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Abstract:  

The accurate prediction of concrete properties, such as compressive strength, 

is crucial for ensuring the safety and efficiency of construction projects. In 

recent years, machine learning (ML) techniques have emerged as powerful 

tools for modeling complex relationships between input variables and 

concrete properties. This study presents a comparative evaluation of various 

machine learning models, including Support Vector Machine (SVM), 

Random Forests (RF), Gradient Boost Regression (GBR), XG Boost, 

Adaptive (ADA) Boost, Light GBR to predict key concrete properties. A 

comprehensive dataset, consisting of 14 parameters of M30 Grade Concrete 

was used to train and test the models. The performance of each model was 

assessed based Mean Square Error and coefficient of determination (R²). 

Results indicate that the ADA Boost algorithm performed better in 

predictions giving 97.09% accuracy and with least Mean Squared Error of 

about 1.485. Therefore, ADA Boost algorithm can be applied to develop 

predictive model for assessing the performance of self-healing smart 

concrete. The findings underscore the importance of selecting the 

appropriate machine learning model based on the specific characteristics of 

the data and the desired balance between prediction accuracy and 

computational efficiency. This research provides valuable insights for 

engineers and researchers aiming to adopt machine learning approaches in 

the material science and construction fields, paving the way for smarter, 

data-driven decision-making in concrete design. 

Keywords: Gradient Boost Regression, Machine Learning, Self-Healing, 

Smart Concrete 

 

 

1. Introduction 

Concrete is a complex building material as it composed of multiple different components and its 

properties vary depending on the mix. Therefore, properties acquisition is expensive and requires 

large equipment and specialist skills. Machine Learning (ML) has contributed to a better 

understanding of concrete behavior and the development of novel methods for predicting its features 

based on insights from historical data.  
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Concrete's chemical and physical characteristics, as well as how it performs in different conditions, 

may all be examined using machine learning. It can also be used to create new models for predicting 

the strength and durability of concrete and enhance the design of concrete structures. It is further 

enhanced to offer new methods for determining the lifespan of concrete buildings as well as new 

ways for detecting and diagnosing defects in concrete. Moreover, engineers can discover any issues 

before they worsen by using machine learning to find cracks in concrete. By applying machine 

learning algorithms to identify concrete fractures more quickly and correctly using prediction 

models, engineers can lower the need for costly repairs. Within the discipline of concrete technology, 

which studies the traits, actions, and the fresh, hardening, and hardened properties of concrete 

materials. ML has been widely used to assess, forecast, and simulate these qualities. Furthermore, it 

has been utilized to optimize the usage of ecologically friendly resources in place of cement by 

predicting the effects of adding these components—like fly ash—on the functionality of concrete. 

Additionally, machine learning (ML) has been employed both during and after construction. For 

instance, ML was used to quantify the construction process and monitor the structural health. 

Scientific procedures have produced enormous amounts of data, either at the full scale or in the 

laboratory, and these historical data are of great asset to be used to the maximum advantage using 

ML to produce platforms for judging the concrete properties. The primary steps in data analysis for 

machine learning are as follows: The first step is data ingestion, which involves gathering data and 

importing it into the designated analysis platform. The second step is data processing, which includes 

filtering, cleaning, and even manipulating the data. The third step is data analysis, which involves 

selecting the best-fit model—either optimization or prediction—training and assessing the model, 

and finally, data visualization or prediction. The present developments and uses of machine learning 

(ML) in concrete technology are thoroughly examined in this analysis with the goal of creating a 

roadmap for future ML application expansion in 

Concrete is one of the most widely used construction materials due to its versatility, durability, and 

cost-effectiveness. It plays a critical role in infrastructure development, from residential buildings to 

large-scale industrial and civil engineering projects. The performance of concrete is largely defined 

by its properties, such as compressive strength, workability, and durability. These properties are 

influenced by a variety of factors, including the composition of the mix, curing conditions, and 

environmental influences. Accurate prediction of these properties is essential for optimizing concrete 

mix designs, ensuring structural integrity, and minimizing costs.  

Traditionally, empirical formulas and experimental approaches have been used to estimate concrete 

properties. However, these methods can be time-consuming, expensive, and sometimes inaccurate 

due to the complex, nonlinear relationships between the mix components and the resulting material 

properties. With the rapid advancements in computational technologies, machine learning (ML) has 

emerged as a powerful alternative to traditional approaches, offering the ability to model complex 

interactions within the data and predict outcomes with high accuracy. 

