 ) and is not declining, meaning that (i.e. 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛 ). The problem 

1//𝑇𝑚𝑎𝑥 is minimized by applying the preceding rule. 

Definition  (5) [13]: In a multi-criteria settlement getting challenge, the word "optimizes" refers to a 

solution regarding which it is impossible to develop or improve every goal devoid leaving any 

additional objective inferior. 

Definition  (6) [14]: Assuming we have been unable to locate a different schedule S
′ that satisfies 

𝑓𝑗(S
′) ≤ 𝑓𝑗(S), 𝑗 = 1, … , 𝑘  and over and above all among the aforementioned holds as a rigorous 

inequality, then schedule S is considered economical. There is a different way to say that S
′
dominates 

S. 

2. Description of Tricriteria Scheduling𝟏/(∑𝑪𝒋, 𝑬𝒎𝒂𝒙, 𝑹𝑳) Problem 

Let 𝑁 = {1,2, … , 𝑛},be the set of jobs which are available at time zero to be scheduled on a single 

machine. Each job𝑗 ∈ 𝑁, has positive integer processing time𝑝𝑖and positive integer due date 𝑑𝑗. The 

machine can handle only one job at a time using the proposed three-field categorization by Graham et 

al [3], the MSP denoted by  1//𝐹(∑𝐶𝑗, 𝐸𝑚𝑎𝑥 , 𝑅𝐿). The goal is to endeavor to identify the collection of 

effective approaches for the machine that can be expressed in the following manner for a particular 

timetable 𝑆 = (1,2, … , 𝑛): 

  𝑀𝑖𝑛 {∑𝐶𝑗, 𝑅𝐿(𝑆), 𝑇𝑚𝑎𝑥} 

Subject to 

  𝐶1 ≥  𝑝𝑆(1), 

  𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝑆(𝑗),                    𝑗 = 2,3, … , 𝑛 

  𝐿𝑗 = 𝐶𝑗 − 𝑑𝑆(𝑗),                           𝑗 = 1,3, … , 𝑛.    …(P) 

  𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑆(𝑗),                           𝑗 = 1,3, … , 𝑛. 

  𝑅𝐿(𝑆) = 𝐿𝑚𝑎𝑥(𝑆) − 𝐿𝑚𝑖𝑛(𝑆),  

  𝑇𝑗 ≥ 0,                                          𝑗 = 1,3, … , 𝑛. 

This problem (P) is difficult to solve and find the set of all efficient solutions. 
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3. Efficient Solutions for P-Problem using Branch and Bound Algorithm  

In this section, we propose two techniques; classical Branch and Bound (BAB) or we can say BAB In 

addition out DR (WDR) to ascertain a collection of the best alternatives for issue (P). The phases of 

the BAB(WDR) are listed below: 

BAB(WSR) Algorithm 

Step (1): INPUT n, 𝑝𝑖and 𝑑𝑗for 𝑗 = 1,3, … , 𝑛. 

Step (2): SETS= ɸ, define𝐹(𝜎) = (∑𝐶𝜎(𝑗), 𝑅𝐿(𝜎), 𝑇max (𝜎)), for any . 

Step (3): Find the upper bound UB by =SPT rule. For this order σ, compute 𝐹(𝜎),𝑗 = 1,2, … , 𝑛. And 

set the upper bound𝑈𝐵 = 𝐹(𝜎)at the parent node of the search tree. 

Step (4): Every node in the searching tree of the Branch and Bound method,  

                compute the lowest bound LB(δ) for each incomplete job sequence δ as  

                 follows: LB () = cost of sequenced jobs () for achieving the goal  

                  functionalities + cost of sequenced tasks derived by using the SPT  

                  technique. 

Step (5): Branch form all nodes where the lower bound is less than or equal to the     

                 upper bound (LB ≤ UB). 

Step (6): At the final stage of the BAB technique, we receive a set of solutions when  

                𝐹(𝛿) is used to indicate that what happens should be included to the set 𝑆. If  

                it isn't overwhelmed by the efficient alternatives that were originally   

                identified in S, subsequently Filtering 𝑆 is applied. 

  Step (7): STOP. 

In the best case scenario, the time taken to solve the Problem (P) is moderately reasonable in the 

BAB(WDR) up to the number n=17. In this part, we also present another BAB which relies on the DR. 

