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Abstract:  

Aim of this article is to develop the concept of k-Sharp ordering as a 

generalization of k-minus ordering [1]. A relationship between the k-minus 

ordering and k-Sharp ordering is estabilished. We derive some properties of 

intuitionistic fuzzy matrices (IFM) under k-sharp ordering. In general k-minus 

ordering need not imply k-sharp ordering and this is illustrated with suitable 

example. 
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1. Introduction 

In this paper, we are concerned with fuzzy matrices over the fuzzy algebra F = [0,1] is defined by the 

max - min operation a + b = max{a,b} and a · b = min{a,b} for all a,b ∈ F . Let Fm×n be the collection 

of all m × n fuzzy matrices in the fuzzy algebra {F : F = [0,1]}. If there exist X such that AXA = A, 

then the matrix A ∈ Fm×n is said to be regular, X is known as a generalized (g−) inverse of A. In [2], 

Kim and Roush developed a fuzzy matrix theory analogous to Boolean matrices and also investigated 

the inverse of Boolean matrices . Meenakshi and Gandhimathi [3], investigated the regularity of 

intuitionistic fuzzy matrices. Padder and Murugadas explored idempotent IFMs as well as T-type 

idempotent IFMs in [4]. In [5], using the concept of fuzzy sets, Atanassov introduced and developed 

the notion of intuitionistic fuzzy sets.. Ben Israel and Greville [6], discussed the idea of generalized 

inverses. As a continuation of the work on fuzzy matrices in [7], Pal and Khan developed basic 

properties of intuitionistic fuzzy matrices. The minus ordering on matrices is defined by Meenakshi 

and Inbam in terms of their generalised inverses. Moreover, they established fuzzy matrices space 

ordering in[9], which is a partial ordering on the set of all idempotent matrices in fuzzy matrices. 

Sriram and Murugadas explored minus ordering on fuzzy matrices in [10]. In [11], Cen published T-

ordering and the relationship between T-ordering in fuzzy matrices. Poongodi, Padmavathi, Vinitha, 

and Hema investigated the idea of ordering for k-regular Interval Valued Fuzzy Matrices in [12], as a 

generalization of the minus ordering for regular fuzzy matrices. Cho investigated the consistency of 

fuzzy matrix equations in [13]. As a generalization of the regular fuzzy matrix, Meenakshi and Jenita 

developed the idea of k - regular fuzzy matrix [14]. The concept of generlized inverse of intuitionistic 

fuzzy matrices is introduced by Khan and Paul [15]. Pradhan and Pal [16], offer a method for 
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computing the inverse of an intuitionistic fuzzy matrix using the generalized inverses of the original 

matrix’s blocks. In [17], Meenakshi and Jenita addressed the k-g inverses of k-regular fuzzy matrices. 

In [18], Jenita and Karuppusamy examined the k-regularity of fuzzy and block Intuitionistic fuzzy 

matrices. The idea of generalized regular block intuitionistic fuzzy matrices was presented in [19]. 

Special types of inverses and their characterisation were covered in [20, 21]. [22, 23], are excellent 

resources for learning more about fuzzy matrix and its applications. Jenita, Karuppusamy, and 

Thangamani proposed the concept of k - regular intuitionistic fuzzy matrices in [24], as a generalisation 

of regular intuitionistic fuzzy matrices. Several inverses of k-regular intuitionistic fuzzy matrices were 

investigated in [25]. The k-sharp ordering for k-regular intuitionistic fuzzy matrices is described in this 

study as a generalisation of the k-minus ordering, and some of its properties related to k-g inverses are 

investigated. 

2. Preliminaries 

The matrix operations on intuitionistic fuzzy matrices as stated in [3] will be followed. 

𝐴 + 𝐵 = (⟨max{𝑎𝑖𝑗𝜇, 𝑏𝑖𝑗𝜇},min{𝑎𝑖𝑗𝑣, 𝑏𝑖𝑗𝜗}⟩),

𝐴𝐵 = (⟨max
𝑘

 min{𝑎𝑖𝑘𝜇, 𝑏𝑘𝑗𝜇},min
𝑘
 max{𝑎𝑖𝑘𝑣, 𝑏𝑘𝑗𝑣}⟩)

 

Define the order relation on (𝐼𝐹𝑀)𝑚×𝑛 as follows, 

𝐴 ≤ 𝐵 ⇔ 𝑎𝑖𝑗𝜇 ≤ 𝑏𝑖𝑗𝜇 and 𝑎𝑖𝑗𝑣 ≥ 𝑏𝑖𝑗𝑣, for all 𝑖 and 𝑗. 

Definition 2.1 [1] 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛
−and 𝐵 ∈ (𝐼𝐹𝑀)𝑛, the k-minus ordering denoted as <𝑘

−is defined as 𝐴 <𝑘
− 𝐵 ⇔

𝐴𝑘𝑈 = 𝐵𝑘𝑈,𝑈 ∈ 𝐴{1𝑟
𝑘} and 𝑉𝐴𝑘 = 𝑉𝐵𝑘, 𝑉 ∈ 𝐴{1ℓ

𝑘}. 

 

Definition 2.2 [25] 

If there exist the matrix 𝑋 ∈ (𝐼𝐹𝑀)𝑛, such that 𝐴𝑘𝑋𝐴 = 𝐴𝑘, for some positive integer 𝑘, then the 

matrix 𝐴 ∈ (𝐼𝐹𝑀)𝑛 is said be right k-regular. Right k-g-inverse of 𝐴 is called 𝑋. Let 𝐴𝑟{1
𝑘} =

{𝑋/𝐴𝑘𝑋𝐴 = 𝐴𝑘}. 

Definition 2.3 [25] 

If there exists a matrix 𝑌 ∈ (𝐼𝐹𝑀)𝑛 such that 𝐴𝑌𝐴𝑘 = 𝐴𝑘, for some integer 𝑘, then the matrix 𝐴 ∈

(𝐼𝐹𝑀)𝑛, is said be left k-regular. Left k-g-inverse of 𝐴 is called 𝑌. Let 𝐴ℓ{1
𝑘} = {𝑌/𝐴𝑌𝐴𝑘 = 𝐴𝑘}. In 

general, right k-regular is different from left k-regular. 

Definition 𝟐. 𝟒[𝟗] 

For 𝐴 ∈ 𝐹𝑚×𝑛
♯  and 𝐵 ∈ 𝐹𝑚×𝑛, the sharp ordering denoted as <

♯
 is defined as 𝐴 <

♯
𝐵 ⇔ 𝐴♯𝐴 = 𝐴♯𝐵 

and 𝐴𝐴♯ = 𝐵𝐴♯. 

