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Abstract:                

This study presents the multi criteria single-machine model. The machine 

scheduling problem (MSP) for n tasks on a single machine involves 

minimizing a function of three criteria: total completion time (C_j), maximum 

earliest (E_max), and tardiness (〖ΣT〗_j), This is an NP-hard issue. 

Within this work's theoretical section, we present the mathematical 

formulation of The presented topic then highlights the usefulness of the 

dominance rule (DR), which may be used to develop effective solutions. 

While in the practical part, one of the important exact methods; The proposed 

MSP tricriteria are solved by applying the Branch and Bound (BAB) method, 

which finds a set of efficient solutions for 1//F(ΣC_j  ,ΣT_j  ,E_max)  up to 

n=100 jobs. The BAB approach finds the efficient solutions for the issue in 

an acceptable amount of time. In addition, we provide two heuristic 

approaches to address the problem in order to obtain appropriate 

approximations. The two proposed approaches' good performance is 

demonstrated by the practical experiments. 

Keywords: Single machine problem, total Completion time, tardiness, 

maximum earliness, Branch and Bound. 

 

 

1. Introduction 

Combinatorial optimization issues include a subcategory known as machine scheduling problems 

(MSP).They are characterized as decision-making processes that may be applied often in 

manufacturing and a variety of service sectors. The goal of MSP, which deals with resource allocation 

to act across specified time periods, is to reduce one or more objectives [1]. Numerous domains, 

including computer science, manufacturing systems, transportation, industrial management, 

healthcare, agriculture, and many more, have been addressed by the scheduling  theory [2]. Resources 

are referred to as machines, and tasks as jobs. 

The practice of allocating scarce resources to a group of tasks across time is known as scheduling. The 

resources may be equipment at a workshop, personnel at a building site, runways at an airport, 

processing units within a computer system, and so forth . These assignments might involve carrying 

out computer programs, taking off and landing at an airport, working on building projects, or any 

combination of these [3]. Assigning resources to tasks in a way that maximizes one or more objectives 

is the aim of scheduling . Problem classes in factory scheduling come in a wide variety. These consist 

of flow shop, job shop, single machine, and parallel machine [4]. 

mailto:mohammed.juru2303p@ihcoedu.uobaghdad.edu.iq


Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 28 No. 2 (2025) 

 

390  https://internationalpubls.com 

In recent years, the multicriteria scheduling problem has attracted a lot of interest. Nagar et al. [5] have 

published a thorough study of multicriteria. They demonstrate the resolution of two different types of 

issues. The first one addresses issues where there is minimal lexicographical order of criteria. 

Hierarchical minimization issues are shown by the research conducted by Smith [6,], [5], and [7]. The 

second kind of simultaneous method is divided into two categories: the first usually created all 

schedules that were efficient and chose the plan that produced between the two criteria, the optimal 

composite objective function value .The second purpose is to determine the total of these goals.The 

simultaneous minimizing of several objective function forms is taken into consideration in a number 

of scheduling issues. A detailed assessment of the most significant findings on multicriteria scheduling 

is presented by Hoogeveen (2005) [7]. Van Wassenhove and Gelders [8] conducted the first research 

in the simultaneous field. They looked at efficiency in terms of the maximum tardiness and total 

completion durations for single machine problems. Regarding multicriteria, For additional information 

on multicriteria (see [9,10,11]). 

An SMSP problem using the multicriteria objectives function 1// (∑𝐶𝑗  + 𝑅𝐿  + 𝑇𝑚𝑎𝑥)  issue and is 

handled using BAB and a few heuristic techniques[12]. Several special cases are shown and shown to 

yield effective fixes for the issues at hand . They used exact and heuristic techniques to solve the 

1// (∑𝐶𝑗  + 𝑅𝐿  + 𝑇𝑚𝑎𝑥) issue in order to obtain good or optimum solutions [13]. 

Three improved algorithms from the Bat algorithm (BAT) were combined into a hyper-heuristic 

technique [14]. Depending on the results of each algorithm, the approach updates a particular 

implementation probability that is distributed for each employed algorithm repeatedly, and then 

selecting the algorithm to be utilized in the current iteration by random selection [15] [16]. 