This kind of BAB is called BAB(DR) and the aim here is to reduce the number of opened nodes thus 

taking lesser time and increasing number of n for the issues solved. It has some resemblance to 

BAB(WDR) method, although the primary phases of the approach is similar too there are several 

methods that are unique to this approach. The following is a list of the stages that are included in the 

BAB(DR): 

BAB(DR) Algorithm 

Step (1): INPUT n, 𝑝𝑖and 𝑑𝑗for  𝑗 = 1,2, … , 𝑛. Find Adjacency Matrix A. 

Step (2): SETS= ɸ, define 𝐹(𝜎) = (∑𝐶𝜎(𝑗), 𝑅𝐿(𝜎), 𝑇max (𝜎)), for any . 

Step (3): Find the upper bound UB  by =  SPT  rule. For this order σ, compute𝐹(𝜎),𝑗 = 1,2, … , 𝑛. And 

set the upper bound𝑈𝐵 = 𝐹(𝜎)at the parent node of the search tree. 

Step (4): In addition, every node in the BAB method's searched tree and every partial      

                 collection of jobs , compute a lower bound LB ()  in the following manner:  

                  Cost of subsequence jobs acquired through sequencing the jobs in the SPT  
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                  method + cost of sequenced jobs () considering the goal functionalities  

                   equals LB (). 

Step (5): Branch from each node in addition LB ≤ UB and 𝑖 → 𝑗. 

Step (6):  At the final stage of the BAB technique, we receive a set of solutions when  

                𝐹(𝛿) is used to indicate that what happens should be included to the set 𝑆. If  

                it isn't overwhelmed by the efficient alternatives that were originally identified  

             in S, subsequently Filtering 𝑆 is applied. 

Step (7): STOP. 

The BAB(DR) we solve problem (P) up to n=39 in a reasonable time. 

4. Heuristic Method for P-problem 

As the SPT method solves the 1//∑𝐶𝑗 challenge, the first heuristic technique compute s the objective 

function, puts the second job in first place, make plans as the remaining jobs according to the SPT rule, 

compute s the target functioning, and so on before n orders are acquire ed. The following belong to 

SPT-EDD-SCRLT's primary processes: 

Algorithm (3): SPT-EDD-SCRLT Heuristic Method. 

Step (1): INPUT n, 𝑝𝑗and 𝑑𝑗 , 𝑗 = 1,2, … , 𝑛, 𝛿 = ∅. 

Step (2): Make plans jobs in SPT rule (𝜎1), and compute  𝐹11(𝜎1); 𝛿 = 𝛿 ∪ {𝐹11(𝜎1)}. 

Step  (3):  FOR  i=2,…,n, put job i in the first place  of 𝜎𝑖−1to acquire  𝜎𝑖 and compute  𝐹1𝑖(𝜎𝑖);  𝛿 =
𝛿 ∪ {𝐹1𝑖(𝜎𝑖)}.  

END; 

Step (4): Make plans jobs in EDD rule (𝜋1, compute  𝐹21(𝜋1);  𝛿 = 𝛿 ∪ {𝐹21(𝜋1)}. 

Step (5): FOR  i=2,…,n, put job i in the first place  of 𝜋𝑖−1to acquire  𝜋𝑖 and compute  𝐹2𝑖(𝜋𝑖);  𝛿 =
𝛿 ∪ {𝐹2𝑖(𝜋𝑖)}. 

END; 

Step (6): Filter set 𝛿 to acquire as a set of efficient solution of  P-problem 

Step (7): OUTPUT The set of efficient solution𝛿. 

Step (8): END. 

The idea of the second heuristic method is summarized by finding a sequence sort in addition minimum 

𝑝𝑗, 𝑑𝑗 and 𝑑𝑗 which is not contradiction in addition DR and compute the objective function, The main 

steps of DR-SERL Tares follows: 

Algorithm (4): DR_SCRLT Heuristic Method. 

Step (1): INPUT: 𝑛, 𝑝𝑗 and𝑑𝑗 , 𝑗 = 1,2, … , 𝑛. 

Step (2): Apply preplaces (1) to find DR adjacency matrix A; 

𝜎 = ∅, 𝑁 = {1,2, … , 𝑛}. 
Compute  𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 , ∀𝑗 ∈ 𝑁, 𝛿 = ∅. 

Step  (3): Find a sequence 𝜎1  In addition minimum 𝑝𝑗  which is not contradiction in addition DR  

(matrix A), if ∃ Over and above one job break tie capricious, 𝛿 = 𝛿 ∪ {𝜎1}. 

