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Abstract 

This work aims to create an effective spectral conjugate gradient for non-

linear optimization problems and to project the solution into a bounded 

convex set for largescale optimization problems. We do this by combining 

the classical spectral conjugated gradient direction with the projected 

Barzilai and Borwein step lengths. The efficacy and convergence of the new 

method are illustrated through a series of problems. 
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1:Introduction 

Large-scale bounded constrained optimization problems arising from infinite dimensional space that 

are discretized employing the method of finite elements are the focus of this work [14]. The study's 

methodology is based on projected Barzilai and Borwein step lengths in conjunction with the spectral 

conjugate gradient method [7]. We use the proposed method to address the bounded constrained 

optimization problems (the same examples studied in [14]), but without using any sophisticated line 

search. These methods were initially used to address unconstrained nonlinear optimization problems, 

so it was necessary to ascertain how they affected bounded convex optimization problems. The 

primary benefit of the technique under study is that, for large-scale convex optimization problems, 

only gradient directions are employed; in contrast, the non-monotone method guarantees adequate 

convergence. 

Several recent studies [24,9,15,11,21] used spectral conjugate gradient approaches to solve problems 

related to unconstrained optimization. However, spectral conjugate gradient methods were employed 

by other researchers [2,23] to solve systems of nonlinear equations. Using projected gradient 

techniques, constrained optimization problems can be 

successfully tackled, as demonstrated by the groundbreaking paper [4, 7]. The MMA approach for 

topology optimization uses the preconditioned spectral projected gradient [22]. Unconstrained 

optimization problems, such as [1, 19], are also resolved using the spectral second-order methods.  

We can consult [10] for sufficient details regarding convergence rates for unconstrained 

optimization. In contrast, [18] establishes the global convergence and analysis of the strictly convex 

quadratic case to any number of variables using the BB method. Many related types of research, such 

as [8,12], are conducted after that to improve and extend Barzilai and Borwien step length. From the 
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numerical calculations, many researchers concluded that the conjugate gradient and spectral ideas 

could be combined to get the most precise methods for solving unconstrained optimization problems 

[3, 17, 18]. 

    Furthermore, applying Barzilai-Berwein and spectral conjugate gradient methods to bounded 

nonlinear convex optimization problems is the main objective of this work. The following is the 

format of the paper: In Section 2, the basic concept of the proposed problem, the algorithms, and the 

spectral conjugate gradient method have been introduced. Numerical experiments are covered in 

Section 3; we pay particular attention to the dependence of the convergence rate, the maximum 

number of iterations and the CPU time needed. Finally, Section 4 introduces the conclusion. 

2:  Spectral Project Conjugate Gradient Method For Convex Optimization. 

2.1 The Problem 

Generally, the main goal of the research is to solve the nonlinear bound-constrained problem [14]. 

min
𝑥∈ℝ𝑛

 𝑓(𝑥)                                                                        (1) 

Subject to 

                                                                                      𝜑𝑖 ≤ 𝑥𝑖 ≤ 𝜓𝑖,  𝑖 = 1, … , 𝑛 

Given a nonlinear function 𝑓 that is continuously differentiable and convex, 𝜑𝑖 < 𝜓𝑖 for all 𝑖. In 

order to ensure that a solution exists, It is assumed that either the function 𝑓 is coercive or the 

feasible set ℱ is bounded. 

ℱ = {𝑥 ∈ ℝ𝑛 ∣ 𝜑𝑖 ≤ 𝑥𝑖 ≤ 𝜓𝑖 , 𝑖 = 1, … , 𝑛} 

We consider the problem to be one of large-scale optimization, and the suggested problems are 

discretized using the finite element method; eq. (1) is a bound-box quadratic problem, let us assume. 

                                                  min
𝑥∈ℝ𝑛

 𝑓(𝑥) =
1

2
𝑥2𝐴𝑥 − 𝑓𝑇𝑥                                                                (2) 

𝜑𝑖 ≤ 𝑥𝑖 ≤ 𝜓𝑖 , 

The symmetric and positive define matrix 𝐴 ∈ 𝑅𝑛×𝑛 has a large size 𝑛, and 𝑓 ∈ 𝑅𝑛. In order to solve 

equation (2), the set of feasible solutions is provided as 

Ω = {𝑥 ∈ 𝑅𝑛 ∣ 𝜑𝑖 ≤ 𝑥𝑖 ≤ 𝜓𝑖}                                                              (3) 

In this work, we take into account projected Barzilai-Borwien step lengths provided by [7] in 

conjunction with the spectral conjugate gradient line search direction from [3]. The method then is 

called the spectral projected conjugate gradient method. 

2.2 The Spectral Projected Conjugate Gradient Method 

Finding a search direction 𝑑𝑘 ∈ 𝑅
𝑛 is necessary at each iteration in order to compute a new point 

𝑥𝑖+1 for eq. (1). 

