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Abstract:  

It is common to observe that when demand increases, an industry with 

limited storage capacity (OW) must rent a warehouse (RW). We must 

purchase more product in larger quantities due to the COVID-19 epidemic, 

sales discounts, or other factors. When OW's capacity is reached, extra stock 

is held in RW at a high holding charge compared to OW. The dual 

warehouse inventory problem of a supply chain constrained by limited 

storage capacity in OW for non-instantaneously decaying commodities 

under inflationary conditions has been investigated in the current study. 

There is a partial backlog in shortages, and the demand rate is depending on 

inventory. Because of the quick changes in the environment, preservation 

technology has become increasingly crucial in today's global society. In 

order to slow down the deterioration of goods with a high rate of 

deterioration, preservation technology is specifically used in this article. Our 

primary goal is to reduce the suggested model's overall cost function. At the 

conclusion of this work, A sensitivity analysis and numerical illustration 

have been performed to showcase the model. 

Keywords: Dual warehouse, demand dependent on stock, non- 

instantaneous deterioration, partial backorder, preservation technology. 

 

 

1.Introduction 

Another essential component of inventory analysis is the two-warehouse inventory system. Owing to 

the competitive marketing environment, a warehouse's location is crucial to corporate strategy. 

Retailers naturally need to locate a stock in a well-known selling area. They therefore want more 

storage space because there isn't enough room in a busy marketplace. Items have little storage space 

in crowded markets (like supermarkets). If there's a bulk discount available, or if certain foods are 

seasonal, or if acquiring goods costs more compared to other inventory expenses, or if there's a surge 

in product demand or frequent procurement hurdles, management may choose to buy significant 

quantities of products in a single transaction. These products are frequently unable to be 

accommodated in a busy marketplace's on-hand warehouse (the company's own warehouse, OW). In 

this situation, a second warehouse (a rented warehouse, RW) is necessary for keeping excess items, 

and it may be located some distance from the OW. As a result, a RW is used to store items that 

exceed the OW's fixed limit. The RW typically incurs greater unit holding charges compared to the 
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OW, yet its superior preservation facilities lead to a lesser rate of product deterioration compared to 

the OW. It is more cost effective to utilize RW items as soon as possible to reduce inventory costs. 

As a result, the vendor saves things in the OW first, but consumes stock from the RW first. 

Hartley (1976) pioneered the two-warehouse concept, and since then, numerous authors have 

concentrated on two-warehouse inventory problems. Sarma (1987) was the initial step in the 

direction of OW's restricted storage capability. He has also created a two-warehouse model to 

accommodate decaying items and limited storage capacity. Gothi and colleagues (2016) explored a 

dual warehouse model by quadratic demand also variable holding cost for decaying products. The 

backorder rate is believed to be directly proportional to the time interval between replenishments.  

Tiwari and his team (2017) proposed a dual-warehouse model for deteriorating items, incorporating 

partial backlog and demand influenced by stock levels, amidst inflationary conditions, utilizing 

particle swarm optimization.  

Deterioration is described as the process of decay, spoiling, off-trend damage, also evaporation. 

Some items, such as milk, have an ending time. They are considered to be in pristine condition until 

the expiration date. Some preservation technologies can help items keep their freshness longer (Iqbal 

and Sarkar, 2020). A suitable approach is utilized to decrease degradation by investing in various 

preservation technology, such as refrigerators, air conditioners, and drying machines, which are used 

for various products. Contemporary preservation methods can be employed to reduce the pace of 

degradation, proving to be an efficient conservation strategy. Perishable goods such as fruits, 

vegetables, volatile liquids, blood, fashion items, among others, are subject to deterioration.  

Ghare and Scharder (1963) were pioneers in presenting inventory models involving degradation. 