Lemma 𝟐. 𝟏[𝟑] 

For 𝐴 and 𝐵 ∈ (𝐼𝐹𝑀)𝑚×𝑛, 𝑅(𝐵) ⊆ 𝑅(𝐴) ⇔ 𝐵 = 𝑋𝐴 for some 𝑋 ∈ (𝐼𝐹𝑀)𝑚, 𝐶(𝐵) ⊆ 𝐶(𝐴) ⇔ 𝐵 =

𝐴𝑌 for some 𝑌 ∈ (𝐼𝐹𝑀)𝑛. 
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Lemma 𝟐. 𝟐[𝟏𝟔] 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑚×𝑛 and 𝐵 ∈ (𝐼𝐹𝑀)𝑛×𝑝, 𝑅(𝐴𝐵) ⊆ 𝑅(𝐵), 𝐶(𝐴𝐵) ⊆ 𝐶(𝐴). 

Lemma 𝟐. 𝟑[𝟐𝟒] 

For 𝐴, 𝐵 ∈ (𝐼𝐹𝑀)𝑛, and for a positive integer 𝑘, then the following statements hold. 

(i) If 𝐴 is right k - regular and 𝑅(𝐵) ⊆ 𝑅(𝐴𝑘), then 𝐵 = 𝐵𝑋𝐴 for each right k - g 

inverse 𝑋 of 𝐴. 

(ii) If 𝐴 is left k - regular and 𝐶(𝐵) ⊆ 𝐶(𝐴𝑘), then 𝐵 = 𝐴𝑌𝐵 for each left k - g inverse 𝑌 of 𝐴. 

Lemma 𝟐. 𝟒[𝟗] 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛
−and 𝐵 ∈ (𝐼𝐹𝑀)𝑛, the following are equivalent. 

(i) 𝐴 <𝑘
− 𝐵 

(ii) 𝐴𝑘 = 𝐵𝑘𝑈𝐴 = 𝐴𝑉𝐵𝑘 for some 𝑈, 𝑉 ∈ 𝐴{1𝑘}. 

3. k-sharp ordering on Intuitionistic Fuzzy Matrices 

This section deals a special type of ordering involving Drazin inverses named as k-Sharp ordering 

for k-regular Intuitionistic Fuzzy Matrices. 

(𝐼𝐹𝑀)𝑛
− = {𝐴 ∈ (𝐼𝐹𝑀)𝑛/𝐴 has 𝑘 − 𝑔 inverse }, (𝐼𝐹𝑀)𝑛

𝐷̃ = {𝐴 ∈ (𝐼𝐹𝑀)𝑛/𝐴𝐷̃ exists }. 

𝐴𝐷̃ is the Drazin inverse of 𝐴. 

For 𝑘 = 1, the following result reduces to the result of sharp-ordering on fuzzy matrices⁡[9]. 

 

Definition 3.1 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛, the Drazin inverse of 𝐴 denoted by 𝑋 is the solution of the following equation 

𝐴𝑘 = 𝐴𝑘𝑋𝐴 = 𝐴𝑋𝐴𝑘 for some positive integer 𝑘

𝑋 = 𝑋𝐴𝑋
𝐴𝑋 = 𝑋𝐴

 

The smallest positive integer 𝑘 for which (1) holds is called index of 𝐴. For k-regular IFM's it is 

called regularity index. The group inverse is a particular case of Drazin inverse with index one. 

Already we have proved that, the Drazin inverse is a k-g inverse but the k-g inverse need not imply 

the Drazin inverse [25]. Also, if the Drazin inverse of a matrix exists, it is unique. 

Definition 3.2 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛, the group inverse of 𝐴, denoted as 𝐴♯ is a commuting semi-inverse of 𝐴, that is, 

𝐴𝐴♯𝐴 = 𝐴, 𝐴♯𝐴𝐴♯ = 𝐴♯ and 𝐴𝐴♯ = 𝐴♯𝐴. 

Definition 3.3 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑚×𝑛
♯  and 𝐵 ∈ (𝐼𝐹𝑀)𝑚×𝑛, the sharp ordering denoted as <

♯
 is defined as 𝐴 <

♯
𝐵 ⇔

𝐴♯𝐴 = 𝐴♯𝐵 and 𝐴𝐴♯ = 𝐵𝐴♯. 

Definition 3.4 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑚×𝑛
− and 𝐵 ∈ (𝐼𝐹𝑀)𝑚×𝑛, the minus ordering denoted as <−is defined as 

𝐴 <− 𝐵 ⇔ 𝐴𝑋 = 𝐵𝑋, and 𝑋𝐴 = 𝑋𝐵, for some 𝑋 ∈ 𝐴{1}. 
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Thus Sharp ordering is the speical case of minus ordering. In general, minus order need not imply 

Sharp order. 

Example 3.1 

Let 𝐴 = [
⟨1,0⟩ ⟨1,0⟩
⟨1,0⟩ ⟨0,1⟩

] , 𝑋 = [
⟨0,1⟩ ⟨1,0⟩
⟨1,0⟩ ⟨1,0⟩

], and 𝐵 = [
⟨0.1,0.1⟩ ⟨1,0⟩

⟨1,0⟩ ⟨0,1⟩
]. 

𝐴𝜇𝑋𝜇𝐴𝜇 = {[
1 1
1 0

] [
0 1
1 1

]} [
1 1
1 0

] = [
1 1
0 1

] [
1 1
1 0

] = [
1 1
1 0

] = 𝐴𝜇. and 

𝐴𝜗𝑋𝜗𝐴𝜗 = {[
0 0
0 1

] [
1 0
0 0

]} [
0 0
0 1

] = [
0 0
1 0

] [
0 0
0 1

] = [
0 0
0 1

] = 𝐴𝜗 .
 

Therefore 𝐴𝑋𝐴 = [
⟨1,0⟩ ⟨1,0⟩
⟨1,0⟩ ⟨0,1⟩

] = 𝐴. 𝑋 is a g-inverse of 𝐴. 

𝐴𝜇𝑋𝜇 = [
1 1
1 0

] [
0 1
1 1

] = [
1 1
0 1

]  and 𝐵𝜇𝑋𝜇 = [
0.1 1
1 0

] [
0 1
1 1

] = [
1 1
0 1

] .

𝐴𝜇𝑋𝜇 = 𝐵𝜇𝑋𝜇

𝐴𝜗𝑋𝜗 = [
0 0
0 1

] [
1 0
0 0

] = [
0 0
1 0

]  and 𝐵𝜗𝑋𝜗 = [
0.1 0
0 1

] [
1 0
0 0

] = [
0 0
1 0

] .