𝑥𝑖+1 = 𝑥𝑖 − 𝛼𝑖𝑑𝑖                                                                                 (4) 

In this case, 𝑑𝑖+1 is the new direction given by 

𝑑𝑖+1 = 𝜃𝑖𝑔𝑖+1 − 𝛽𝑖𝑠𝑖                                                                            (5) 

 

where 𝑥𝑜 ∈ 𝑅
𝑛 is arbitrary, 𝑔𝑖 represents ∇𝑓(𝑥𝑖), and 

𝑑𝑜 = 𝜃𝑜𝑔𝑜 
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such that the two successive approximations, 𝑥𝑖 and 𝑥𝑖+1, are defined by 

𝑠𝑖 = 𝑥𝑖+1 − 𝑥𝑖 = 𝛼𝑖𝑑𝑖 

and 

𝑦𝑖 = 𝑔𝑖+1 − 𝑔𝑖 

When eq. (2) is used without constraints, the exact minimize 𝑥∗ satisfies 

𝑥∗ = 𝑥𝑖+1 + 𝑑𝑘 

where 

𝐴𝑑𝑘 = 𝑔𝑖+1,                                                                                (6) 

By multiplying the latter by 𝑠𝑖
𝑇, we obtain 

𝑠𝑖
𝑇𝐴𝑑𝑘 = 𝑠𝑖

𝑇𝑔𝑖+1, 

hence 

𝑦𝑖
𝑇𝑑𝑘 = 𝑠𝑖

𝑇𝑔𝑖+1. 

Consequently, the hyper-plane 

ℋ𝑖 = {𝑑 ∈ 𝑅𝑛 ∣ 𝑦𝑖
𝑇𝑑𝑘 = 𝑠𝑖

𝑇𝑔𝑖+1} 

retain the ideal direction 𝑑∗, which results in 

𝑥∗ = 𝑥𝑖+1 + 𝑑𝑘 

It is evident that ℋ contains the null direction 𝑑 = 0 only if 𝑠𝑖
𝑇𝑔𝑖+1 = 0. According to Perry (1978), 

the previous discussion significantly influences the search direction 𝑑𝑖+1 to belong to the hyper-plane 

ℋ. 

Therefore, by (5) 

𝛽𝑖 =
(𝜃𝑦𝑖−𝑠𝑖)

𝑇𝑔𝑖+1

𝑠𝑖
𝑇𝑦𝑖

                                                                          (7) 

[3] suggests that if 𝑠𝑖
𝑇𝑔𝑖+1 = 0, 𝑖 = 0,1,2, … , 𝑘 then this was first introduced by [17] with 𝜃 = 1. 

𝛽𝑖 =
𝜃𝑖𝑦𝑖

𝑇𝑔𝑖+1

𝛼𝑖𝜃𝑖−1𝑔𝑖
𝑇𝑔𝑖

                                                                              (8) 

This study compares the use of 𝛽𝑖 (7) with the classical choice 𝜃 = 1 first, and then with the spectral 

gradient choice. 

𝜃 =
𝑠𝑖
𝑇𝑠𝑖

𝑠𝑖
𝑇𝑦𝑖

                                                                                     (9) 

The definition of the directed search 𝑑 is precisely as it appears in Step 3 of Algorithm SCG [3]. 

Moreover, the Algorithm has to be restarted to use 𝑑 = 𝜃𝑔𝑖+1 instead of 𝜃𝑖𝑔𝑖 − 𝛽𝑖𝑠𝑖 in the case that 

the angle between 𝑑 and 𝑔𝑖+1 is not sufficiently acute. Here we assume that, instead of using a 

sophisticated line search, the coefficient 𝜃𝑖 is always positive and welldefined due to the conditions 

applied in the process of selecting the Barzilai-Berwein step lengths. We employ Barzilai-Borwein 

step lengths and project the solution into the convex set [6] . Additionally, we employ the step 

lengths in two ways: first, we use them in the alternate Barzilai-Borwein ABB method as described 

in [7]. 
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𝛼𝐴𝐵𝐵 =

{
 
 

 
 

1, 𝑘 = 1;
𝑠𝑘−1
𝑇 𝑠𝑘−1

𝑇

𝑠𝑘−1
𝑇 𝑦𝑘−1

,  for odd 𝑘;

𝑠𝑘−1
𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑦𝑘−1

,  for even 𝑘.

                                                         (10) 

The second application involves converting the concept of alternation into a comparison using the 

sign of 𝑠𝑘−1
𝑇 𝑦𝑘−1 in the projected Barzilai-Borwein [4]; PBB is used to indicate this. 

𝛼𝑃𝐵𝐵 = {
1, 𝑘 = 1;

𝑠𝑘−1
𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑦𝑘−1

,  otherwise ,
                                                         (11) 

Additionally, the Barzilai-Borwien step lengths that were presented in [20] are a good fit for the 

spectral conjugate gradient line search that is being studied. Nevertheless, the modified Barzilai-

Berwein step sizes [20] may result in a slower choice due to the costly determination of stiffness 

matrix 𝐴 and 𝐴2. Setting upper and lower bounds for the step sizes is one of the minor adjustments 

that can be made to make use of that. The following algorithm is determined and structured as a base 

algorithm to illustrate the behavior of the projected Barzilai-Berwein method for solving bound-

constrained optimization problems without using spectral terms. 

2.3 Algorithm 1: Barzilai-Borwein Projected Conjugated Gradient Algorithm without Spectral 

Term 

Suppose that 𝑥0 ∈ ℝ𝑛, 𝑑0 = 𝑔0, 𝑔0 = ∇𝑓(𝑥0), 𝛼0 = 1, 𝜖 > 0 and set 𝑖 = 0. 

Step 1: If ⟨𝑔𝑖 ⋅ (𝑥𝑖 − 𝜑𝑖) ⋅ (𝜓𝑖 − 𝑥𝑖)⟩ ≤ 𝜖, stop. 