They looked at the constant rate of decay. In actual life, numerous goods begin to decay after their 

maximum life period, which is known as non-instantaneous degeneration. Sekar and Uthayakumar 

(2018) suggested a perishable model sensitive to both time and price variations. Feng (2019) 

included a pricing decision on degrading things as well, but for the consequence of a quality 

investment. It was considered that demand was price and quality dependent. Kaliraman and 

colleagues (2017) recommended a dual-warehouse inventory structure tailored for perishable goods, 

featuring an exponential demand rate and allowable payment postponement. Mashud and 

collaborators (2021) introduced an inventory methodology to explore carbon secretions and 

deterioration within the realm of efficient green investment and conservation technology.  

In the current environment, inflation is a critical concern for all sectors. In practice, Inflation denotes 

the gradual rise in the overall price level of goods and services within an economy as time 

progresses. Accordingly, annual inflation also entails a reduction in the value of holding costs. 

Holding costs are influenced by the inflation rate used to assess the ending inventory's worth, as the 

value of inventory items fluctuates rather than remaining constant. In the global economy, it's crucial 

not to underestimate the significance of inflation and the concept of the time worth of money. 

Buzacott (1975) was the pioneer in incorporating the inflationary impact on costs into an EOQ 

model. Bierman and Thomas (1977) subsequently enhanced Buzacott's (1975) model by 

incorporating discount rates to accommodate inflation. Misra (1979) further advanced the EOQ 

model by introducing diverse inflation rates to account for various associated costs. Pervin and 

colleagues (2016) constructed an inventory model for degrading goods within a market experiencing 
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decreasing demand, incorporating a trade credit strategy. Shaikh (2017) devised a dual warehouse 

inventory model tailored for degrading products, which considers fluctuating demand within another 

trade credit framework. Mishra and colleagues (2019) present a demand model that is dependent on 

both stock levels and prices. Xu and Song (2020) developed an integrated optimization approach 

aimed at optimizing production capacity, raw material procurement, and manufacture forecasting in 

the face of quantity uncertainty. Hasan and colleagues (2020) introduced a model for agricultural 

products incorporating product separation and diverse discount policies to minimize product 

deterioration.  

Table-1: Key contributions of the planned inventory model for dual warehouses. 

 

Literature 

Dual 

Warehouse/ 

Solo 

Warehouse 

 

Demand rate 

 

Deterioration 

Preservation 

Technology 

Shortage 

Liang and Zhou 

(2011) 

Dual Stable Stable - - 

Hsu and co-authors 

(2010) 

Solo Stable Stable Stable Partial 

backordered 

Maiti and co-

authors (2009) 

 

Solo 

Price varying 

(Non-linear 

function) 

 

- 

 

- 

Wholly 

backordered 

Taleizadeh and co-

authors (2014) 

Solo Stable Stable - Partial 

backordered 

 

Lashgari and co-

authors (2016) 

 

Solo 

 

Stable 

 

- 

 

- 

No shortages, 

Wholly and 

Partial   

backordered 

Teng and co-

authors (2016) 

Solo Stable Time-Varying - Partial 

backordered 

Tiwari and co-

authors 

(2017) 

Dual Dependent on 

stocks 

Stable - Wholly 

backordered 

Jaggi and co-

authors (2017) 

Dual Price 

varying 

Stable - Wholly 

backordered 

Tiwari and co-

authors (2018a) 

Solo Price varying Termination - Partial 

backordered 

Tiwari and co-

authors (2018b) 

Dual Price varying Stable - Wholly 

backordered 

This paper Dual Stock 

dependent 

Stable Stable Partial 

backordered 
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The primary contributions of the suggested inventory model are outlined below:  

❖ Preservation technology in a dual warehouse system 

❖ Inflationary inventory model 

❖ Product demand is contingent on inventory levels. 

❖ Partially backlogged shortages (backlog rate inversely proportionate to waiting time) 

2. Assumptions and Notations 

2.1. Notations 

𝐷(𝑡) Rate of demand  

𝑄  Order quantity 

𝜃 Actual rate of deterioration 

𝜖       
Cost of preservation technology to mitigate deterioration and ensure product 

conservation, where 𝜖 is a positive value. 

𝜆 Resultant rate of decay, where  𝜆 = 𝜃 − 𝑚(𝜖). 

𝑟 Rate of inflation 

ℎ𝑟 The cost of holding per unit over a given period in a rented warehouse (RW). 