Explore the 1// (∑(𝐸𝑗  + 𝑇 𝑗 + 𝐶𝑗  +  𝑈𝑗 +  𝑉𝑗) issue, find the sequence that reduces this MOF as 

much as possible[17]. For this problem, they provide a BAB solution. Moreover, they utilize rapid 

LSMs, producing nearly ideal outcomes. The performance of exact and LSMs is assessed on a wide 

range of test issues; they report on computation experience [18] [19].  

In this study, we investigate the issue of scheduling the number of tasks (n) on a single machine to 

minimize a multicriteria objective function, which may be expressed as follows: Each task will be done 

by a separate machine, which can only handle one job at a time. Each task j has a processing time and 

a due date. At time zero, Whole tasks are complete and ready for execution. The goal is to solve the 

 1//𝐹(𝛴𝐶𝑗  , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥) issue using a collection of Pareto optimum solutions.  

In Section two, we show some machine schedule problem concepts , The mathematical formulation of 

the SCSTE issue 1//𝐹(𝛴𝐶𝑗 , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥), will be discussed in Section 3. Special cases for the SCSTE-

problem are presented in Section 4. We demonstrate our suggested solutions for the SCSTE issue in 

Section 5. Section six introduces the practical and comparative results. We will finally provide the 

most relevant conclusions and recommendations in section seven. 

2 Machine Schedule Problem Concept 

2.1 Important Notations 

This research employs many notations: 

n : number of jobs 

𝑝𝑗: processing time of jobs j. 

𝑑𝑗: due date of jobs j. 

𝐶𝑗: completion time of job j, where 𝐶𝑗 = 𝛴𝑘=1

𝑗
 𝑝𝑘 

𝛴𝐶𝑗: total completion time. 
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𝐿𝑗: lateness of job j  , 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗 

𝑇𝑗: tardiness of job j ,  𝑇𝑗 = max {𝐿𝑗 , 0} 

𝑆𝑗: slack time of job j s.t. 𝑆𝑗 = 𝑑𝑗 − 𝑝𝑗 

 

2.2 Important Definition Machine Scheduling Problem 

In this study, several essential definitions are required: 

Definition (1) [20]: Assume we have a collection of all schedules S for a scheduling issue P. A 

schedule σ∈S is feasible if it satisfies all of the requirements of the issue P. 

Definition (2) [7]: A feasible schedule σ is considered Pareto optimal or efficient (non-dominated) in 

terms of the criteria 𝑓 𝑎𝑛𝑑 ɡ if there is no feasible schedule 𝜋 such that both 𝑓(𝜋)  ≤
𝑓(𝜎) 𝑎𝑛𝑑 ɡ(𝜋)  ≤ ɡ(𝜎), with at least one of the inequality being tight. 

Definition (3): (Shortest Processing Time (SPT) rule) [4]: Tasks are sorted in non-decreasing order 

of processing time ( 𝑝𝑗) .This procedure is applied to solve the issue 1 // 𝛴𝐶𝑗  . 

Definition (4): Earliest Due Date (EDD) rule [7]: If the jobs are arranged in non-decreasing order of 

due date (𝑑𝑗). This principle eliminates the issue 1 // 𝑇𝑚𝑎𝑥 . 

Definition (5) [21]: In a multi-criteria resolution making challenge, the concept of "optimize" refers 

to a solution in which there is no way to enhance or develop one goal without hurting the other. 

2.3 Dominance Rule (DR) 

Applying numerous Dominance Rules (DRs) can decrease the current sequence. When assessing 

whether a node in the BAB method may be ignored before establishing its lower limit (LB), DRs can 

be useful since they frequently offer some or all of the path in order to obtain a satisfying result for the 

objective function. It is clear that DRs are especially useful in situations when a node may be ignored 

while having a lower LB than the best option. In the BAB technique, DRs are also useful for removing 

nodes that are dominated by others. As a result of these developments, the number of nodes required 

to discover the optimal solution has been significantly decreased. 

Definition  Emmon's Theorem (1) [13] :If 𝑝𝑖  ≤ 𝑝𝑗 and 𝑑𝑖  ≤ 𝑑𝑗, there is a suitable ordering in which 

job i comes before job j for the  1/ / 𝑇𝑗   issue. 