Step 2: Compute 𝛼𝑖 as following 

     𝛼𝑎: =
𝑠𝑘−1
𝑇 𝑠𝑘−1

𝑠𝑘−1
𝑇 𝑦𝑘−1

 

     𝛼𝑏: =
𝑠𝑘−1
𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑦𝑘−1

 

To determine the ABB step length, use 10 to calculate 𝛼𝑖. To determine the PBB step length in the 

other scenario, use the following commands. 

  If 𝑠𝑖−1
𝑇 𝑦𝑖−1 <= 0, then 𝛼𝑖 = max{𝛼𝑎, 𝛼𝑏}, else 

 𝛼𝑖 = min{𝛼𝑎, 𝛼𝑏}

  If 𝛼𝑖 <= 10
−10

 or 𝛼𝑖 >= 10
10, let 𝛼 = 1

 

Step 4: compute 𝛽𝑖 

𝛽𝑖 =
∥∥𝑦𝑖∥∥

𝑑𝑖−1
𝑇 𝐴𝑔𝑖−1

.   

                                                 𝑑𝑖 = {
𝑔𝑖,  Steepest descent ;

𝑔𝑖 − 𝛽𝑖𝑠𝑖,  Conjugate gradient ,
                                          (12)     

𝑥𝑖+1 = 𝑥𝑖 − 𝛼𝑖𝑑𝑖 and project it into the feasible set using 

𝑥𝑖+1 = max{𝜑𝑖, 𝑥𝑖+1}; 𝑥𝑖+1 = min{𝜓𝑖, 𝑥𝑖+1}, 

here, the symbols 𝜑𝑖 and 𝜓𝑖, respectively, clearly indicate the lower and upper bounds for the 

Problems. 

set 𝑖 = 𝑖 + 1 and go to step 2 . 
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Algorithm 1 is only effective in solving bound-quadratic problems up to refinement 8 . That is 

limited to the conjugate gradient method and only functions with projected Barzilai-Berwein step 

length PBB. The algorithm also fails for different applications of step length or search direction, as 

shown in Tables [1]. 

Consequently, Algorithm 1 is modified by adding the spectral term 𝜃 and using some conditions to 

restrict the step length 𝛼, which is changed by including 𝛽𝑖 and 𝜃𝑖 from [3] in order to solve more 

general nonlinear optimization problems. 

2.4 Algorithm 2: Barzilai-Borwein Projected Conjugated Gradient Algorithm Using the 

Spectral Term 𝜽 

Assume that 𝑥0 ∈ ℝ𝑛, 𝑑0 = 𝑔0 and 𝜖 > 0. 

Step 1: If ⟨𝑔𝑖 ⋅ (𝑥𝑖 − 𝜑𝑖) ⋅ (𝜓𝑖 − 𝑥𝑖)⟩ ≤ 𝜖, stop. 

Step 2: compute 𝛼𝑖 as same as the step 2 in Algorithm 1. 

Step 3: Select the spectral term 𝜃𝑖 for 𝑖 = 1,2,3, …. 

𝜃𝑖 = {
1,  or 

𝑠𝑖−1
𝑇 𝑠𝑖−1

𝑠𝑖−1
𝑇 𝑦𝑖−1

,  
                                                                      (13) 

Calculate 𝛽𝑖 

𝛽𝑖 =
(𝜃𝑖𝑦𝑖−𝑠𝑖)

𝑇𝑔𝑖

𝑠𝑖
𝑇𝑦𝑖

                                                                               (14) 

Step 4: Determine the search direction 𝑑𝑖, [3] 

𝑑𝑖 = {
𝜃𝑖𝑔𝑖 ,  if 𝑑𝑖

𝑇𝑔𝑖 ≥ −0.001∥∥𝑑𝑖∥∥∥∥∣ 𝑔𝑖∥∥

𝜃𝑖𝑔𝑖 − 𝛽𝑖𝑠𝑖,  otherwise 
                                        (15) 

Step 5: Calculate a new point 𝑥𝑖+1 

              𝑥𝑖+1 = (𝑥𝑖 − 𝛼𝑖𝑑𝑖) and project it into the feasible set using 

𝑥𝑖+1 = max{𝜑𝑖, 𝑥𝑖+1}; 𝑥𝑖+1 = min{𝜓𝑖, 𝑥𝑖+1}, 

where the symbols 𝜑𝑖 and 𝜓𝑖, respectively, represent the problems' lower and upper bounds. 

Go to step 2 after setting 𝑖 = 𝑖 + 1. 

The primary contribution to the method's convergence is made by the algorithm, which computes 𝛼 

using projected Barzilai-Berwein step lengths. 

            The idea of adjusting the Barzilai-Borwein step length selection according to the sign of the 

projected directional derivative of 𝑓 in the direction, −𝑔(𝑥), of the steepest descent is simply 

substituted for step two in the consequent Algorithm 3. At trial point 𝑥 − 𝛼𝑔(𝑥), [14]. Recall that the 

following defines the set of active indices for a given feasible point 𝑥. 

𝒜(𝑥) = {𝑖 ∣ 𝑥𝑖 = 𝜑𝑖 or 𝑥𝑖 = 𝜓𝑖}. 

Additionally, for this 𝑥, a component-wise defined operator [⋅]𝒜(𝑥):ℝ
𝑛 → ℝ𝑛 is introduced by 

([ℎ]𝒜(𝑥))𝑖
= ⟨

0 if 𝑖 ∈ 𝒜(𝑥)
ℎ𝑖 otherwise. 