ℎ𝑜 The cost of holding per unit over a given period in an owned warehouse (OW). 

𝐴 Cost of ordering  

𝑝𝑐 The cost per unit purchased 

𝐶𝑠 The cost of shortages 

𝑙𝑐 The cost of lost sales 

𝐶𝑇  Total cost 

𝑊2 Confined spatial area of OW 

𝑊1 The upper limit of inventory in RW 

𝐼𝑏 The highest level of backorders 

𝑇𝑑 The maximum lifespan of an item 

𝑇1 The timeframe when the stock level in RW reaches zero 

𝑇2 The timeframe when the stock level in OW reaches zero 

𝑇 The duration of the cycle 

𝐼1(𝑡) The level of stock in RW within the time interval [0, 𝑇𝑑] 

𝐼2(𝑡) The level of stock in RW within the time interval [𝑇𝑑, 𝑇1] 
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𝐼3(𝑡) The level of stock in OW within the time interval [0, 𝑇𝑑] 

𝐼4(𝑡) The level of stock in OW within the time interval [𝑇𝑑 , 𝑇1] 

𝐼5(𝑡) The level of stock in OW within the time interval [𝑇1, 𝑇2] 

𝐼6(𝑡) The level of stock in OW within the time interval [𝑇2, 𝑇] 

2. 2. Assumptions 

1. The demand rate varies by stock levels also expressed in the following form 

𝐷(𝑡) = {
𝑎 + 𝑏𝐼(𝑡) 𝐼(𝑡) > 0

𝑎 𝐼(𝑡) ≤ 0
   

2. Shortages are permitted and partial backordered, with a backorder rate given by 

    𝐼𝑏(𝑡) =
1

1+𝛿(𝑇−𝑡)
 where 𝑡  represents the duration of waiting, and 0 < 𝛿 < 1  is the backorder 

constraint.  

3. The model pertains to a sole non-instantaneous deteriorating item. There's no degradation within 

the timeframe [0, 𝑇𝑑] but it occurs during the interval [𝑇𝑑 , 𝑇2] at a deterioration rate of  𝜃(𝑡) = 𝜃𝑡, 

where 0 <  𝜃 << 1 represents the deterioration parameter. 

4.  The time horizon extends indefinitely, and the replenishment rate has no limit, and there is   

     zero lead time. 

5. The Owned Warehouse (OW) has a finite space of 𝑊𝑜 units, whereas the capacity of the Rented 

Warehouse is infinite. 

6. The holding cost (ℎ𝑟) of RW is higher than the holding cost (ℎ𝑜) of OW. As a result, the items 

from OW are used only once the inventory in RW is depleted. 

7. Transportation charges and the duration between RW and OW are insignificant. 

 

3. Formulating the inventory model mathematically 

As illustrated in Fig.1, we segregate the following time intervals separately, [0, 𝑇𝑑] , [𝑇𝑑 , 𝑇1] , 

[𝑇1, 𝑇2] and [𝑇2, 𝑇]. At time 𝑡 =  0 , the stock level is 𝑆 , with 𝑊2 units are stored in OW while 𝑊1 

units are stored in RW. Throughout the intermission [0, 𝑇𝑑], stock levels remain positive at both RW 

and OW. Throughout this interval, demand leads to a decrease in the inventory level of RW, whereas 

the stock level of OW remains steady. At  𝑡 =  𝑇𝑑 , deterioration sets in. Throughout the interval 

[𝑇𝑑, 𝑇1], inventory level of RW declines because of both demand and deterioration, reaching zero at 

𝑡 =  𝑇1 whereas the stock level of OW decreases due to deterioration. Throughout the intermission 

[𝑇1, 𝑇2], demand is fulfilled by using OW inventory. In the interval [𝑇2, 𝑇], shortages occur and are 

somewhat backlogged.  
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Fig. 1: Visual depiction of the inventory model involving dual warehouses with shortages 

The inventory level at RW is described by the subsequent set of differential equations 

𝑑𝐼1(𝑡)