Definition (6) [13]: The adjacency matrix of a graph G with n vertices is denoted by the matrix A(G) =
[aij],, whose 𝑖𝑡ℎ   𝑎𝑛𝑑 𝑗𝑡ℎ components are 1 in the case that 𝑉𝑖   𝑎𝑛𝑑 𝑉𝑗  have at least one edge, and 0 

otherwise, where: 

aij = {

0 ,      𝑖𝑓 𝑖 = 𝑗 𝑜𝑟 𝑗 ↛ 𝑖 
1 ,        𝑖𝑓 𝑗 ⟶ 𝑗  ,         

aij 𝑎𝑛𝑑 aij ,        𝑖 ⟷ 𝑗 
 

3. Description of Tricriteria Scheduling 1//(𝛴𝐶𝑗  , 𝛴𝑇𝑗, 𝐸𝑚𝑎𝑥)  Problem 

The set of jobs to be planned on a single machine is represented by N={ 1,2,3,...,n }. For every task 

𝑗 ∈ 𝑁, there is a processing time of positive integer 𝑝𝑖and a due date of positive integer 𝑑𝑗. Utilizing 

the three field classifications outlined by Graham et al. [3], the machine can only do one job at a time. 

Indicating the MSP is 1//(𝛴𝐶𝑗  , 𝛴𝑇𝑗 , 𝐸𝑚𝑎𝑥)  .We aim to provide efficient solutions for a machine with 

a given schedule 𝑆 = (1,2, … , 𝑛) as follows: 

𝑍 = 𝑚𝑖𝑛{𝛴𝐶𝑗  , 𝛴𝑇𝑗 , 𝐸𝑚𝑎𝑥} 
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Subject to   

𝐶1 ≥  𝑝𝑠(1),                         𝑗 = 1,2, … . , 𝑛  

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝑠(𝑗),           𝑗 = 1,2, … . , 𝑛                                              

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑠(𝑗),                𝑗 = 1,2, … . , 𝑛                                                                 … (𝑆𝐶𝑆𝑇𝐸) 

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑠(𝑗) ,                 𝑗 = 1,2, … . , 𝑛 

𝐸𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑇𝑗  , 𝑝𝑠(𝑗)) ,                    𝑗 = 1,2, … . , 𝑛   

𝑇𝑗 ≥ 0    ,          𝐸𝑚𝑎𝑥 ≥ 0    ,      𝑗 = 1,2, … . , 𝑛           

Solving this SCSTE-problem is difficult and identify the efficient solution set because of the presence 

of the 𝛴𝑇𝑗 function.   

4-Specail Cases for SCSTE-Problem  

Case (1): For problem (SCSTEm) if  𝑝𝑗 = 𝑝 and  𝑑𝑗 = 𝑑 , ∀𝑗 then we have unique solution if: 

1- 𝑑 ≤  𝐶𝑗  , ∀𝑗 then (𝛴𝐶𝑗  , 𝛴𝑇𝑗 , 𝐸𝑚𝑎𝑥) = (𝑝
𝑛(𝑛+1)

2
 , 𝑝

𝑛(𝑛+1)

2
− 𝑛𝑑, 0)  

2-   𝑑 >  𝐶𝑗  , ∀𝑗 then (𝛴𝐶𝑗  , 𝛴𝑇𝑗 , 𝐸𝑚𝑎𝑥) = (𝑝
𝑛(𝑛+1)

2
 , 0 , 𝑑 − 𝑝)  

  Proof: since 𝑝𝑗 = 𝑝 , 𝑡ℎ𝑒𝑛 𝐶𝑗 = 𝑗𝑝 , 𝑡ℎ𝑒𝑛   

  𝛴𝐶𝑗 =  𝑃
𝑛(𝑛+1)

2
    ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1)  

  For 𝑑𝑗 = 𝑑   𝑖𝑓 ∶  

1-  𝑑 ≤  𝐶𝑗  , ∀𝑗 then 𝐿𝑗 = 𝐶𝑗 − 𝑑 = 𝑗𝑝 − 𝑑 , 𝑡ℎ𝑒𝑛  

𝑇𝑗 = max{𝑗𝑝 − 𝑑, 0} = 𝑗𝑝 − 𝑑   ∀𝑗  𝑠𝑖𝑛𝑐𝑒  𝑑 ≤  𝐶𝑗  

𝛴𝑇𝑗 = 𝛴𝑗𝑝 − 𝛴𝑑 = 𝑝
𝑛(𝑛 + 1)

2
− 𝑛𝑑  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2)   

𝐸𝑗 = max{𝑑 − 𝐶𝑗 , 0 } = 0  , ∀𝑗   

∴ 𝐸𝑚𝑎𝑥 = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (3)    
From (1),(2) and (3) we obtain :  