 

Let [⋅]Ω finally stand for the feasible set projection, which in this case is trivial. 
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2.5 Algorithm 3: Spectral Conjugate Gradient Algorithm Using Projected Barzilai-Borwein 

Step-Length Based on Gradient Directional Derivative 

step 2: Calculate 𝑥+and 𝛾 as follow 

𝑥+ = [𝑥 − 𝛼𝑔(𝑥)]Ω,                                                       (16) 

𝛾 = −(𝑔(𝑥))𝑇[𝑔(𝑥+)]ℋ(𝑥+)                                                  (17) 

𝛼1 =
𝑠𝑘−1
𝑇 𝑠𝑘−1

𝑠𝑘−1
𝑇 𝑦𝑘−1

, 𝛼2 =
𝑠𝑘−1
𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑦𝑘−1

 

𝛼 = {
max{𝛼1, 𝛼2},  if 𝛾 < 0;

min{𝛼1, 𝛼2},  if 𝛾 > 0.
 

3 Convergence analysis 

Our experiments show that using the combination of Barzilai-Borwein step lengths and spectral 

conjugate gradient line search has a significant impact on solving bounded nonlinear optimization 

problems on convex sets. Furthermore, the results of using Algorithm 3 and the PBB method are 

nearly identical. This suggests a similarity between the sign of the projected directional derivative of 

𝑓 in the steepest descent direction −𝑔(𝑥) at the trial point 𝑥 − 𝛼𝑔(𝑥), [14], and the sign of 𝑠𝑘−1
𝑇 𝑦𝑘−1 

in the projected Barzilai-Borwein [4]. We could therefore forego introducing the numerical 

experiments from the Algorithm 3. As a result, we present the next two lemmas from the literature. Ω 

's convexity leads to the simple convergence properties of the algorithms that are presented. 

Additionally, allow us to state the following literature-based lemma. 

Lemma 3.1 For all 𝑥 ∈ Ω, 𝛼 ∈ (0, 𝛼max), 

1. ⟨𝑔(𝑥), 𝑥+ − 𝑥⟩ ≤ −
1

𝛼
∥∥𝑥+ − 𝑥∥∥2

2
≤ −

1

𝛼max
∥∥𝑥+ − 𝑥∥∥2

2
, 

2. The vector (𝑥+ − 𝑥new ) vanishes if and only if 𝑥new  is a constrained stationary point. 

3. 𝑓(𝑥new ) < 𝑓(𝑥) and 𝛾+ < −(∇𝑓(𝑥))𝑇∇𝑓(𝑥new ) < 0. 

Proof. The proof of the first two theorems is given in Lemma 2.1 in [4]. While the third theorem's 

proof is outlined in [14]. 

4 Numerical experiments 

We use problems from the literature [13,5,14] to report the results of our numerical experiments in 

this section. We will investigate the effects of using spectral conjugate gradient line search on 

projected Barzilai-Borwin methods, starting with a quadratic problem. 

We will provide, for each problem, the asymptotic rate of convergence for a range of numbers of 

refinement meshes ( 3,5,7,8, and 9 levels of discretization). The same table includes the number of 

iterations, function and gradient calls, and CPU complexity time on the discretized level. We will 

also present an asymptotic rate of convergence and comparison (in the function/gradient calls) with 

projected gradient, based on the standard projected gradient method with backtracking Armijo line 

search [14]. To avoid duplication, the final Table 5 presents the outcomes of all problems using the 

GP-Armijo, standard projected gradient method with backtracking Armijo line search [14]. 

In the infinite-dimensional setting, each problem is defined on the Ω = (0,1)2 square. Next, we 

discretize square finite elements using bilinear basis functions on regular meshes. The first coarsest 

mesh has four elements (refinement level 0 ). 𝑗 = 8 uniform refinement steps are used to obtain nine 

embedded finite element meshes. The finest mesh has 262144 finite elements and 261121 interior 

nodes. Consequently, at refinement level 𝑘, 𝑘 = 0,1,2, …, we have 4
𝑘+1

 finite elements and (2𝑘+1 −
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1)
2
 interior nodes. Under certain conditions, we restrict the steplength using the same step lengths as 

studied in the projected Barzilai and Borwein [7]. These are combined with spectral conjugate 

gradient line search [3]. Additionally, we set the maximum number of iterations to 200 and employ 

the following stopping criteria in all of our tests: 

 The procedure was terminated at ∥𝑥 − 𝑥∗∥ ≤ 10
−5

. The L-BFGS-B code [16] was utilized to 

determine the precise solution 𝑥∗. The asymptotic rate of convergence was calculated based on these 

final iterations. 

Two approaches are taken to examine the initial value for the step length: using 1/∥∥𝑔1∥∥∞
 [4] and 

using 1. Regardless of whether it was feasible or not, the starting point for every experiment was a 

zero vector. 

Every algorithm was implemented using MATLAB. Stephen Becker  1 created the L- 

BFGS-B code interface. For all experiments, we used a laptop with an Intel Core i7-3570 CPU M 

620 at 2.67 GHz and 4GB RAM. On 64-bit Windows 10, MATLAB version 8.0.0 (2012b) was 

running. 