𝑑𝑡
= −(𝑎 + 𝑏𝐼1(𝑡))                                            0 ≤ 𝑡 ≤ 𝑇𝑑                                         (1) 

𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝜆𝑡𝐼2(𝑡) = −(𝑎 + 𝑏𝐼2(𝑡))                            𝑇𝑑 ≤ 𝑡 ≤ 𝑇1                                       (2) 

and the inventory level at OW is described by the subsequent set of differential equations: 

𝐼3(𝑡) = 𝑊2                                                             0 ≤ 𝑡 ≤ 𝑇𝑑                                          (3) 

𝑑𝐼4(𝑡)

𝑑𝑡
+ 𝜆𝑡𝐼4(𝑡) = 0                                               𝑇𝑑 ≤ 𝑡 ≤ 𝑇1                                         (4)  

𝑑𝐼5(𝑡)

𝑑𝑡
+ 𝜆𝑡𝐼5(𝑡) = −(𝑎 + 𝑏𝐼5(𝑡))                         𝑇1 ≤ 𝑡 ≤ 𝑇2                                          (5) 

𝑑𝐼6(𝑡)

𝑑𝑡
= −(

𝑎

1+𝛿(𝑇−𝑡)
)                                             𝑇2 ≤ 𝑡 ≤ 𝑇                                          (6) 

The boundary conditions are given below: 

𝐼1(0) = 𝑊1, 𝐼1(𝑇𝑑) = 𝐼2(𝑇𝑑), 𝐼2(𝑇1) = 0, 𝐼3(𝑇𝑑) = 𝐼4(𝑇𝑑) = 𝑊2,  𝐼5(𝑇2) = 𝐼6(𝑇2) = 0,  

𝐼6(𝑇) = −𝐼𝑏. 

The solutions to the aforementioned equations are derived using boundary conditions  

𝐼1(𝑡) =
𝑎

𝑏
(𝑒𝑏(𝑇𝑑−𝑡) − 1) + 𝑎𝑒

−(𝑡𝑏+
𝜆𝑇𝑑

2

2
)
{(𝑇1 − 𝑇𝑑) + 𝑏 (

𝑇1
2−𝑇𝑑

2

2
) + 𝜆 (

𝑇1
3−𝑇𝑑

3

6
)}                (7) 

𝐼2(𝑡) = 𝑒
−(𝑡𝑏+

𝜆𝑡2

2
)
{(𝑇1 − 𝑡) + 𝑏 (

𝑇1
2−𝑡2

2
) + 𝜆 (

𝑇1
3−𝑡3

6
)}                                                      (8) 

𝐼4(𝑡) = 𝑊2𝑒
−𝜆(

𝑇𝑑
3−𝑡

2
)
                                                                                                           (9) 

𝐼5(𝑡) = 𝑒
−(𝑡𝑏+

𝜆𝑡2

2
)
{(𝑇2 − 𝑡) + 𝑏 (

𝑇2
2−𝑡2

2
) + 𝜆 (

𝑇2
3−𝑡3

6
)}                                                    (10)  

𝐼6(𝑡) = −𝑎(𝑡 − 𝑇2)                                                                                                           (11) 

Since 𝐼1(0) = 𝑊1 and from equation (7) we get 
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𝑊1 =
𝑎

𝑏
(𝑒𝑏(𝑇𝑑) − 1) + 𝑎𝑒

−(
𝜆𝑇𝑑

2

2
)
{(𝑇1 − 𝑇𝑑) + 𝑏 (

𝑇1
2−𝑇𝑑

2

2
) + 𝜆 (

𝑇1
3−𝑇𝑑

3

6
)}                         (12) 

Since 𝐼4(𝑇1) = 𝐼5(𝑇1) and using equations (9) and (10) we get 

𝑇1 = (−
1

2𝜆𝑊2
) (−6𝑎 − 3𝑏𝑊2 + 𝜆𝑇2𝑊2) + {(6𝑎 + 3𝑏𝑊2 − 𝜆𝑇2𝑊2)