𝐴𝜗𝑋𝜗 = 𝐵𝜗𝑋𝜗. 

 Therefore, 𝐴𝑋 = [
⟨1,0⟩ ⟨1,0⟩
⟨0,1⟩ ⟨1,0⟩

] = 𝐵𝑋. 

𝑋𝜇𝐴𝜇 = [
0 1
1 1

] [
1 1
1 0

] = [
1 0
1 1

]  and 𝑋𝜇𝐵𝜇 = [
0 1
1 1

] [
0.1 1
1 0

] = [
1 0
1 1

] .

𝑋𝜇𝐴𝜇 = 𝑋𝜇𝐵𝜇

𝑋𝜗𝐴𝜗 = [
1 0
0 0

] [
0 0
0 1

] = [
0 1
0 0

]  and 𝑋𝜗𝐵𝜗 = [
1 0
0 0

] [
0.1 0
0 1

] = [
0 1
0 0

] .

 

𝑋𝜗𝐵𝜗 = 𝑋𝜗̂𝐵𝜗̂. 

Therefore, 𝑋𝐴 = [
⟨1,0⟩ ⟨0,1⟩
⟨1,0⟩ ⟨1,0⟩

] = 𝑋𝐵. 

Hence 𝐴 is a minus ordering of Intuitionistic Fuzzy Matrices. 

𝑋𝜇𝐴𝜇𝑋𝜇 = {[
0 1
1 1

] [
1 1
1 0

]} [
0 1
1 1

] = [
1 0
1 1

] [
0 1
1 1

] = [
0 1
1 1

] = 𝑋𝜇. and 𝑋𝜗𝐴𝜗𝑋𝜗 =

{[
1 0
0 0

] [
0 0
0 1

]} [
1 0
0 0

] = [
0 1
0 0

] [
1 0
0 0

] = [
1 0
0 0

] = 𝑋𝜗. 

Therefore 𝑋𝐴𝑋 = [
⟨0,1⟩ ⟨1,0⟩
⟨1,0⟩ ⟨1,0⟩

] = 𝑋. 

𝐴𝑋 = [
⟨1,0⟩ ⟨1,0⟩
⟨0,1⟩ ⟨1,0⟩

]  and 𝑋𝐴 = [
⟨1,0⟩ ⟨0,1⟩
⟨1,0⟩ ⟨1,0⟩

] .  

𝐴𝑋 = [
⟨1,0⟩ ⟨1,0⟩
⟨0,1⟩ ⟨1,0⟩

]  and 𝑋𝐴 = [
⟨1,0⟩ ⟨0,1⟩
⟨1,0⟩ ⟨1,0⟩

] .  

Here, 𝐴𝑋 ≠ 𝑋𝐴 Therefore, minus Ordering need not imply Sharp Ordering. 
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Definition 3.5 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛
𝐷̃ and 𝐵 ∈ (𝐼𝐹𝑀)𝑛, the k-sharp ordering denoted as <𝑘

𝐷̃ is defined as 𝐴 <𝑘
𝐷̃ 𝐵 ⇔

𝐴𝑘𝐴𝐷̃ = 𝐵𝑘𝐴𝐷̃ 

and 𝐴𝐷̃𝐴
𝑘 = 𝐴𝐷̃𝐵

𝑘 

𝐴𝐷̃ is the Drazin inverse of 𝐴. Since the Drazin inverse is unique, the right k-g inverse and left k-g 

inverse are same. 

 

Remark 3.1 

Thus, k-sharp ordering is the special case of k-minus ordering. 

In general, k-minus order need not imply k-sharp order. 

 

Example 3.2 

Let 𝐴 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0,0.5⟩
], 

𝐴𝜇
2 = [

0.7 0.6
0.5 0
0 0.4

0.2 0.5

] [

0.7 0.6
0.5 0
0 0.4

0.2 0.5

] = [

0.7 0.6
0.5 0.5
0 0.4
0.2 0.4

] ≠ 𝐴𝜇 and  

Therefore, 𝐴2 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩
⟨0.5,0.2⟩ ⟨0.5,0.4⟩

] ≠ 𝐴 

For the permutation matrices 𝑃1 = [
⟨1,0⟩ ⟨0,1⟩
⟨0,1⟩ ⟨1,0⟩

] and 𝑃2 = [
⟨0,1⟩ ⟨1,0⟩
⟨1,0⟩ ⟨0,1⟩

]. 

𝐴𝜇𝑃1𝜇𝐴𝜇 = {[
0.7 0.6
0.5 0

] [
1 0
0 1

]} [
0.7 0.6
0.5 0

]

= [
0.7 0.6
0.5 0

] [
0.7 0.6
0.5 0

] = [
0.7 0.6
0.5 0.5

] ≠ 𝐴𝜇

 and 𝐴𝜗𝑃1𝜗𝐴𝜗 = {[
0 0.4

0.2 0.5
] [
0 1
1 0

]} [
0 0.4

0.2 0.5
]

= [
0 0.4

0.2 0.5
] [
0 0.4
0.2 0.5

] = [
0 0.4

0.2 0.4
] ≠ 𝐴𝜗

 

Therefore, 𝐴𝑃1𝐴 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
] ≠ 𝐴. 

𝐴𝜇𝑃2𝜇𝐴𝜇 = {[
0.7 0.6
0.5 0

] [
0 1
1 0

]} [
0.7 0.6
0.5 0

]

= [
0.6 0.7
0 0.5

] [
0.7 0.6
0.5 0

] = [
0.6 0.6
0.5 0

] ≠ 𝐴𝜇

 and 𝐴𝜗𝑃2𝜗𝐴𝜗 = {[
0 0.4

0.2 0.5
] [
1 0
0 1

]} [
0 0.4

0.2 0.5
]

= [
0.4 0
0.5 0.2

] [
0 0.4
0.2 0.5

] = [
0.2 0.4
0.2 0.5

] ≠ 𝐴𝜗 .