(𝛴𝐶𝑗  , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥) = (𝑝
𝑛(𝑛+1)

2
 , 𝑝

𝑛(𝑛+1)

2
− 𝑛𝑑 , 0 )  

2- 𝑑 >  𝐶𝑗  , ∀𝑗 then 𝑇𝑗 = max{𝑗𝑝 − 𝑑, 0} = 0 , ∀𝑗  𝑡ℎ𝑒𝑛 ∶  

 𝛴𝑇𝑗 = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (4) 

𝐸𝑗 = max{𝑑 − 𝐶𝑗 , 0 } = 𝑑 − 𝐶𝑗 = 𝑑 − 𝑗𝑝 

𝐸𝑚𝑎𝑥 = 𝑑 − 𝑝 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (5) 

𝑓𝑜𝑟 𝑗 = 1  
From (1) , (4)  and (5)  we obtain :  

(𝛴𝐶𝑗  , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥)= (𝑝
𝑛(𝑛+1)

2
 , 0 , 𝑑 − 𝑝)  

Case (2): For the problem  (SCSTEm) if  𝑑𝑗 ≥ 𝐶𝑗  , ∀𝑗 ,   then the problem changed to 

                 (𝛴𝐶𝑗  , 𝐸𝑚𝑎𝑥)   and this problem has a unique solution if SPT and MST are identical. 

Proof: : since 𝑑𝑗 ≥ 𝐶𝑗  ,   ∀𝑗 , 𝑡ℎ𝑒𝑛 𝑇𝑗 = 0  , ∀𝑗 , 𝑡ℎ𝑒𝑛  𝛴𝑇𝑗 = 0  𝑡ℎ𝑒𝑛 

 (𝛴𝐶𝑗  , 𝛴𝑇𝑗 , 𝐸𝑚𝑎𝑥) = (𝛴𝐶𝑗  , 𝐸𝑚𝑎𝑥) )   

  Now if  SPT and MST  are identical s.t  SPT=MST = 𝜎  , 𝑡ℎ𝑒𝑛  

  𝛴𝐶𝑗(𝜎) ≤  𝛴𝐶𝑗(𝜋) 𝑎𝑛𝑑   𝐸𝑚𝑎𝑥(𝜎) ≤ 𝐸𝑚𝑎𝑥(𝜋)  
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   In the same time , where 𝜋  is any sequence   

  The (𝛴𝐶𝑗(𝜎), 𝛴𝐶𝑗(𝜋))  𝑖𝑠 𝑎𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (SCSTEm) 

   Now suppose that 𝜋 ≠ 𝜎  but it give another efficient solution then  𝛴𝐶𝑗(𝜋) ≤

   𝛴𝐶𝑗(𝜎) 𝑎𝑛𝑑   𝐸𝑚𝑎𝑥(𝜋) <  𝐸𝑚𝑎𝑥(𝜎) and that is contradiction  ! , then this problem has    

   unique efficient solution. 

Case (3): For the problem  (SCSTEm) if  𝑝𝑗 = 𝑝  𝑓𝑜𝑟  ∀𝑗 ,   then we may obtain an efficient  

                solution if 𝜎 = 𝐸𝐷𝐷 . 

Proof: : since 𝑝𝑗 = 𝑝 , 𝑡ℎ𝑒𝑛 𝐶𝑗 = 𝑗𝑝   𝑎𝑛𝑑     

 𝛴𝐶𝑗 =  𝑝
𝑛(𝑛+1)

2
   ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (6) 

  𝐸𝑗 = max{𝑑𝑗 − 𝐶𝑗 , 0} = max {𝑑𝑗 − 𝑗𝑃, 0}   

  If 𝑑𝑗 = 𝑝  𝑎𝑛𝑑 𝑗𝑃 ≥  𝑑𝑗  , 𝑡ℎ𝑒𝑛 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠 𝑖𝑠 𝑙𝑎𝑡𝑒 𝑎𝑛𝑑  𝐸𝑗 = 0 , ∀  𝑎𝑛𝑑  

   𝐸𝑚𝑎𝑥 = 0  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (7)  

  Then the problem change to (𝛴𝐶𝑗 , 𝛴𝑇𝑗 , 0) = (𝑝
𝑛(𝑛+1)

2
, 𝛴𝑇𝑗 , 0) = (𝑝

𝑛(𝑛+1)

2
, 𝛴𝑇𝑗) 

   If we apply 𝜎 = 𝐸𝐷𝐷  for the problem ,  then the 𝛴𝑇𝑗(𝜎) ≤  𝛴𝑇𝑗(𝜋)  where 𝜋 any   

   sequence  and  since 𝑝
𝑛(𝑛+1)

2
 is fixed then (𝑝

𝑛(𝑛+1)

2
 , 𝛴𝑇𝑗(𝜎) has an efficient solution .             