2 + 4𝜆𝑊2 − 6𝑎𝑇2 +

          6𝑊2 −  3𝑏𝑇2𝑊2 − 𝑇2
2𝑊2𝜆 + 3𝑇𝑑

2𝑊2𝜆}1 2⁄                                                                (13) 

Maximum backlogged amount 𝐼𝑏 = −𝐼6(𝑇) 

𝐼𝑏 = 𝑎(𝑇 − 𝑇2)                                                                                                                  (14) 

Order quantity 𝑄 =  𝑊1 + 𝑊2 + 𝐼𝑏  

𝑄 =
𝑎

𝑏
(𝑒𝑏(𝑇𝑑) − 1) + 𝑎𝑒

−(
𝜆𝑇𝑑

2

2
)
{(𝑇1 − 𝑇𝑑) + 𝑏 (

𝑇1
2−𝑇𝑑

2

2
) + 𝜆 (

𝑇1
3−𝑇𝑑

3

6
)} + 𝑊2 + 𝑎(𝑇 − 𝑇2)      (15)           

The overall relevant cost encompasses the following cost factors: 

1. Cost of ordering (OC) = 𝐴 

2. The cost per unit purchased (PC) = 𝑝𝑐𝑄 

3. The cost of holding (HC) is 

𝐻𝐶 = ℎ𝑟 ∫ 𝐼1(𝑡)𝑒
−𝑟𝑡 𝑑𝑡 + ℎ𝑟 ∫ 𝐼2(𝑡)𝑒

−𝑟𝑡 𝑑𝑡 + ℎ𝑜 ∫ 𝐼3(𝑡)𝑒
−𝑟𝑡 𝑑𝑡 +

𝑇𝑑

𝑜

𝑇1

𝑇𝑑

𝑇𝑑

0

              ℎ𝑜 ∫ 𝐼4(𝑡)𝑒
−𝑟𝑡 𝑑𝑡 +    ℎ𝑜 ∫ 𝐼5(𝑡)𝑒

−𝑟𝑡 𝑑𝑡
𝑇2

𝑇1

𝑇1

𝑇𝑑
  

= ℎ𝑟 [𝑎 (
𝑇𝑑

2

2
−

𝑟𝑇𝑑
3

6
) + 𝑎 (𝑇𝑑 −

(𝑏+𝑟)𝑇𝑑
2

2
+

(2𝑟𝑏−3𝜆)𝑇𝑑
3

6
+

𝜆𝑟𝑇𝑑
4

4
) ((𝑇1 − 𝑇𝑑) + 𝑏 (

𝑇1
2−𝑇𝑑

2

2
) + 𝜆 (

𝑇1
3−𝑇𝑑

3

6
)) +

𝑎 {𝑇1 + 𝑏
𝑇1

2

2
+ 𝜆

𝑇1
3

6
} {(𝑇1 − 𝑇𝑑) − 𝑏 (

𝑇1
2−𝑇𝑑

2

2
) + 𝜆 (

𝑇1
3−𝑇𝑑

3

6
)} − 𝑎 {

𝑇1
2−𝑇𝑑

2

2
− (𝑏 + 𝑟)

𝑇1
3−𝑇𝑑

3

3
−

𝜆 (
𝑇1

4−𝑇𝑑
4

8
)} − 𝑏 {(

𝑇1
3−𝑇𝑑

3

6
) − (𝑏 + 𝑟) (

𝑇1
4−𝑇𝑑

4

8
) − 𝜆 (

𝑇1
5−𝑇𝑑

5

20
)} − 𝜆

𝑇1
4−𝑇𝑑

4

24
− (𝑏 + 𝑟) (

𝑇1
5−𝑇𝑑

5

30
) − 𝜆 (

𝑇1
6−𝑇𝑑

6

72
)]  