 

Therefore, 𝐴𝑃2𝐴 = [
⟨0.6,0.2⟩ ⟨0.6,0.4⟩
⟨0.5,0.2⟩ ⟨0,0.5⟩

] ≠ 𝐴 

Therefore, 𝐴 is not regular. 𝐴 is 2 regular. 
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 For 𝑋 =[
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
]

𝐴𝜇
2𝑋𝜇𝐴𝜇⁡= {[

0.7 0.6
0.5 0.5

] [
0.7 0.6
0.5 0.5

]} [
0.7 0.6
0.5 0

]

⁡= [
0.7 0.6
0.5 0.5

] [
0.7 0.6
0.5 0

] = [
0.7 0.6
0.5 0.5

] = 𝐴𝜇
2

 

and 𝐴𝜗
2𝑋𝜗𝐴𝜗 = {[

0 0.4
0.2 0.4

] [
0 0.4

0.2 0.4
]} [

0 0.4
0.2 0.5

] 

= [
0 0.4

0.2 0.4
] [

0 0.4
0.2 0.5

] = [
0 0.4

0.2 0.4
] = 𝐴𝜗

2 . 

Therefore, 𝐴2𝑋𝐴 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
] = 𝐴2 

 and 𝐴𝜇𝑋𝜇𝐴𝜇
2 = {[

0.7 0.6
0.5 0

] [
0.7 0.6
0.5 0.5

]} [
0.7 0.6
0.5 0.5

]

= [
0.7 0.6
0.5 0.5

] [
0.7 0.6
0.5 0.5

] = [
0.7 0.6
0.5 0.5

] = 𝐴𝜇
2
 

 and 
𝐴𝜗𝑋𝑣̂𝐴𝜗

2 ⁡= {[
0 0.4

0.2 0.5
] [

0 0.4
0.2 0.4

]} [
0 0.4

0.2 0.4
]

⁡= [
0 0.4

0.2 0.4
] [

0 0.4
0.2 0.4

] = [
0 0.4

0.2 0.4
] = 𝐴

𝜗̂
2

 

Therefore, 𝐴𝑋𝐴2 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
] = 𝐴2. 

Hence, 𝐴2𝑋𝐴 = 𝐴𝑋𝐴2 = 𝐴2. 𝑋 is 2-g inverse of 𝐴. 

Here, 

𝑋𝜇𝐴𝜇𝑋𝜇 = {[
0.7 0.6
0.5 0.5

] [
0.7 0.6
0.5 0

]} [
0.7 0.6
0.5 0.5

]

⁡= [
0.7 0.6
0.5 0.5

] [
0.7 0.6
0.5 0.5

] = [
0.7 0.6
0.5 0.5

] = 𝑋𝜇

 

and 𝑋𝜗𝐴𝜗̂𝑋𝜗̂ = {[
0 0.4

0.2 0.4
] [

0 0.4
0.2 0.5

]} [
0 0.4

0.2 0.4
] 

= [
0 0.4

0.2 0.4
] [

0 0.4
0.2 0.4

] = [
0 0.4

0.2 0.4
] = 𝑋𝑣. 

Therefore, 𝑋𝐴𝑋 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,04⟩
] = 𝑋. 

Therefore, 𝐴𝑋 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
] = 𝑋𝐴. 

Hence, 𝑋 is a Drazin inverse of 𝐴. 

For 𝐵 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.6,0.2⟩
] 

𝐵𝜇
2 = [

0.7 0.6
0.5 0.6

] [
0.7 0.6
0.5 0.6

] = [
0.7 0.6
0.5 0.6

] 
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and 𝐵𝜗
2 = [

0 0.4
0.2 0.2

] [
0 0.4

0.2 0.2
] = [

0 0.4
0.2 0.2

] 

Therefore, 𝐵2 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.6,0.2⟩
] = 𝐵, 𝐵 is regular. 

Here, 

Therefore, 𝐴2𝑋 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
] = 𝐵2𝑋. 

Therefore, 𝑋𝐴2 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
] = 𝑋𝐵2. 

Hence, 𝐴 is 2-Sharp ordering. 

Example 3.3 

From Example (3.2), 𝐴 is 2-Sharp ordering. 

Here, 𝐴 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0,0.5⟩
]. 

𝐴𝜇𝑋𝜇𝐴𝜇⁡= {[
0.7 0.6
0.5 0

] [
0.7 0.6
0.5 0.5

]} [
0.7 0.6
0.5 0

]

⁡= [
0.7 0.6
0.5 0.5

] [
0.7 0.6
0.5 0

] = [
0.7 0.6
0.5 0.5

] ≠ 𝐴𝜇

 

and 𝐴𝜗𝑋𝜗̂𝐴𝜗 = {[
0 0.4

0.2 0.5
] [

0 0.4
0.2 0.4

]} [
0 0.4

0.2 0.5
] 

= [
0 0.4

0.2 0.4
] [

0 0.4
0.2 0.5

] = [
0 0.4

0.2 0.4
] ≠ 𝐴𝜈̂ . 

Therefore, 𝐴𝑋𝐴 = [
⟨0.7,0⟩ ⟨0.6,0.4⟩

⟨0.5,0.2⟩ ⟨0.5,0.4⟩
]. 𝐴𝑋𝐴 ≠ 𝐴. 

Therefore, k-Sharp Ordering need not imply Sharp Ordering. 

Example 3.4 

For 𝐴 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.1⟩ ⟨0,0.4⟩
], 

𝐴𝜇
2 = [

0.4 0.1
0.2 0

] [
0.4 0.1
0.2 0

] = [
0.4 0.1
0.2 0.1

] ≠ 𝐴𝜇 and 

𝐴𝜗
2 = [

0 0.2
0.1 0.4

] [
0 0.2

0.1 0.4
] = [ 0.2

0.1 0.2
] ≠ 𝐴𝜗 .

 

Therefore, 𝐴2 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.1⟩ ⟨0.1,0.2⟩
] ≠ 𝐴 

For the permutation matrices 𝑃1 = [
⟨1,0⟩ ⟨0,1⟩
⟨0,1⟩ ⟨1,0⟩

] and 𝑃2 = [
⟨0,1⟩ ⟨1,0⟩
⟨1,0⟩ ⟨0,1⟩

]. 
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𝐴𝜇𝑃1𝜇𝐴𝜇 = {[
0.4 0.1
0.2 0

] [
1 0
0 1

]} [
0.4 0.1
0.2 0

]

⁡= [
0.4 0.1
0.2 0

] [
0.4 0.1
0.2 0

] = [
0.4 0.1
0.2 0.1

] ≠ 𝐴𝜇

 and 𝐴𝜗𝑃1𝜗𝐴𝜗 = {[
0 0.2

0.1 0.4
] [
0 1
1 0

]} [
0 0.2

0.1 0.4
]

⁡= [
0 0.2

0.1 0.4
] [

0 0.2
0.1 0.4

] = [
0 0.2
0.1 0.2

] ≠ 𝐴𝜗

 

Therefore, 𝐴𝑃1𝐴 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.1⟩ ⟨0.1,0.2⟩
] ≠ 𝐴. 