Case (4): For the problem  (SCSTEm) if  𝑑𝑗 = 𝑑  ,  ∀𝑗 ∶    

1-   If 𝑑 ≤  𝐶𝑗  , ∀𝑗 then(𝛴𝐶𝑗  , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥) = (𝛴𝐶𝑗 , 𝑛(𝑛 − 𝑑) , 0) = (𝛴𝐶𝑗 , 𝑛(𝑛 − 𝑑))    

This problem can solved by SPT rule .  

2-   If 𝑑 >  𝐶𝑗  , ∀𝑗 then(𝛴𝐶𝑗  , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥) = (𝛴𝐶𝑗  , 0 , 𝑑 − 𝑝 ) = (𝛴𝐶𝑗  , 𝑑 − 𝑝)    

This problem can solved by SPT rule .  

   Proof:  1- If 𝑑 ≤  𝐶𝑗  , ∀𝑗 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠 𝑎𝑟𝑒 𝑙𝑎𝑡𝑒  

    ∴ 𝐿𝑗 = 𝐶𝑗 − 𝑑   , ∀𝑗  𝑡ℎ𝑒𝑛   

    𝑇𝑗 = 𝑚𝑎𝑥{𝐶𝑗 −  𝑑, 0 } = 𝐶𝑗 − 𝑑  𝑡ℎ𝑒𝑛   

    𝛴𝑇𝑗 = 𝑛(𝑛 − 𝑑) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (8) 

     𝐸𝑗 = 𝑚𝑎𝑥{𝑑 − 𝐶𝑗  ,0 } = 0 , ∀𝑗, 𝑡ℎ𝑒𝑛  

     𝐸𝑚𝑎𝑥 = 0  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (9) 

     From (8) and (9) we obtain :  

    (𝛴𝐶𝑗  , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥) = (𝛴𝐶𝑗  , 𝑛(0 − 𝑑)) 

     Since 𝑛(0 − 𝑑) is  constant  , then this problem can solved by SPT rule .  

    2- If 𝑑 >  𝐶𝑗  , ∀𝑗  , 𝑡ℎ𝑒𝑛  𝑇𝑗 = 0 , ∀𝑗  , 𝑡ℎ𝑒𝑛 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠 𝑎𝑟𝑒 𝑒𝑎𝑟𝑙𝑦   

     𝛴𝑇𝑗 = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (10) 
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      𝐸𝑗 = 𝑚𝑎𝑥{𝑑 − 𝐶𝑗  ,0 } = 𝑑 − 𝐶𝑗   𝑡ℎ𝑒𝑛   

    𝐸𝑚𝑎𝑥 = 𝑑 − 𝐶𝑗 = 𝑑 − 𝑃𝑗  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (11) 

    From (10) and (11) we obtain:  

    (𝛴𝐶𝑗  , 𝛴𝑇𝑗  , 𝐸𝑚𝑎𝑥) = (𝛴𝐶𝑗  ,0, 𝑑 − 𝑝𝑗) = (𝛴𝐶𝑗  , 𝑑 − 𝑝𝑗) 

    Since 𝑑 − 𝑝𝑗 is  constant  , then this problem can solved by SPT rule .  

5. Propose methods for solving SCSTE -Problem  

5.1 Exact method for SCSTE-problem 

In this part, we propose to find a set of Pareto optimal solutions for SCSTE-problem by applying the 

traditional Branch and Bound (BAB) method, which we may also refer to as BAB. The following are 

the BAB steps: 

Algorithm : BAB Method 

Step (1):INPUT n, 𝑝𝑖and 𝑑𝑗  𝑓𝑜𝑟 𝑗 for 𝑗 = 1,2, … , 𝑛  .  . 

Step (2):   SET S =  ɸ, define 𝐹(𝜎) = (𝛴𝐶𝜎(𝑗) , 𝛴𝑇𝑗(𝜎), 𝐸𝑚𝑎𝑥(𝜎))   , for any . 