+ℎ𝑜 {𝑊2 (𝑇𝑑 −
𝑟𝑇𝑑

2

2
) + 𝑊2 ((𝑇1 − 𝑇𝑑) (1 + 𝜆

𝑇𝑑
2

2
) − 𝑟 (

𝑇1
2−𝑇𝑑

2

2
) − 𝜆 (

𝑇1
3−𝑇𝑑

3

6
)) + 𝑎 (𝑇2 + 𝑏

𝑇2
2

2
+

𝜆
𝑇2

3

6
) ((𝑇2 − 𝑇1) − 𝑏 (

𝑇2
2−𝑇1

2

2
) − 𝜆 (

𝑇2
3−𝑇1

3

6
)) − 𝑎 ((

𝑇2
2−𝑇1

2

2
) − (𝑏 + 𝑟) (

𝑇2
3−𝑇1

3

3
)  −

𝜆 (
𝑇2

4−𝑇1
4

8
))− 𝑏 ((

𝑇2
3−𝑇1

3

6
) − (𝑏 + 𝑟) (

𝑇2
4−𝑇1

4

8
) − 𝜆 (

𝑇2
5−𝑇1

5

20
)) − (𝑏 + 𝑟) (

𝑇2
5−𝑇1

5

30
) − 𝜆 (

𝑇2
6−𝑇1

6

72
)}(16) 

4. The cost of shortage (SC) is 

𝑆𝐶 = 𝑐𝑠 ∫ 𝐼6(𝑡)𝑒
−𝑟𝑡𝑑𝑡

𝑇

𝑇2
  

= 𝑎𝑐𝑠𝑇2 [(𝑟 + 1) (
𝑇2−𝑇2

2

2
) − 𝑇 + 𝑇2 − 𝑟 (

𝑇3−𝑇2
3

3
)]                                                      (17) 

5. The cost of lost sale (LC) is 

𝐿𝐶 = 𝑙𝑐𝑎 ∫ (1 −
1

(1+𝛿(𝑇−𝑡))
) 𝑒−𝑟𝑡𝑑𝑡

𝑇

𝑇2
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= 𝑙𝑐 [𝑎(𝑇 − 𝑇2) − 𝑟 (
𝑇2−𝑇2

2

2
) −

1

𝛿
log(1 + 𝛿(𝑇 − 𝑇2)) +

𝑟

𝛿
(−(𝛿𝑇 + 1) log(1 + 𝛿(𝑇 − 𝑇2) −

(𝑇 − 𝑇2))]                                                                                                                       (18) 

6. Present value of deterioration cost (DC) during [0, 𝑇1] is 

𝐷𝐶 = 𝜆𝐷𝑐 {∫ 𝐼2(𝑡) 𝑒
−𝑟𝑡𝑑𝑡 +

𝑇1

𝑇𝑑
∫ 𝐼4(𝑡) 𝑒

−𝑟𝑡𝑑𝑡 +
𝑇1

𝑇𝑑
∫ 𝐼5(𝑡) 𝑒

−𝑟𝑡𝑑𝑡
𝑇2

𝑇1
}   

= 𝜆𝐷𝑐 {(𝑏 + 𝑟) ((
𝑇1𝑇𝑑

2

2
−

𝑇𝑑
3

3
) +

𝑏

2
(

𝑇1
2𝑇𝑑

2

2
−

𝑇𝑑
4

4
) +

𝜆

6
((

𝑇1
3𝑇𝑑

2

2
−

𝑇𝑑
5

5
)))    

−(𝑇1𝑇𝑑 −
𝑇𝑑

2

2
) +

𝑏

2
(𝑇1

2𝑇𝑑 −
𝑇𝑑

3

3
) +

𝜆

6
((𝑇1

3𝑇𝑑 −
𝑇𝑑

4

4
))  

−(𝑏𝑟 −
𝜆

2
) ((

𝑇1𝑇𝑑
3

3
−

𝑇𝑑
4

4
) +

𝑏

2
(
𝑇1

2𝑇𝑑
3

3
−

𝑇𝑑
5

5
) +

𝜆

6
((

𝑇1
3𝑇𝑑

3

3
−

𝑇𝑑
6

6
)))   

−
𝜃𝑟

2
((

𝑇1𝑇𝑑
4

4
−

𝑇𝑑
5

5
) +

𝑏

2
(
𝑇1

2𝑇𝑑
4

4
−

𝑇𝑑
6

6
) +

𝜆

6
((

𝑇1
3𝑇𝑑

4

4
−

𝑇𝑑
7

7
)))  