4.1 Obstacle problem in quadratic form 

We first begin our numerical experiments with the "Spiral problem" from [13]. This is a quadratic 

optimization problem derived from the Laplace equation Ω ⊂ ℝ2 : 

min
𝑢∈𝐻0

1(Ω)
 ℐ(𝑢): =

1

2
∫  

Ω

  ∥ ∇𝑢 ∥2 𝑑𝑥 − ∫  
Ω

 𝐹𝑢𝑑𝑥 

                                                    Subject to 

𝜑 ≤ 𝑢 ≤ 𝜓,   a.e. in Ω, 

where 𝐹 ∈ 𝐿2(Ω). The spiral obstacle, as suggested in [13, $7.1.1], will be employed> 

𝜑(𝑥(𝑟, 𝜙)) = sin (2𝜋/𝑟 + 𝜋/2 − 𝜙) +
𝑟(𝑟 + 1)

𝑟 − 2
− 3𝑟 + 3.6,  𝑟 ≠ 0, 

and polar coordinates 𝑥(𝑟, 𝜙) = 𝑟𝑒𝑖𝜙 with 𝜑(0) = 3.6. The upper bound function, 𝜓, is set to 

infinity, and the function on the right, 𝐹, to zero. The solution for 9 refinement discretization is 

shown in Figure 1, which can be obtained with all recommended convergent methods from Table 2. 

This is achieved using Algorithm 2. 

 
                            Figure 1: Problem 4.1, 9th refinement level, SCG-ABB solution. 𝛼 = 1, 𝜃 = 1. 

Table 2 shows the numerical results by the ways involved in Algorithm 2, Problem 4.1. It displays 

the total number of evaluations of gradients and objective functions on the discretized level, along 
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with the convergence's asymptotic rate, which is an average over the last three to five iterations. 

Figures 2 and 3 show the convergence rate vs. number of iterations for the final refinement grids 

(9th) for all different ways studied. 

The results from Table 2 indicate that the alternating Barzilai-Berwein ABB overcomes projected 

Barzilai-Berwein PBB even though both methods ABB and PBB with the choice 𝜃 = 1 converge 

rapidly with a good rate and low function evaluations. These include both uses of initial step lengths 

𝛼1. However, Table 1 presents the numerical results from algorithm 1 which can fail by excluding 

the spectral constant 𝜃 in its procedures unlike Algorithms 2 and 3 . 

As for Figures 2 and 3, Figures 2 confirms the nonmonotonic performance for ABB especially when 

𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘𝑦𝑘
 but that can be reduced if it combined with initial step length 𝛼1 = 1/∥∥𝑔1∥∥∞

. Furthermore, 

it affects decreasing the number of iteration and function 

evaluations as well. On the other hand, Figure 3 presents the more monotonic behavior for PBB with 

all different choices in terms of initial step lengths and the spectral constants with little differences in 

their results. 

Table 1: Problem 4.1, Algorithm 1 computes the complexity time "CPU" for refinement levels 3-7, 

the number of descretized level function evaluations "feval", the number of iterations "it", and the 

asymptotic rate of convergence "rate". ABB step length with projected steepest descent is denoted by 

ABB− SD, and conjugate gradient line searches is denoted by ABB-CG. PBB-SD and PBB-CG 

indicate the two PBB-based approaches, respectively. 

Algorithm 2 ABB-SD ABB-CG 

Levels rate     Feval            it        CPU rate         feval          it            CPU 

4 - - - - 0.04 44 9 0.005 s 

5 - - - - 0.13 90 13 0.01 s 

7 - - - - - - - - 

8 - - - - - - - - 

9 - - - - - - - - 

Algorithm 2 PBB-SD PBB-CG 

Levels rate feval it CPU rate feval it CPU 

4 - - - - 0.07 54 10 0.01 s 

5 - - - - 0.13 135 16 0.02 s 

7 - - - - 0.35 434 29 0.62 s 

8 - - - - 0.43 989 44 8.37 s 

9 - - - - - - - - 
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Figure 2: Problem 4.1, 9th refinement level, from top, ABB error (left) with 𝜃 = 1, 𝛼1 = 1 and ABB 

error (right), 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘𝑦𝑘
, 𝛼1 = 1. From down, ABB error (left) with 𝜃 = 1, 𝛼1 =

1

∥∥𝑔1∥∥∞

 and ABB error 

(right), 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

, 𝛼1 =
1

∥∥𝑔1∥∥∞

. 

Table 2: Problem 4.1, Algorithm 2, convergence's asymptotic rate and number of evaluations of top-

level functions for 4-9 discretized levels. ABB denotes alternating BarzilaiBerwein step length 

alongside spectral conjugate gradient direction with 𝜃 = 1, 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 and the tolerance criteria is less 

than 10
−5

. 

Algorithm 2, 𝛼1 = 1 
ABB, 𝜃 = 1 

ABB, 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 

 

Levels rate feval it CPU rate feval it CPU 

4 0.06 35 8 0.02 s 0.097 77 12 0.02𝑠 

5 0.13 65 11 0.02 s 0.096 152 17 0.04 s 

7 0.15 275 23 0.67 s 0.36 1484 54 3.91 s 

8 0.45 702 37 9.69 s 0.53 11780 152 190.94 

9 0.46 2015 63 91.34 s 0.48 15752 176 717.38 

Algorithm 2, 𝛼1 =
1

∥∥1∥∞
 ABB, 𝜃 = 1 ABB, 𝜃 =

𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 
 

Levels rate feval it CPU rate feval it CPU 

4 0.04 35 8 0.02 s 0.20 65 11 0.03 s 
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5 0.13 65 11 0.02 s 0.05 152 17 0.04 s 

7 0.31 377 27 1.03 s 0.17 1127 47 2.84 s 

8 0.39 902 42 12.18 s 0.35 1769 59 25.96 

9 0.43 2210 67 98.24 s 0.88 3485 83 165.21 s 

Algorithm 2, 𝛼1 = 1 PBB, 𝜃 = 1 PBB, 𝜃 =
𝑠𝑘
𝑇𝑥1

𝑠𝑘
𝑇𝑥𝑘

 