Step (3): Apply the  = 𝑆𝑃𝑇 rule to get the upper bound (UB). Compute 𝐹(𝜎), which equals1,2,…,n   

               for this order. Finally, at the search tree's parent node, put the upper bound 𝑈𝐵 = 𝐹(𝜎). 

Step (4): Calculate a lower bound LB() for each node of the BAB search tree and each    

                partial sequence of tasks The formula for LB() is equal to the sum of the costs of   

                the sequence jobs () and the cost of the sequence jobs generated by sequencing the   

                tasks in the SPT rule. 

Step (5): Take a branch from any node when 𝐿𝐵 ≤  𝑈𝐵. 

Step (6): After obtaining a set of solutions at the last level of the search tree, we filter S by           

               adding  to the set S if 𝐹() indicates the outcome, unless it is predominated by the      

               previously acquired efficient solutions in S. This method is known as filtering S. 

Step (7): STOP. 

The BAB can solve SCSTE-problems up to  n = 100 in an acceptable period. In this segment, we also 

provide an additional BAB that relies on BAB to decrease the quantity of opened nodes, hence saving 

time and raising the number of n for the issues resolved. 

4.2 . Heuristic Methods for SCSTE -problem 

First, use the heuristic technique where the SPT rule handles the problem and calculates the objective 

function. Subsequently, arrange the remaining jobs according on the SPT rule and compute the 

objective function. This process continues until n sequences are achieved. The primary stages of 

SCSTEmax are as follows: 

Algorithm(2): SCSTEmax Heuristic Method 

Step (1): INPUT n, p
j
 and dj  , j = 1,2, … . , n,    = ∅ 

Step (2): Organize jobs according to SPT rule (𝜎1)  and compute F11 (𝜎1)   =  ∪ { F11 (𝜎1)}; 
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Step (3):FOR j = 2, … , n, put job i in the first position of σj−1 to obtain σj and calculate 

              F2j(σ j)  =  ∪ { F1j (σj)}. 

 END; 

Step (4):Arrange tasks in Emax rule (π1) , and calculate F21 (π1)   =  ∪ { F21 (π1)};  . 

Step (5): FOR  j = 2, … , n, put job j in the first position of πj−1 to obtain πj and calculate  

               F2j(πj) . 

      END; 

Step (6): Filter set  to provide a set of effective SCSTE -issue solutions 

 Step (7): OUTPUT The list of efficient solutions  . 

Step (8): STOP. 

Finding a sequence sort with least 𝑝𝑗  𝑎𝑛𝑑 𝑑𝑗   that does not conflict with DR and computing the goal 

function encapsulate the idea underlying the next heuristic strategy. The main steps of DR-

SCSTEmax are as follows: 

Algorithm (3): DR_ SCSTEmax Heuristic Method 

Step (1): INPUT: n, p
j
 and dj  , j = 1,2, … . , n,    = ∅ 

Step (2): Utilize theorem (1) to determine the DR adjacency matrix A , where 𝑁 =
                   {1,2, … . . , 𝑛 } ,  = ∅ . 

Step (3): Determine  a sequence σ 1 with a minimum 𝑝𝑗 that does not conflict with DR (matrix A); in 

the event that ∃ more than one job break tie arbitrarily,  =  ∪ {𝜎1 } . 

Step (4): Determine  a sequence σ 2 with a minimum 𝑝𝑗 that does not conflict with DR (matrix A); in 

the event that ∃ more than one job break tie arbitrarily,  =  ∪ {𝜎2 } . 

Step (5): From , determine which sequence set 
`
.  

Step (6):Compute 𝐹(). 

Step (7): OUTPUT The list of efficient solutions  . 

Step (8): END. 

6.Applying for suggesting methods for solving SCSTE - problem 

The outcomes of using CEM and BAB to solve the SCSTE problem, n=3: 10 are displayed in table 

(1). 