𝐴𝜇𝑃2𝜇𝐴𝜇 = {[
0.4 0.1
0.2 0

] [
0 1
1 0

]} [
0.4 0.1
0.2 0

]

⁡= [
0.1 0.4
0 0.2

] [
0.4 0.1
0.2 0

] = [
0.2 0.1
0.2 0

] ≠ 𝐴𝜇

 and 𝐴𝜗𝑃2𝜗𝐴𝜗 = {[
0 0.2

0.1 0.4
] [
1 0
0 1

]} [
0 0.2

0.1 0.4
]

⁡= [
0.2 0
0.4 0.1

] [
0 0.2

0.1 0.4
] = [

0.1 0.2
0.1 0.4

] ≠ 𝐴𝜗 .

 

Therefore, 𝐴𝑃2𝐴 = [
⟨0.2,0.1⟩ ⟨0.1,0.2⟩
⟨0.2,0.1⟩ ⟨0,0.4⟩

] ≠ 𝐴 

Therefore, 𝐴 is not regular. 𝐴 is 2 regular. 

For 𝑋 = [
⟨0.4,0⟩ ⟨0,0.3⟩

⟨0.2,0.1⟩ ⟨0.1,0.2⟩
] 

𝐴𝜇
2𝑋𝜇𝐴𝜇⁡= {[

0.4 0.1
0.2 0.1

] [
0.4 0
0.2 0.1

]} [
0.4 0.1
0.2 0

]

⁡= [
0.4 0.1
0.2 0.1

] [
0.4 0.1
0.2 0

] = [
0.4 0.1
0.2 0.1

] = 𝐴𝜇
2
 

and 𝐴𝜗
2𝑋𝜗̂𝐴𝜗 = {[

0 0.2
0.1 0.2

] [
0 0.3

0.1 0.2
]} [

0 0.2
0.1 0.4

] 

= [
0 0.2

0.1 0.2
] [

0 0.2
0.1 0.4

] = [
0 0.2

0.1 0.2
] = 𝐴𝜈̂

2 . 

Therefore, 𝐴2𝑋𝐴 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.1⟩ ⟨0.1,0.2⟩
] = 𝐴2 and 𝐴𝜇𝑋𝜇𝐴𝜇

2 = {[
0.4 0.1
0.2 0

] [
0.4 0
0.2 0.1

]} [
0.4 0.1
0.2 0.1

] 

= [
0.4 0.1
0.2 0

] [
0.4 0.1
0.2 0.1

] = [
0.4 0.1
0.2 0.1

] = 𝐴𝜇
2  

 and 
𝐴𝜗𝑋𝜗𝐴𝜗

2 ⁡= {[
0 0.2

0.1 0.4
] [

0 0.3
0.1 0.2

]} [
0 0.2

0.1 0.2
]

⁡= [
0 0.2

0.1 0.3
] [

0 0.2
0.1 0.2

] = [
0 0.2

0.1 0.2
] = 𝐴𝜗

2 .
 

Therefore, 𝐴𝑋𝐴2 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩
⟨0.2,0.1⟩ ⟨0.1,0.2⟩

] = 𝐴2. 

Hence, 𝐴2𝑋𝐴 = 𝐴𝑋𝐴2 = 𝐴2. 𝑋 is 2-g inverse of 𝐴. 

For 𝐵 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.3⟩ ⟨0.3,0.1⟩
] 
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𝐵𝜇
2 = [

0.4 0.1
0.2 0.3

] [
0.4 0.1
0.2 0.3

] = [
0.4 0.1
0.2 0.3

] 

and 𝐵𝜗
2 = [

0 0.2
0.3 0.1

] [
0 0.2

0.3 0.1
] = [

0 0.2
0.3 0.1

] 

Therefore, 𝐵2 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.3⟩ ⟨0.3,0.1⟩
] = 𝐵, 𝐵 is regular. 

Here, 

𝐴𝜇
2𝑋𝜇 = [

0.4 0.1
0.2 0.1

] [
0.4 0
0.2 0.1

] = [
0.4 0.1
0.2 0.1

] 

and 𝐵𝜇
2𝑋𝜇 = [

0.4 0.1
0.2 0.3

] [
0.4 0
0.2 0.1

] = [
0.4 0.1
0.2 0.1

] 

.Therefore, 𝐴𝜇
2𝑋𝜇 = 𝐵𝜇

2𝑋𝜇, 

𝐴𝜗
2𝑋𝜗 = [

0 0.2
0.1 0.2

] [
0 0.3

0.1 0.2
] = [

0 0.2
0.1 0.2

] 

and 𝐵𝜗
2𝑋𝜗 = [

0 0.2
0.3 0.1

] [
0 0.3

0.1 0.2
] = [

0 0.2
0.1 0.2

] 

. Therefore, 𝐴𝜗
2𝑋𝜗 = 𝐵𝜗

2𝑋𝜗. 

Therefore, 𝐴2𝑋 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.1⟩ ⟨0.1,0.2⟩
] = 𝐵2𝑋. 

𝑋𝜇𝐴𝜇
2 = [

0.4 0
0.2 0.1

] [
0.4 0.1
0.2 0.1

] = [
0.4 0.1
0.2 0.1

] 

and 𝑋𝜇𝐵𝜇
2 = [

0.4 0
0.2 0.1

] [
0.4 0.1
0.2 0.3

] = [
0.4 0.1
0.2 0.1

] 

.Therefore, 𝑋𝜇𝐴𝜇
2 = 𝑋𝜇𝐵𝜇

2, 

𝑋𝜗𝐴𝜗
2 = [

0 0.3
0.1 0.2

] [
0 0.2

0.1 0.2
] = [

0 0.2
0.1 0.2

] 

and 𝑋𝜗𝐵𝜗
2 = [

0 0.3
0.1 0.2

] [
0 0.2

0.3 0.1
] = [

0 0.2
0.1 0.2

] 

. Therefore, 𝑋𝑣𝐴𝜗
2 = 𝑋𝑣𝐵𝑣

2. 

Therefore, 𝐴2𝑋 = [
⟨0.4,0⟩ ⟨0.1,0.2⟩

⟨0.2,0.1⟩ ⟨0.1,0.2⟩
] = 𝐵2𝑋. 

𝐴𝜇𝑋𝜇 = [
0.4 0.1
0.2 0

] [
0.4 0
0.2 0.1

] = [
0.4 0.1
0.2 0

]

𝑋𝜇𝐴𝜇 = [
0.4 0
0.2 0.1

] [
0.4 0.1
0.2 0

] = [
0.4 0.1
0.2 0.1

] .
 