Levels rate feval it CPU rate feval it CPU 

4 0.07 44 9 0.02 s 0.08 77 12 0.02 s 

5 0.16 104 14 0.04 s 0.08 |135 16 0.02 s 

7 0.50 702 37 1.64 s 0.42 665 36 2.25 = 

8 0.68 2144 65 25.85 s 0.70 3002 77 41.93 s 

9 0.75 6327 112 275.86 s 0.71 11780 152 598.72 

Algorithm 2, 𝛼1 =
1

∥∥𝑔1∥∥∞

 PBB, 𝜃 = 1 PBB, 𝜃 =
𝑠𝑘

2𝑠𝑘

𝑠𝑘
2𝑘𝑘

 

Levels rate feval it CPU rate feval it CPU 

4 0.09 44 9 0.01 s 0.16 54 10 0.02𝑠 

5 0.19 104 14 0.03 s 0.17 152 17 0.04 s 

7 0.50 779 39 1.73 s 0.33 945 43 2.22 s 

8 0.70 2144 65 24.57 s 0.57 3485 83 42.22 s 

9 0.78 6785 116 277.75 s 0.79 13529 164 567.28 s 
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Figure 3: Problem 4.1, 9th refinement level, from the top, PBB error (left) with 𝜃 = 1, 𝛼1 = 1 and 

PBB error (right), 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

, 𝛼1 = 1. From down, ABB error (left) with 𝜃 = 1, 𝛼1 = 
1

∥∥𝑔1∥∥∞

 and PBB 

error (right), 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

, 𝛼1 =
1

∥∥𝑔1∥∥∞

. 

4.2 Bounded non-quadratic problem 

Take into account the optimization problem in Ω ⊂ ℝ2 that follows: 

min
𝑢∈𝐻0

1(Ω)
 𝒢(𝑢):=

1

2
∫  

Ω

  ∥ ∇𝑢 ∥2− (𝑢𝑒𝑢 − 𝑒𝑢)𝑑𝑥 − ∫  
Ω

 𝐹𝑢𝑑𝑥 

                                           Subject to 

𝜑 ≤ 𝑢 ≤ 𝜓,   a.e. in Ω, 

here 

𝜑(𝑥1, 𝑥2) = −8(𝑥1 − 7/16)2 − 8(𝑥2 − 7/16)2 + 0.2,  𝜓 = 0.5 

and 

𝐹(𝑥1, 𝑥2) = (9𝜋2 + 𝑒(𝑥1
2−𝑥1

3)sin (3𝜋𝑥2)(𝑥1
2 − 𝑥1

3) + 6𝑥1 − 2) sin (3𝜋𝑥1). 

A nonlinear PDE was examined in [5, p.105] for the unconstrained version of the problem. Using 

convergent Algorithm 2, the solution to the proposed constrained problem on the 9 th refinement 

level is displayed in Figure 4. 

            Similar to the previous discussion about Table 2, here we have results for non-quadratic 

obstacle problem 4.2 from the Algorithm 2 process in MATLAB. It can be noticed that the ABB with 

𝛼1 = 1 and 𝜃 = 1 is the winner in terms of rapid convergence rate, low number evaluations of 

functions, and iterations as well. However, it shows the worst nonmonotonic convergence with 

maximum number of function evaluations and iterations for the second choice of 𝛼1 and 𝜃. While 

PBB is the best in its results with 𝛼1 = 1 and 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 compared to its use with different initial step 

length and both choices of 𝜃. Furthermore, the PBB method reduces the monotonous behavior of the 

error especially when 𝛼1 = 1 and 𝜃 = 1, as can be seen clearly in the 9th refinement level Figures 5 

and 6. 

 

Figure 4: Problem 4.2, solution of bounded non-quadratic problem. 
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Figure 5: Problem 4.2, 9th refinement level, from top, ABB error (left) with 𝜃 = 1, 𝛼1 = 1 and ABB 

error (right), 𝜃 =
𝑠𝑘
𝑇−𝑡

𝑠𝑘
𝑇𝑦𝑘

, 𝛼1 = 1. From down, ABB error (left) with 𝜃 = 1, 𝛼1 =
1

∥∥𝑔1∥∥∞

 and ABB error 

(right), 𝜃 =
5𝑘𝑠𝑘

5𝑘𝑦𝑘
, 𝛼1 =

1

∥∥𝑘1∥∥∞

. 

Table 3: Problem 4.2, Algorithm 2 asymptotic convergence rate, rate, total number of evaluations of 

top-level functions,feval, total number of iterations, it, and CPU time for 4-9 discretized levels. ABB 

denotes alternating Barzilai-Berwein step length alongside spectral conjugate gradient direction with 

𝜃 = 1 and 𝜃 =
𝑠𝑘𝑠𝑘

𝑠𝑘𝑠𝑘
 and the tolerance criteria is less than 10

−5
. 