Table(1): BAB and CEM Summaries regarding the SCSTE-Problem, n = 3:10. 

n 

CEM BAB(DR) 

OP TIME NES MOF TIME NES 

AV(F) AT/S ANES AV(F) AT/S ANES 

3 (33.5, 0.2,15.9) R 2.4 (33.5,0.2,15.9 ) R 2.4 

4 (41.0, 1.4,15.9) R 4.2 (41.0,1.4,15.9 ) R 4.2 

5 (69.9, 8.2,10.9) R 6.0 (70.1,8.3,11.0 ) R 5.6 

6 (85.9,12.0,11.4 ) R 12.8 (85.2,12.5,11.9 ) R 11.4 

7 (123.1,28.1,11.4 ) R 16.2 (122.6,27.9,11.8 ) R 15.0 
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8 (186.9,67.2,12.3 ) R 15.2 (186.4,67.2,12.7 ) R 14.6 

9 (205.4,86.6,12.1 ) R 28.4 (205.3,86.9,12.1 ) R 26.4 

10 (250.1,106.1,11.2 ) 470.1 23.4 (251.4,107.6,11.5 ) R 19.6 

AV (124.4,38.7,12.6)  13.5 (124.4,39,12.8 ) R 12.4 

Table (1) shows that BAB yields findings that are more accurate than CEM since its find all the 

solutions for SCSTE –problems. 

 Table(2): Summary between SCSTEmax  and SCSTEmax (DR) with CEM for SCSTE -problem, 

n=3:10. 

Note that the Heuristic DR-SCSTEmax yields better results from SCSTEmax than CEM for the 

SCSTE-problem for n=3:10. 

n 

CEM SCSTEmax SCSTEmax (DR) 

OP TIM

E 

NES 
MOF 

TIM

E 
NES MOF 

TIM

E 
NES 

AV(F) AT/S ANE

S 
AV(F) AT/S 

ANE

S 
AV(F) AT/S 

ANE

S 

3 (33.5, 

0.2,15.9) 

R 
2.4 (34.5,1.1,16.0 ) 

R 
2.2 (31.3,0.2,17.2 ) 

R 
1.6 

4 (41.0, 

1.4,15.9) 

R 
4.2 (42.2,1.5,15.7 ) 

R 
3.2 (40.9,1.2,15.8 ) 

R 
2.0 

5 (69.9, 

8.2,10.9) 

R 
6.0 

(72.9,11.3,11.8

) 

R 
4.6 (70.7,7.8,11.8 ) 

R 
2.0 

6 (85.9,12.0,11.4 ) R 12.8 
(90.5,16.5,12.1

) 
R 4.8 (85.6,12.6,12.7 ) R 2.0 

7 (123.1,28.1,11.4 ) R 16.2 
(126.7,34.5,13.

5 ) 
R 6.0 (127.3,30.7,11.4 ) R 2.0 

8 (186.9,67.2,12.3 ) R 15.2 
(193.9,77.6,13.

6 ) 
R 6.6 (193.7,73.5,12.7 ) R 2.0 

9 (205.4,86.6,12.1 ) R 28.4 
(214.2,98.9,12.

6 ) 
R 8.0 

(221.1,101.1,11.

3 ) 
R 2.0 

10 (250.1,106.1,11.

2 ) 

470.

1 
23.4 

(265.1,121.7,1

1.7 ) 

R 
7.4 

(272.3,126.9,10.

9 ) 

R 
2.0 

A

V 

(221.1,38.7,1

2.6) 
 13.5 

(130,45.3,31

.3) 

 
5.35 

(130.3,44.2,1

2,9) 

 
1.9 

Table(3): Summary between SCSTEmax  and SCSTEmax (DR) with BAB for SCSTE -problem, 

n=11:100. 

n 

BAB SCSTEmax SCSTEmax (DR) 

OP 
TI

ME 
NES MOF 

TI

ME 
NES MOF 

TI

ME 
NES 

AV(F) 
AT/

S 

AN

ES 
AV(F) 

AT/

S 

AN

ES 
AV(F) 

AT/

S 

AN

ES 

11 (230.4,80.9,13.2 )  R 21.4 
(250.4,103.2,14.1

) 
R 7.6 (250.0,97.2,12.1 )  R 2.0 

15 
(481.3,258.7,12.0

) 
R 27.4 

(501.9,284.7,13.5

) R 9.4 
(515.1,291.4,12.5

) R 2.0 

20 
(850.0,542.3,10.2

) 
1.1 26.6 

(882.7,580.9,14.3

) R 12.2 
(923.9,615.0,10.3

) R 2.0 
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30 
(1967.4,1477.9,10

.9 )  
8.4 81.8 

(2079.9,1597.0,12

.7 )  R 13.4 
(2276.7,1782.7,9.