Therefore, 𝐴𝜇𝑋𝜇 ≠ 𝑋𝜇𝐴𝜇. 

𝐴𝜗𝑋𝜗 = [
0 0.2

0.1 0.4
] [

0 0.3
0.1 0.2

] = [
0 0.2

0.3 0.2
]

𝑋𝜗𝐴𝜗 = [
0 0.3

0.1 0.2
] [

0 0.2
0.1 0.4

] = [
0 0.2

0.1 0.2
] .

 

Therefore, 𝐴𝜗𝑋𝜗 ≠ 𝑋𝜗𝐴𝜗. Hence, 𝐴𝑋 ≠ 𝑋𝐴. 

Therefore, Drazin inverse does not exist and hence 𝐴 and 𝐵 are not in 2-Sharp ordering. 

Thus k-minus order need not imply k-Sharp order. 
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Lemma 3.1 

For 𝐴, 𝐵 ∈ (𝐼𝐹𝑀)𝑛
−. If 𝐴 <𝑘

− 𝐵 with 𝑅(𝐴) ⊆ 𝑅(𝐵𝑘) and 𝐶(𝐴) ⊆ 𝐶(𝐵𝑘), then 𝐵{1𝑘} ⊆ 𝐴{1𝑘} 

Proof: 

By Lemma [2.3], 

𝐴 <𝑘
− 𝐵 ⇒ 𝐴𝑘 = 𝐵𝑘𝑈𝐴 = 𝐴𝑉𝐵𝑘 for some 𝑈, 𝑉 ∈ 𝐴{1𝑘} 

If 𝐵 is right k-regular with 𝑅(𝐴) ⊆ 𝑅(𝐵𝑘), then by Lemma [2.3], 𝐴 = 𝐴𝑉𝐵 for each right k-g 

inverse 𝑉 of 𝐵. 

If 𝐵 is left k-regular with 𝐶(𝐴) ⊆ 𝐶(𝐵𝑘), then by Lemma [2.3], 𝐴 = 𝐵𝑈𝐴 for some left k-g inverse 

𝑈 of 𝐵. 

For 𝑋 ∈ 𝐵{1𝑟
𝑘}, 

𝐴𝑘𝑋𝐴⁡= (𝐴𝑉𝐵𝑘)𝑋(𝐵𝑈𝐴)

⁡= 𝐴𝑉(𝐵𝑘𝑋𝐵)𝑈𝐴

⁡= 𝐴𝑉𝐵𝑘𝑈𝐴
⁡= 𝐴𝑘𝑈𝐴 = 𝐴𝑘 .

 

For 𝑌 ∈ 𝐵{1ℓ
𝑘}, 

𝐴𝑌𝐴𝑘 = (𝐴𝑉𝐵)𝑌(𝐵𝑘𝑈𝐴)

= 𝐴𝑉(𝐵𝑌𝐵𝑘)𝑈𝐴
 

⁡= 𝐴𝑉𝐵𝑘𝑈𝐴
⁡= 𝐴𝑉𝐴𝑘 = 𝐴𝑘.

 

Hence 𝐵{1𝑘} ⊆ 𝐴{1𝑘}. 

Lemma 3.2 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛
𝐷̃ and 𝐵 ∈ (𝐼𝐹𝑀)𝑛, the following are equivalent: 

(i) 𝐴 <𝑘
𝐷̃ 𝐵 

(ii) 𝐴𝑘 = 𝐵𝑘𝐴𝐷̃𝐴 = 𝐴𝐴𝐷̃𝐵
𝑘, 𝐴𝐷̃ is the Drazin inverse of 𝐴. 

Proof: 

⁡(𝑖) ⇒ (𝑖𝑖)

𝐴 <𝑘
𝐷̃ 𝐵 ⇔ 𝐴𝑘𝐴𝐷̃ = 𝐵𝑘𝐴𝐷̃

⁡ and 𝐴𝐷̃𝐴
𝑘 = 𝐴𝐷̃𝐵

𝑘

 

𝐴𝐷̃ is the Drazin inverse of 𝐴. 

𝐴𝑘 = 𝐴𝑘𝐴𝐷̃𝐴 = 𝐵𝑘𝐴𝐷̃𝐴

𝐴𝑘 = 𝐴𝐴𝐷̃𝐴
𝑘 = 𝐴𝐴𝐷̃𝐵

𝑘

⁡(𝑖𝑖) ⇒ (𝑖)

𝐴𝐷̃ exists ⇒ 𝐴𝑘𝐴𝐷̃𝐴 = 𝐴𝐴𝐷̃𝐴
𝑘 = 𝐴𝑘

⁡𝐴𝐷̃𝐴𝐴𝐷̃ = 𝐴𝐷̃

⁡𝐴𝐴𝐷̃ = 𝐴𝐷̃𝐴

 

and 𝐴𝐷̃ is unique. 
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𝐴𝑘𝐴𝐷̃⁡= (𝐵𝑘𝐴𝐷̃𝐴)𝐴𝐷̃

⁡= 𝐵𝑘(𝐴𝐷̃𝐴𝐴𝐷̃)

⁡= 𝐵𝑘𝐴𝐷̃

𝐴𝐷̃𝐴
𝑘⁡= 𝐴𝐷̃(𝐴𝐴𝐷̃𝐵

𝑘)

⁡= (𝐴𝐷̃𝐴𝐴𝐷̃)𝐵
𝑘

⁡= 𝐴𝐷̃𝐵
𝑘

 

Corollory 3.1 

For 𝐴 ∈ 𝐹𝑛
𝐷 and 𝐵 ∈ 𝐹𝑛, the following are equivalent 

(i) 𝐴 <𝑘
𝐷 𝐵 

(ii) 𝐴𝑘 = 𝐵𝑘𝐴𝐷𝐴 = 𝐴𝐴𝐷𝐵
𝑘, 𝐴𝐷 is the Drazin inverse of 𝐴. 

Lemma 3.3 

For 𝐴, 𝐵 ∈ (𝐼𝐹𝑀)𝑛
𝐷̃, if 𝐴 <𝑘

𝐷̃ 𝐵 then 𝑅(𝐴𝑘) ⊆ 𝑅(𝐵𝑘), 𝐶(𝐴𝑘) ⊆ 𝐶(𝐵𝑘) and 𝐴𝑘 = 𝐴𝑘𝐴𝐷̃𝐵 =

𝐵𝐴𝐷̃𝐴
𝑘, 𝐴𝐷̃ is the Drazin inverse of 𝐴. 