Algorithm 2, 𝛼1 = 1 ABB, 𝜃 = 1 ABB, 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
3𝑦𝑘

 

 

Levels rate feval it CPU rate feval it CPU 

4 0.15 54 11 0.07 s 0.38 119 15 0.03 s 

5 0.27 104 15 0.03 s 0.17 275 24 0.15 s 

7 0.28 209 21 0.91 s 0.72 860 42 4.32 s 

8 0.42 377 28 7.52 s 0.50 1952 63 41.53 s 

9 0.47 702 38 52.16 s 0.42 4004 90 288.40 s 

Algorithm 2, 𝛼1 =
1

∥𝑠∥∞
 ABB, 𝜃 = 1 ABB, 𝜃 =

𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
2𝑦𝑘

 

 

Levels rate feval it CPU rate feval it CPU 
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4 0.20 87 11 0.03 s 0.27 104 14 0.04 s 

5 0.21 119 15 0.06 s 0.48 275 24 0.14 s 

7 0.40 464 31 2.28 s 0.39 1377 53 6.36 s 

8 0.31 1080 47 22.58 s 0.18 7625 124 168.39 s 

9 0.44 2484 70 176.45 s 0.46 20532 200 1540.90 s 

Algorithm 2, 𝛼1 = 1 PBB, 𝜃 = 1 PBB, 𝜃 =
𝑠𝑘
𝑠𝑠𝑘

𝑠𝑘𝑦𝑘
 

Levels rate feval it CPU rate feval it CPU 

4 0.22 77 13 0.02 s 0.32 119 16 0.03 s 

5 0.38 189 20 0.05 s 0.2 2 21 0.06 s 

7 0.58 594 35 2.64 s 0.45 433 30 2.11 s 

8 0.69 1377 53 32.75 s 0.55 1377 53 18.61 s 

9 0.73 3002 78 153.33 s 0.56 2849 78 132.50 s 

Algorithm 2, 𝛼1 =
1

∥∥𝑘1∥∥∞

 PBB, 𝜃 = 1 PBB, 𝜃 =
𝑠𝑘𝑠𝑘

𝑠𝑘𝑦𝑘
 

Levels rate feval it CPU rate feval it CPU 

4 0.17 54 10 0.03 s 0.33 135 16 0.03 s 

5 0.22 119 15 0.06 s 0.35 299 25 0.16 s 

7 0.42 665 37 3.56 s 0.51 1175 49 6.29 s 

8 0.46 1485 55 36.19 s 0.53 2484 71 60.21 s 

9 0.68 4185 92 340.97 s 0.48 9590 139 804.63 s 



Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 28 No. 2 (2025) 

 

299 
 

https://internationalpubls.com 

 

Figure 6: Problem 4.2, 9th refinement level, from the top, PBB error (left) with 𝜃 = 1, 𝛼1 = 1 and 

PBB error (right), 𝜃 =
𝑠𝑘
𝑇∗𝑘

𝑠𝑘
𝑇𝜇𝑘

, 𝛼1 = 1. From down, ABB error (left) with 𝜃 = 1, 𝛼1 = 
1

∥∥𝑔1∥∥∞

 and PBB 

error (right), 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

, 𝛼1 =
1

∥∥𝑠1∥∥∞

. 

4.3 Obstacle problem 

Let's look at one last problem that has both an additional equality constraint and an obstacle. The 

nonlinear PDE is the source of the issue 

−Δ𝑢 − 𝑢2  = 𝑓(𝑥)  in Ω

𝑢  = 0  on ∂Ω
 

and can be demonstrated as the subsequent optimization problem 

min
𝑢∈𝐻0

1(Ω)
 𝒴(𝑢): =

1

2
∫  

Ω

  (∥ ∇𝑢 ∥2−
1

3
𝑢3)𝑑𝑥 − ∫  

Ω

 𝐹𝑢𝑑𝑥 

                                                 Subject to 

                                                                        𝜑 ≤ 𝑢 a.e. in Ω 

∫  
Ω

 𝑢𝑑𝑥 = 1, 

with 𝐹 ≡ 0 and 

𝜑(𝑥1, 𝑥2) = −32(𝑥1 − 0.5)2 − 32(𝑥2 − 0.5)2 + 2.5.  

Figure 7 displays the solution on the 9th refinement using PSCGBB with 262144 elements and 

261121 variables of Problem 4.3. 

Table 4 shows the numerical results for Problem 4.3, the methods ABB and PBB converge in general 

with high accuracy until the 8th refinement mesh. whilst for the 9th refinement, the convergence is 

either diverge or slow and can just reach the solution with low accuracy maximum 10
−3

, for 

example, the PBB method with 𝜃 = 1, 𝛼1 = 1 Figure 8 . However, ABB method converges 
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nonmonotocally until 9 th refinement mesh with high accuracy just when 𝜃 = 1, 𝛼1 =
1

∥∥𝑠1∥∥∞

 and 

doesnt converge with spectal term 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 except for lower refinement mesh Figure 8. 

 

Figure 7: Problem 4.3, solution on the 9th refinement. 

 

Figure 8: Problem 4.3, from top, PBB error (left) with 𝜃 = 1, 𝛼1 = 1 with 9 th refinement level and 

8th refinement level (right). From down, ABB error (left) with 𝜃 =
𝑠𝑘
𝑇−𝑠2

𝑠𝑘
2𝑦𝑘

, 𝛼1 = 1 on the 9 th 

refinement level and ABB error (right) with 𝜃 = 1, 𝛼1 =
1

1𝑔11/√0
 on the 9 th refinement level. 
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Table 4: Problem 4.3, Algorithm 2 asymptotic convergence rate, rate, number of evaluations of top-

level functions, feval, total number of iterations, it, and CPU time for 4-9 discretized levels. ABB 

stands for alternating projecting Barzilai-Berwein step length alongside spectral conjugate gradient 

direction with 𝜃 = 1 and 𝜃 =
𝑠𝑘
𝑇∗𝑘

𝑠𝑘
𝑇)
, 4𝑒−5 and PBB stands for projecting Barzilai-Berwein step length. 