+𝑊2 ((𝑇1 − 𝑇𝑑) (1 + 𝜆
𝑇𝑑

2

2
) − 𝑟 (

𝑇1
2−𝑇𝑑

2

2
) − 𝜆 (

𝑇1
3−𝑇𝑑

3

6
)) + 𝑎 (𝑇2 + 𝑏

𝑇2
2

2
+ 𝜆

𝑇2
3

6
)  

((𝑇2 − 𝑇1) − 𝑏 (
𝑇2

2−𝑇1
2

2
) − 𝜆 (

𝑇2
3−𝑇1

3

6
)) − 𝑎 ((

𝑇2
2−𝑇1

2

2
) − (𝑏 + 𝑟) (

𝑇2
3−𝑇1

3

3
) − 𝜆 (

𝑇2
4−𝑇1

4

8
))  

−𝑏 ((
𝑇2

3−𝑇1
3

6
) − (𝑏 + 𝑟) (

𝑇2
4−𝑇1

4

8
) − 𝜆 (

𝑇2
5−𝑇1

5

20
)) − (𝑏 + 𝑟) (

𝑇2
5−𝑇1

5

30
) − 𝜆 (

𝑇2
6−𝑇1

6

72
)}         (19) 

 

Total cost, 𝐶𝑇  =   𝑂𝐶 +  𝑃𝐶 +  𝐻𝐶 + 𝐷𝐶 +  𝑆𝐶 +  𝐿𝐶 
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𝐶𝑇  =

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐴 + 𝑃𝑐𝑄

+ℎ𝑟 [𝑎 (
𝑇𝑑

2

2
−

𝑟𝑇𝑑
3

6
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2
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+
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4
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2
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2

2
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3
− 𝜆 (
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8
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3

6
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4
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5
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𝑇1
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4
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5
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6
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2

2
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2

2
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𝑇1
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2
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3
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2
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((𝑇2 − 𝑇1) − 𝑏 (
𝑇2
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2
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3

6
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2
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−
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𝜆

6
((

𝑇1
3𝑇𝑑

2

2
−
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𝜆

6
((𝑇1

3𝑇𝑑 −
𝑇𝑑

4

4
))

−(𝑏𝑟 −
𝜆

2
)((

𝑇1𝑇𝑑
3

3
−

𝑇𝑑
4

4
) +

𝑏

2
(
𝑇1

2𝑇𝑑
3

3
−

𝑇𝑑
5

5
) +

𝜆

6
((

𝑇1
3𝑇𝑑

3

3
−

𝑇𝑑
6

6
)))

−
𝜃𝑟

2
((

𝑇1𝑇𝑑
4

4
−

𝑇𝑑
5

5
) +

𝑏

2
(
𝑇1

2𝑇𝑑
4

4
−

𝑇𝑑
6

6
) +

𝜆

6
((

𝑇1
3𝑇𝑑

4
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2
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2
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3

6
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3
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)
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2
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3
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𝑇2
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2

2
) − (𝑏 + 𝑟) (

𝑇2
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3

3
) − 𝜆 (

𝑇2
4−𝑇1

4

8
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𝑇2

3−𝑇1
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6
) − (𝑏 + 𝑟) (
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4
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) − 𝜆 (

𝑇2
5−𝑇1

5

20
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5
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6
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𝑇2−𝑇2

2

2
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𝑇3−𝑇2
3

3
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+𝑙𝑐 [𝑎(𝑇 − 𝑇2) − 𝑟 (
𝑇2−𝑇2

2

2
) −

1

𝛿
log(1 + 𝛿(𝑇 − 𝑇2)) +

𝑟

𝛿
(−(𝛿𝑇 + 1) log(1 + 𝛿(𝑇 − 𝑇2) − (𝑇 − 𝑇2))]]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

                      (20)    

To minimize the total average cost per unit time, the optimal values of 𝑇2 can be found by solving 

the following equation: 

 
𝜕𝐶𝑇

𝜕𝑇2
= 0                                                                                                                       (21) 

As long as they meet the sufficient conditions: 

 
𝜕2𝐶𝑇

𝜕𝑇2
2 > 0                                                                                                                     (22)  
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We utilize computer software, specifically MATLAB, to calculate the total cost and optimal values 

of 𝑇2  in the subsequent section. 