Proof: 

By Lemma [3.2], 

𝐴𝑘 = 𝐵𝑘𝐴𝐷̃𝐴 = 𝐴𝐴𝐷̃𝐵
𝑘 By Lemma [3.1], If 𝐵 is right k-regular and 𝑅(𝐴𝑘) ⊆ 𝑅(𝐵𝑘),then 𝐴𝑘 =

𝐴𝑘𝐴𝐷̃𝐵, 𝐴𝐷̃ is a right k-g inverse of 𝐵. 

If 𝐵 is left k-regular and 𝐶(𝐴𝑘) ⊆ 𝐶(𝐵𝑘), then 𝐴𝑘 = 𝐵𝐴𝐷̃𝐴
𝑘, 𝐴𝐷̃ is a left k-g inverse of 𝐵. 

Corollory 3.2 

For 𝐴, 𝐵 ∈ 𝐹𝑛
𝐷, if 𝐴 <𝑘

𝐷 𝐵, then 𝑅(𝐴𝑘) ⊆ 𝑅(𝐵𝑘), 𝐶(𝐴𝑘) ⊆ 𝐶(𝐵𝑘) and 𝐴𝑘 = 𝐴𝑘𝐴𝐷𝐵 = 𝐵𝐴𝐷𝐴
𝑘 , 𝐴𝐷 is 

the Drazin inverse of 𝐴. 

Lemma 3.4 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛
𝐷̃ , 𝐵 ∈ (𝐼𝐹𝑀)𝑛 the following are equivalent: 

(i) 𝐴 <𝑘
𝐷̃ 𝐵, 

(ii) 𝐴𝑘𝐵𝑘 = (𝐴𝑘)2 = 𝐵𝑘𝐴𝑘 

Proof: 

Since 𝐴𝐷̃ exists, 𝐴𝑘+1𝐴𝐷̃ = 𝐴𝐷̃𝐴
𝑘+1 = 𝐴𝑘. 

𝐴𝐷̃𝐴𝐴𝐷̃ = 𝐴𝐷̃ and 𝐴𝐷̃𝐴 = 𝐴𝐴𝐷̃. 

(i) ⇒ ( ii ) 

By Lemma [3.2], 𝐴 <𝑘
𝐷̃ 𝐵 ⇔ 𝐴𝑘 = 𝐵𝑘𝐴𝐷̃𝐴 = 𝐴𝐴𝐷̃𝐵

𝑘 

𝐴𝑘𝐵𝑘⁡= 𝐴𝑘+1𝐴𝐷̃𝐵
𝑘

⁡= 𝐴𝑘(𝐴𝐴𝐷̃𝐵
𝑘)

⁡= 𝐴𝑘𝐴𝑘 = (𝐴𝑘)2

𝐵𝑘𝐴𝑘⁡= 𝐵𝑘𝐴𝐷̃𝐴
𝑘+1 = (𝐵𝑘𝐴𝐷̃𝐴)𝐴

𝑘 = 𝐴𝑘𝐴𝑘 = (𝐴𝑘)2

(𝑖𝑖) ⇒⁡(𝑖)
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𝐴𝑘𝐴𝐷̃⁡= (𝐴𝑘+1𝐴𝐷̃)𝐴𝐷̃

⁡= 𝐴𝑘(𝐴𝐴𝐷̃)𝐴𝐷̃

⁡= (𝐴𝑘+1𝐴𝐷̃)(𝐴𝐴𝐷̃)𝐴𝐷̃

⁡= 𝐴𝑘(𝐴𝐴𝐷̃)(𝐴𝐴𝐷̃)𝐴𝐷̃

⁡= 𝐴𝑘(𝐴𝐴𝐷̃)
2𝐴𝐷̃

⁡=⋮
⁡= 𝐴𝑘(𝐴𝐴𝐷̃)

𝑘𝐴𝐷̃

⁡= 𝐴𝑘(𝐴𝑘)(𝐴𝐷̃)
𝑘𝐴𝐷̃

⁡= (𝐴𝑘)2(𝐴𝐷̃)
𝑘𝐴𝐷̃

⁡= 𝐵𝑘𝐴𝑘(𝐴𝐷̃)
𝑘+1

⁡= 𝐵𝑘𝐴𝑘−1𝐴𝐷̃
𝑘−1(𝐴𝐷̃𝐴𝐴𝐷̃)

⁡= 𝐵𝑘𝐴𝑘−1𝐴𝐷̃
𝑘

⁡= 𝐵𝑘𝐴𝑘−2𝐴𝐷̃
𝑘−2(𝐴𝐷̃𝐴𝐴𝐷̃)

⁡= 𝐵𝑘𝐴𝑘−2𝐴𝐷̃
𝑘−1

⁡=⋮
⁡= 𝐵𝑘𝐴𝐷̃

 

Similarly, 𝐴𝐷̃𝐴
𝑘 = 𝐴𝐷̃𝐵

𝑘. Therefore 𝐴 <𝑘
𝐷̃ 𝐵. Hence the Proof. 

 

Corollary 3.3 

For 𝐴 ∈ 𝐹𝑛
𝐷 , 𝐵 ∈ 𝐹𝑛 the following are equivalent 

(i) 𝐴 <𝑘
𝐷 𝐵 

(ii) 𝐴𝑘𝐵𝑘 = (𝐴𝑘)2 = 𝐵𝑘𝐴𝑘 

Theorem 3.1 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛
𝐷̃ and 𝐵 ∈ (𝐼𝐹𝑀)𝑛 then 𝐴 <𝑘

𝐷̃ 𝐵 ⇔ 𝐴𝑘𝐵𝑘 = 𝐵𝑘𝐴𝑘 and 𝐴 <𝑘
− 𝐵 

Proof: 

By Lemma [3.4] and the Definition of k-minus ordering and k-sharp ordering, 

𝐴 <𝑘
𝐷̃ 𝐵 ⇒ 𝐴 <𝑘

− 𝐵 and 𝐴𝑘𝐵𝑘 = 𝐵𝑘𝐴𝑘 = (𝐴𝑘)2 

Conversely 𝐴 <𝑘
− 𝐵 ⇒ 𝐴𝑘 = 𝐵𝑘𝑈𝐴 = 𝐴𝑉𝐵𝑘, 𝑈, 𝑉 ∈ 𝐴{1𝑘} (By Lemma [2.8]) 

𝐴𝑘𝐵𝑘⁡= (𝐴𝑉𝐴𝑘)𝐵𝑘

⁡= 𝐴𝑉𝐵𝑘𝐴𝑘

⁡= 𝐴𝑘𝐴𝑘 = (𝐴𝑘)2

𝐵𝑘𝐴𝑘⁡= 𝐵𝑘(𝐴𝑘𝑈𝐴)

⁡= 𝐴𝑘𝐵𝑘𝑈𝐴
⁡= 𝐴𝑘𝐴𝑘 = (𝐴𝑘)2

 

By the Lemma [3.4], 

𝐴𝑘𝐵𝑘 = 𝐵𝑘𝐴𝑘 = (𝐴𝑘)2 ⇒ 𝐴 <𝑘
𝐷̃ 𝐵.  
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Corollory 3.4 

For 𝐴 ∈ 𝐹𝑛
𝐷 , 𝐵 ∈ 𝐹𝑛 then 𝐴 <𝑘

𝐷 𝐵 ⇔ 𝐴𝑘𝐵𝑘 = 𝐵𝑘𝐴𝑘 and 𝐴 <𝑘
− 𝐵. 