Step  (4): Find a sequence 𝜎2  In addition minimum 𝑑𝑗  which is not contradiction in addition DR 

(matrix A), if ∃ Over and above one job break tie capricious, 𝛿 = 𝛿 ∪ {𝜎2}. 

Step (5): Find the dominated sequence set 𝛿 ′ from 𝛿. 

Step (6): Compute  𝐹(𝛿). 

Step (7): OUTPUT The set of efficient solution𝛿. 
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Step (8): END. 

5. Practical Result of P problems 

The at unplanned values of  𝑝𝑗and 𝑑𝑗  for all example are generated depending on the uniform 

allocation s.t. 𝑝𝑗 ∈[1,10] and 𝑑𝑗 ∈ [1,70] under condition 𝑑𝑗 ≥ 𝑝𝑗 , for j=1,..,n. 

Before showing all the outcomes tables, we introduce some important abbreviations: 

Ex : Example Number. 

Av : Average. 

NS : Number of efficient Solution. 

ANS : Average number of efficient solutions. 

T/S : CPU-Time per second. 

AT/S : Average of CPU-Time per second. 

MOF : Multi Objective Function. 

OP : Optimal Value of P1-problem. 

R : 0 < Real < 1. 

F : Objective Function of P-problem. 

 

The outcomes of applying CEM and BAB(WDR) which are compared in addition CEM for P-problem, 

n=3:10 are shown in table (1). 

Table (1): Comparative analysis of BAB and CEM for P-problem, n=3:10. 
n CEM BAB(WDR) 

OP TIME NES MOF TIME NES 

Av(F) AT/S ANES AMAE AT/S ANES 

3 (33.5,15.9,10.2) R 2.4 (33.1,14.9,15.1) R 3.2 

4 (58.0,15.6,17.6) R 6.6 (47.4,13.8,16.9) R 4.8 

5 (79.5,8.9,17.0) R 6.4 (51.3,11.6,13.8) R 7.2 

6 (85.5,14.2,23.0) R 13.4 (104.6,8.8,21.9) R 6.4 

7 (122.0,8.3,21.7) R 17.2 (110.4,11.5,24.1) R 10.4 

8 (173.3,9.9,33.7) 1.1 13.2 (180.0,11.0,36.5) R 13.6 

9 (211.7,8.8,36.5) 10.6 20.0 (213.8,11.2,41.4) R 9.0 

10 (254.7,9.8,40.8) 109.8 15.2 (257.0,10.0,42.7) R 12.0 

AV (127.275,11.425,25.0625) 15.1875 11.8 (124.7,11.6,26.55) R 8.325 

 

From table (1), we notice that BAB(WDR) is more accurate to CEM outcomes because it’s found all 

the solutions for P-problems in addition no matter that the optimal schedule. 

In Table (2), a comparison has been made between CEM and HUE1,  HUE2 for P-problem for n=3:10. 

Table (2): Comparative analysis of CEM and HUE1, HUE2 for P-problem, n=3:10. 
n CEM HUE1 HUE2 

OP TIM

E 

NES MOF TI

ME 

NES MOF TI

ME 

NES 

Av(F) AT/S AN

ES 

Av(F) AT/

S 

AN

ES 

Av(F) AT/

S 

AN

ES 

3 (33.5,15.9,10.2) R 2.4 (34.50,16.03,11.40) R 2.20 (36.30,9.50,10.9

0) 

R 1.40 

4 (58.0,15.6,17.6) R 6.6 (42.17,15.67,15.17) R 3.20 (66.40,12.00,17.

90) 

R 2.00 

5 (79.5,8.9,17.0) R 6.4 (73.40,11.92,19.05) R 4.80 (63.70,12.70,17.

00) 

R 2.00 
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For n=3:10, we notice that HEU1 and HUE2 starts to give minimum values for P-problem compared 

in addition outcomes of CEM. 

The comparison outcomes of HUE1, HUE2 In addition BAB, for P-problem, n=20,40(20): 200,  

appears in the table (3). 

Table (3): Comparative analysis of HUE1, HUE2 In addition BAB, for P-problem, n=20:200. 

 

Notice that the Heuristic HEU1 gives better outcomes from HUE2 compared in addition BAB for P-

problem for n=4:10. 

In table (4) we compare the outcomes acquire ed from heuristic HUE1 and HUE2 for P-problem, 

n=500,1000:(500):4500. 

 

 

 

6 (85.5,14.2,23.0) R 13.4 (92.51,12.55,24.44) R 4.80 (89.70,13.90,22.