Algorithm 

2, 𝛼1 = 1 
ABB, 𝜃 = 1 ABB, 𝜃 =

𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 

 

Levels rate feval it CPU rate feval it CPU 

4 0.16 43 7 0.01 s 0.17 90 14 0.02 s 

5 0.18 65 11 0.02 s 0.21 209 21 0.08 s 

7 0.42 377 28 1.85 s 0.36 10991 147 34.34 

8 0.68 902 43 17.35 s - - - - 

9 converges with low accuracy - - - - 

Algorithm 

2, 𝛼1 =
1

∥∥𝑔1∥∥∞

 ABB, 𝜃 = 1 ABB, 𝜃 =
𝑠𝑘𝑠𝑘

𝑠𝑘
2𝑦𝑘

 
 

Levels rate feval it CPU rate feval it CPU 

4 0.15 60 10 0.02 s 0.28 120 14 0.03 s 

5 0.26 90 14 0.05 s 0.53 209 20 0.08 s 

7 0.48 594 37 2.25 s - - - - 

8 0.59 2099 62 39.57 s - - - - 

9 0.71 8375 126 
1698.94 

s 
- - - - 

Algorithm 

2, 𝛼1 = 1 
PBB, 𝜃 = 1 PBB, 𝜃 =

𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 

 

Levels rate feval it CPU rate feval it CPU 

4 0.23 54 11 0.02 s 0.28 90 14 0.25 s 

5 0.33 135 17 0.05 s 0.30 135 17 0.13 s 

7 0.62 1034 46 4.57 s 0.57 819 41 4.31 

8 0.74 3289 79 71.55 s 0.82 4559 96 115.58 s 

9 0.99 11324 200 271.11 s 0.95 11324 200 12.19 s 
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Algorithm 

2, 𝛼1 =
1

∥∥𝑔1∥∥∞

 PBB, 𝜃 = 1 PBB, 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 

 

Levels rate feval it CPU rate feval it CPU 

4 0.17 54 11 0.02 s 0.30 104 15 0.03 s 

5 0.26 77 17 0.05 s 0.23 152 18 0.06 s 

7 0.42 527 44 2.89 s 0.62 1484 55 4.69 s 

8 0.53 2849 75 42.84 s 0.75 6203 109 135.68 s 

9 converges with low accuracy converges with low accuracy 

 

Table 5: Problem 4.1, 4.2 and 4.3 using the standard projected gradient method with backtracking 

Armijo line search [14], asymptotic convergence rate, rate, number of evaluations of top-level 

functions, feval, total number of iterations, it, and CPU time for 4-9 discretized levels. 

Armi

jo 

Problem 4.1 Problem 4.2 Problem 4.3 

Level

s 

rat

e 
feval it CPU 

rat

e 
feval it CPU 

rat

e 
feval it CPU 

4 
0.1

2 
152 10 0.02 s 

0.3

6 
526 

1

6 
0.06 s 

0.2

7 
386 15 

0.20 

s 

5 
0.2

7 
531 17 0.07 s 

0.4

1 
1481 

2

7 
0.27 s 

0.7

2 
1499 26 

0.44 

s 

7 
0.7

0 
7464 58 

15.41 

s 

0.7

8 
6183 

4

9 

25.26 

s 

0.4

9 

1098

0 
67 

35.28 

s 

8 
0.8

4 

2857

2 

11

2 

337.0

9 s 

0.6

8 

1120

6 

6

4 

195.4

8 s 

0.6

4 

3471

5 

10

0 

512.2

6 s 

9 
0.9

2 

9226

2 

20

0 

1733.

05 s 

0.7

5 

3346

1 

9

6 

1146.

17 s 
-    

 

5 Conclusions 

The preceding section's experiments demonstrate that the PBB method is typically monotone and 

convergent for problems involving quadratic, nonlinear, and even obstacles. This is particularly true 

when using the first option of initial step length 𝛼1 = 1. Applying the PBB method with the second 

option, 𝛼 = 1/∥∥𝑔1∥∥∞
, yields a better nonmonotone convergent process for all three problem types, 

but at the cost of more CPU time, iterations, and function evaluations. The optimal nonmonotone 

convergent, with fewer function evaluations, iterations, and CPU time, is the ABB method for 
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solving quadratic and nonlinear problems. However, this cannot be true for obstacle problems, which 

have the potential to diverge and fail when dealing with applicants who have 𝜃 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

. In light of 

this, we used Amijo back-tracking to present the results for the problems from Table 5 , which shows 

a high number of function evaluations when compared to the ABB and PBB methods [14]. The 

stopping criteria for all the experiments were set to 10
−5

 and 4 × 10
−5

 specifically for the obstacle 

problem 4.3 . 

Therefore, This combination of the well-known method spectral conjugate gradient for unconstrained 

optimization with Barzilai-Borwein step lengths results in a method that can be used efficiently for 

solving bounded convex optimization problems especially those that arise from infinite-dimensional 

problems. Thus, the primary benefits of the suggested approach lie in its minimal memory needs, low 

computational complexity, and reduced number of iterations needed to solve large-scale convex 

problems. 

In contrast to previous studies in the spectral conjugate gradient field, the new approach solves large-

scale problems effectively and to good accuracy without the need for complex line searches. 

Nevertheless, the technique can only be applied to convex problems with bound constraints and still 

be convergent. However, we think that the presented method, when applicable, is one of the effective 

methods to solve the wide class of convex optimization problems that are both bound-constrained 

and unconstrained. 
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