4 )  R 2.0 

40 
(3444.3,2772.9,12

.3 )  
18.1 83.4 

(3601.6,2942.5,15

.8 )  R 17.4 
(3952.3,3277.7,11

.1 )  R 2.0 

50 
(5015.8,4203.2,13

.3 )  
52.4 101.2 

(5154.3,4353.9,18

.1 )  
R 19.6 

(5744.6,4925.1,11

.1 ) 
R 2.0 

60 
(7750.7,6715.5,12

.7( 
82.9 90.0 

(8044.2,7023.0,15

.7 )  R 22.4 
(8903.7,7864.4,10

.9 )  R 2.0 

10

0 
(19766.2,18044.1,

.99 )  
301.4 70.6 

(20275.0,18582.4,

16.6 ) 
R 24.8 

(22793.8,21071.2,

9.0 ) 
R 2.0 

A

V 

(4938.2,4261.9

,11.8) 
77.3 62.8 

(5098.7,4433.4

,15.1) 
 15.8 

(5670.0,4990.5

,10.8) 
 2.0 

Table (4) displays a comparison of the outcome between DR-SCSTEmax and SCSTEmax for 

SCSTE- problem for n =500, 600, 700, 800,900,1000,2000,4000, 6000. 

Table(4): Summary between SCSTEmax  and SCSTEmax (DR)  for SCSTE -problem, n=500:6000. 

N 

SCSTEmax SCSTEmax(DR) 

MOF 
TIM

E 
NES MOF 

TIM

E 
NES 

AV(F) AT/S 
ANE

S 
AV(F) AT/S 

ANE

S 

500 (494483.1,485662.4,20.5 ) 5.0 40.6 489637.6,480723.2) ,-0.0) 8.8 1.0 

600 (687118.0,676637.2,16.5 ) 6.6 40.4 (703866.4,693302.7,0.1 ) 10.0 1.2 

700 (964428.0,952090.8,19.6 ) 8.7 37.8 (952763.4,940322.0,0.2 ) 13.0 1.0 

800 (1242049.6,1227947.1,16.5) 10.6 40.2 ,-0.0)1229932.2,1215754.4) 16.3 1.0 

900 (1557441.8,1541591.9,20.8) 13.7 41.8 ,-0.0) 1542681.6,1526728.8 ) 27.9 1.0 

100

0 
(1952579.8,1934879.7,17.5) 16.2 35.2 ,-0.0) 1931876.6,1914101.6 ) 38.2 1.0 

200

0 
(7803844.5,7768631.1,18.8) 76.2 40.0 ,-0.0)7732594.4,7697288.8) 227.4 1.0 

400

0 

(31088267.7,31017471.3,18.6

) 
466.7 39.8 ,-0.0)30803586.0,30732709.4 ) 949.5 1.0 

600

0 

(70266317.8,70159912.3,16.7

) 

1438.

9 
38.2 ,-0.0)69610745.4,69504238.6 ) 

2933.

1 
1.0 

AV 
(1823674.4,53400457.3,20.

2) 
763.5 39.3 

(11999742.6,11783879.8,0.

15) 
469.3 1.0 

 

7. Conclusions and Future Works 

1. From this study, we find the efficient solution up to 𝑛 = 100 tasks by using the BAB algorithm with 

DR. Applying the BAB algorithm yields results that are compared with CEM.  

2. For the SCSTE-problem, we propose two effective and easy heuristic methods: SCSTEmax and 

SCSTEmax (DR), which exhibit good performance. 

3. From Table 1 we notice that the program shows very accurate results and this is evidence that the 

program shows exact results , from tables 2,3,4 notice that SCSTEmax (DR) shows better results than 

the other results. 



Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 28 No. 2 (2025) 

 

398  https://internationalpubls.com 

4.As a future research, we propose to discover effective and approximate solutions for the 

SCSTE−problem for 𝑛 > 100 by the application of local search algorithms (e.g., genetic, Bees, 

simulated annealing, particle swarm optimization, etc.). 

5.As further work, we advise using 1//(𝛴𝐶𝑗 +  𝛴𝑇𝑗 +  𝐸𝑚𝑎𝑥) to find efficient (optimal) solutions . 

6. As further work, we advise using (𝛴𝐶𝑗  , 𝛴𝐸𝑗𝑇𝑚𝑎𝑥) to find the efficient solution. 
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