20) 

R 2.00 

7 (122.0,8.3,21.7) R 17.2 (127.02,13.64,29.90) R 5.80 (125.60,11.10,25

.50) 

R 2.00 

8 (173.3,9.9,33.7) 1.1 13.2 (194.68,13.44,39.52) R 6.60 (139.50,12.50,28

.60) 

R 2.00 

9 (211.7,8.8,36.5) 10.6 20.0 (215.47,12.38,44.16) R 7.00 (186.10,15.30,34

.40) 

R 2.00 

10 (254.7,9.8,40.8) 109.8 15.2 (265.40,11.66,49.89) R 7.20 (243.10,13.20,40

.80) 

R 2.00 

A

V 

(127.275,11.425,2

5.0625) 

15.18

75 

11.8 (130.64375,13.41125,2

9.19125) 

R 5.2 (118.8,12.525,24

.6625) 

R 1.92

5 

n BAB HUE1 HUE2 

OP TIM

E 

NES OP TIM

E 

NES OP TIM

E 

NES 

Av(F) AT/

S 

ANE

S 

Av(F) AT/

S 

ANE

S 

Av(F) AT/

S 

ANE

S 

20 (945.2,8.9,102.3

) 

R 16.4 (819.54,17.77,98.10) R 10.4

0 

(877.40,12.70,86.60

) 

R 2.00 

40 (3431.6,12.1,214

.9) 

3.5 30.6 (3204.87,15.84,202.

36) 

R 13.0

0 

(3523.30,10.80,193.

50) 

R 2.00 

60 (7057.4,10.4,307

.1) 

8.4 20.0 (7427.28,16.22,321.

93) 

R 12.6

0 

(8025.10,11.50,298.

20) 

R 2.00 

80 (11872.3,9.5,399

.9) 

18.0 15.4 (12944.71,18.76,433

.41) 

R 13.0

0 

(14450.20,8.80,417.

60) 

R 2.00 

10

0 

(19200.9,9.1,521

.7) 

34.0 14.8 (21148.27,15.32,551

.29) 

R 12.8

0 

(22338.10,8.20,523.

20 

R 2.00 

12

0 

(27980.7,7.7,635

.5) 

48.8 12.8 (29292.47,15.08,649

.73) 

R 13.4

0 

(32200.10,8.50,625.

60) 

R 2.00 

14

0 

(37641.3,7.1,734

.9) 

76.1 12.0 (40545.67,18.05,774

.52) 

R 12.8

0 

(44762.30,5.90,751.

00) 

R 2.00 

16

0 

(49320.6,5.6,849

.2) 

97.2 10.2 (52514.47,15.72,879

.55 

R 12.4

0 

(60281.30,7.70,874.

20) 

R 2.00 

18

0 

(63858.0,6.1,972

.1) 

185.

2 

10.2 (63008.89,17.17,960

.08) 

R 12.2

0 

(73026.20,5.10,960.

30) 

1.11 2.00 

20

0 

(78689.6,5.3,108

4.5) 

218.

9 

10.4 (80882.31,19.09,110

4.45) 

R 13.0

0 

(88268.90,4.40,104

5.90) 

1.33 2.00 
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Table (4): Outcomes of comparison of HUE1 and HUE2 for P-problem, n=500,1000:(500):4500. 

 

7. Conclusions and Future Works 

In this study, two approaches to BAB are presented: the first one is addition algorithm and the second 

is the DR algorithm but instead of a subtraction it employs additions. Since BAB(WDR) is only 

constrained by the given criteria LB≤UB, a higher precision range is assumed for 4≤n≤18: higher NS 

values than BAB(DR). Nevertheless, though being faster and requiring significantly less CPU time 

than other methods, BAB(DR) is the method that yields the lowest accuracy of all. Each of the heuristic 

techniques; SPT-EDD-SCRLT and DR-SCRLT performed excellently, especially when introduced as 

the solution to the P-problem. For that reason, it is possible that many of them originated from the P-

problem, which may include 1//(∑C_j+R_L+T_max) and 1//Lex∑C_j+R_L+T_max) and the way in 

which different possibilities are then utilised in an attempt to solve them can be observed and 

examined. Hence, in order to obtain efficient, approximative solutions to the aforementioned P-

problem in cases when n values are more than 100, the author suggests to develop the further research 

by using more numerous local search methods. Among the strategies that are covered under this 

category of tactics are simulation of other techniques including anneal, particle swarm optimisation, 

the genetic algorithm and Bees algorithm. Other techniques that come under this category are Bees 

algorithms. 
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