4. Numerical Illustration 

The concept just discussed through the following numerical example, with parameters provided as 

follows: 𝜃 = 0.03, 𝜖 = 10, 𝑚(𝜖) = 𝜃(1 − 𝑒−0.5𝜖), 𝑟 = 0.03, ℎ𝑟 = 0.4,  

ℎ𝑜 = 0.3, 𝐴 = 100, 𝑝𝑐 = 50, 𝐶𝑠 = 1.5, 𝑙𝑐 = 0.5,  𝑊2 = 40, 𝑎 = 20, 𝑏 = 6, 𝑇𝑑 = 0.3,  

𝛿 = 0.0001, 𝑑𝑐 = 0.5, 𝑇1 = 0.7, 𝑇 = 2  

Then we get 𝑇2 = 1.6283, 𝑄 = 96.2670 𝑎𝑛𝑑 𝐶𝑇 = 5150.6  

5. Sensitivity analysis 

To analyze the sensitivity of this model, we conducted a sensitivity analysis by changing key 

parameters such as demand parameters ‘𝑎’ and ‘𝑏’, deterioration rate θ, etc. The consequence of 

change in parameters is specified in Table 1. Enthusiastic observation of the table 1 tells the 

following information: 

1. Increases in 𝑎 results in decrement in 𝑇2 but increment in 𝐶𝑇 and 𝑄. 

2. Increase in 𝑏 results in decrement in 𝑇2 but increment in 𝐶𝑇 and 𝑄. 

3. Increase in 𝜃 results in decrement in 𝑇2 but increment in 𝐶𝑇 and 𝑄. 

4. Increases in 𝑟 results in increment in 𝑇2 but decrement in 𝐶𝑇 and 𝑄. 

Table 1: Sensitivity analysis examines how optimal values of various parameters change in response 

to alterations in other parameters. 

Parameter Change in parameter 𝑇2 𝑄 𝐶𝑇 

𝑎 

18 1.6949 89.4401 4788.8 

22 1.5711 103.1511 5514.8 

26 1.4777 117.0614 6249.4 

𝑏 

5 1.8667 84.5933 4522.8 

7 1.4539 107.3961 5753.0 

9 1.2168 130.5068 7020.1 

𝜃 

0.02 1.6283 96.2656 5150.5 

0.04 1.6282 96.2685 5150.7 

0.05 1.6281 96.2700 5150.8 

𝒓 

0.02 1.4082 100.6686 5360.5 

0.04 1.8147 92.5375 4966.1 

0.05 1.9795 89.2412 4797.6 

6. Conclusion 

This investigation introduces a dual warehouse inventory model designed for non-instantaneous 

degrading products, which extends the traditional EOQ model. Our model accommodates a 

configurable deterioration rate, Demand influenced by stock levels, and allows for partial 
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backlogging of shortages. We incorporate preservation techniques to mitigate deterioration during 

the inventory's deterioration period and suggest an approach to find the best replenishment cycles, 

order quantities, and preservation technology costs, all aimed at minimizing the total inventory cost 

per unit time. Through numerical illustrations, we demonstrate the efficacy of our model, particularly 

for suppliers employing preservation technology in both ordinary and reserve warehouses to control 

deterioration rates. Our numerical analysis confirms the stability of the proposed solution. 

Furthermore, we suggest avenues for expanding the model to include features like non-instantaneous 

degradation, variable backlogged shortages, and perpetual inventory policies. Future research could 

explore extensions incorporating nonlinear demand and holding costs, as well as introducing 

additional elements such as trade credit terms, Demand influenced by price, with price being a 

variable in decision-making, thereby enhancing the practical applicability and robustness of the 

inventory management approach proposed herein. 
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