Lemma 3.5 

For 𝐴, 𝐵 ∈ (𝐼𝐹𝑀)𝑛
𝐷̃ if 𝐴 <𝑘

𝐷̃ 𝐵 and 𝐵{1𝑘} ⊆ 𝐴{1𝑘} then 𝐴𝑘 = 𝐴𝑘𝐵𝐷̃𝐵 = 𝐵𝐵𝐷̃𝐴
𝑘 

Proof: 

By Lemma [3.3] 

𝐴𝑘 = 𝐴𝑘𝐴𝐷̃𝐵 = 𝐵𝐴𝐷̃𝐴
𝑘 

𝐵{1𝑘} ⊆ 𝐴{1𝑘} and the existence of Drazin inverse is unique 

⇒ the Drazin inverse of 𝐵 is the Drazin inverse of 𝐴. 

Hence 𝐴𝑘 = 𝐴𝑘𝐵𝐷̃𝐵 = 𝐵𝐵𝐷̃𝐴
𝑘 

Corollary 3.5 

For 𝐴, 𝐵 ∈ 𝐹𝑛
𝐷, if 𝐴 <𝑘

𝐷 𝐵 and 𝐵{1𝑘} ⊆ 𝐴{1𝑘}, then 𝐴𝑘 = 𝐴𝑘𝐵𝐷𝐵 = 𝐵𝐵𝐷𝐴
𝑘. 

Lemma 3.6 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛, if 𝐴♯ exists then 𝐴𝑚 has a group inverse for any positive integer 𝑚 > 1. 

Proof: 

By using 𝐴𝐴♯ = 𝐴♯𝐴, we have 

(𝐴♯)
𝑚

 is a group inverse on 𝐴𝑚. 

Hence (𝐴𝑚)♯ exists for all 𝑚 > 1. 

Theorem 3.2 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛, if 𝐺 is the Drazin inverse of 𝐴 with index 𝑘, then for any 𝑠 ≥ 𝑘, 𝐴𝑠 has group 

inverse and 𝐺𝑠 is the group inverse of 𝐴𝑠. 

Proof: 

Suppose 𝐴 has Drazin inverse 𝐺 with index 𝑘, then 𝐴𝑘+1𝐺 = 𝐴𝑘, 𝐺2𝐴 = 𝐺 and 𝐴𝐺 = 𝐺𝐴. 

Claim: 𝐺𝑠 is the group inverse of 𝐴𝑠. 

𝐴𝑘𝐺𝑘𝐴𝑘 ⁡= 𝐴𝑘𝐺𝐺𝑘−1𝐴𝑘

⁡= 𝐴𝑘𝐺𝐴𝐺𝑘−1𝐴𝑘−1

⁡= 𝐴𝑘𝐺𝑘−1𝐴𝑘−1

⁡=⋮
⁡= 𝐴𝑘𝐺𝐴 = 𝐴𝑘 .

 

𝐴𝑘𝐺𝑘 = 𝐺𝑘𝐴𝑘 follows from 𝐴𝐺 = 𝐺𝐴. 

Now, 𝐺𝑘𝐴𝑘𝐺𝑘 = 𝐺𝑘𝐺𝑘𝐴𝑘 

= (𝐺𝑘)2𝐴𝑘

⁡= (𝐺2)𝑘𝐴𝑘

⁡= (𝐺2𝐴)𝑘 = 𝐺𝑘 .

 

Thus 𝐺𝑘 is the group inverse of 𝐴𝑘. 

By using Lemma [3.6], for any 𝑠 ≥ 𝑘, 𝐴𝑠 has group inverse and 𝐺𝑠 is the group inverse of 𝐴𝑠. 
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Theorem 3.3 

For 𝐴 ∈ (𝐼𝐹𝑀)𝑛
𝐷̃ and 𝐵 ∈ (𝐼𝐹𝑀)𝑛, 𝐴 <𝑘

𝐷̃⇒ 𝐴𝑘 <
♯
𝐵𝑘 

Proof: 

𝐴 <𝑘
𝐷̃⇒ 𝐴𝑘𝐺 = 𝐵𝑘𝐺 and 𝐺𝐴𝑘 = 𝐺𝐵𝑘, 𝐺 is the Drazin inverse of 𝐴. 

Since 𝐺 is the Drazin inverse of 𝐴, 

𝐴𝑘+1𝐺 = 𝐴𝑘

𝐺𝐴𝐺 = 𝐺 and 𝐴𝐺 = 𝐺𝐴
 

By Theorem [3.2], if 𝐺 is the Drazin inverse of 𝐴, then 𝐺𝑘 is the group inverse of 𝐴𝑘. 

Claim: 𝐴𝑘𝐺𝑘 = 𝐵𝑘𝐺𝑘 and 𝐺𝑘𝐴𝑘 = 𝐺𝑘𝐵𝑘, 𝐺𝑘 is the group inverse of 𝐴𝑘. 

𝐴𝑘𝐺𝑘⁡= 𝐴𝑘𝐺𝐺𝑘−1

⁡= 𝐵𝑘𝐺𝐺𝑘−1 = 𝐵𝑘𝐺𝑘

𝐺𝑘𝐴𝑘 ⁡= 𝐺𝑘−1𝐺𝐴𝑘

⁡= 𝐺𝑘−1𝐺𝐵𝑘 = 𝐺𝑘𝐵𝑘.

 

Hence 𝐴𝑘 <
♯
𝐵𝑘 

4. Conclusion 

Ordering principles are essential for rating and categorising real-world situations. This study extends 

the concept of sharp ordering to k-regular fuzzy matrices and k-regular intuitionistic fuzzy matrices. 
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