Machine learning techniques such as decision trees, support vector machines (SVM), artificial neural 

networks (ANN), and ensemble methods have shown great potential in predicting concrete 

properties. These models are capable of learning from historical data and generalizing the underlying 

patterns, leading to more reliable and efficient predictions. However, the performance of these 
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models can vary significantly depending on the nature of the dataset and the specific ML algorithm 

employed. Predictive models are often designed using numerical simulation, statistical modeling and, 

most recently, machine learning (ML) and artificial intelligence (AI). 

As the importance of big data, data-driven science and engineering increases [18,32]. ML modeling 

is becoming the preferred tool to implement predictive models. ML usually focuses on training data 

samples, containing different algorithms to design a learning model for self-improvement when 

exposed to new data [23]. Hence, ML can assist civil engineers in estimating the properties of 

concrete and other materials commonly used in civil construction. This clearly represents an 

advantage in terms of time and cost. Therefore, ML techniques have gained attention in civil 

engineering for predicting the properties of concrete [39,45,46] and can generate results with a high 

degree of accuracy [14,15]. Furthermore, ML algorithms have been trained and applied in civil 

engineering to predict compressive strength and to design new ultrahigh-performance concrete 

[28,30]. 

Thus, this work focuses on comparing following ML techniques: 

• Support Vector Machine 

• Random Forest Regression 

• Gradient Boost Regressions 

Support vector machines and random forest regressors are chosen because support vector machines 

are known for their superior performance on small datasets [2,43], while Random Forest is an 

ensemble method that can increase the performance by training a set of decision trees based on 

random sampling of data [11]. Gradient Boosting is a powerful algorithm known for its high 

predictive accuracy and robustness to noisy data.  

Popular implementations of Gradient Boosting include XGBoost, LightGBM, and ADABoost, each 

offering variations and optimizations to improve efficiency and performance. Other methods such as 

ANN were not trained because they often required larger datasets. 

Support Vector Machine (SVM) 

SVM is a supervised machine learning algorithm that employs statistical learning theory and the 

principle of structural risk minimization to analyze data for classification [38]. It aims to find a 

maximum margin of separation between two classes by building a classification hyperplane in the 

center of the maximum margin and is therefore considered a two-class linear classifier [8]. The 

classification method (support vector classifier) can be extended to solve regression problems 

(support vector regression), which can provide better solutions to optimize the problem and reduce 

the number of errors in the designed model [5,8,38]. 

Random Forest Regression (RFR) 

Random forest regression is an ensemble machine learning technique that combines decision trees to 

classify or predict the value of a target response [11]. Random forest algorithms follow the standard 

random forest formula, using bootstrap sampling to generate sets of random samples for training 

each model base tree, which means that instead of training all observations, each tree of RF is trained 
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on a subset of the observations. Construction of the constant tree and pruning of linear nodes is based 

on the same set of samples for each base tree model.  

Gradient Boost Regression (GBR) 

Gradient Boosting is a machine learning technique used for both regression and classification tasks. 

It is an ensemble learning method that builds a strong predictive model by combining the predictions 

of multiple weak learners, typically decision trees. The Gradient Boosting algorithm, in particular, 

sequentially trains these weak learners to correct the errors of the previous models. 

Gradient Boosting typically uses decision trees as weak learners. Decision trees are simple models 

that make predictions by recursively partitioning the feature space into regions and assigning a 

constant value to each region and builds the ensemble model sequentially, where each new model 

focuses on learning from the mistakes made by the previous ones. The algorithm minimizes a loss 

function, which measures the difference between the actual target values and the predictions made by 

the model. To prevent overfitting, Gradient Boosting often includes regularization techniques such as 

tree pruning, limiting the depth of the trees, or adding a penalty term to the loss function. Predictions 

are made by combining the predictions of all weak learners, typically by summing them up or taking 

a weighted sum. 

XGBoost (Extreme Gradient Boosting): 

XGBoost is an optimized and highly efficient implementation of the gradient boosting algorithm. It 

builds multiple decision trees sequentially, where each new tree corrects the errors made by the 

previous ones. XGBoost incorporates several enhancements over traditional gradient boosting, 

including regularization techniques, efficient tree construction algorithms, and support for parallel 

processing. It is known for its high predictive accuracy and is widely used in various machine 

learning competitions and real-world applications. 

Light GBM (Light Gradient Boosting Machine): 

Light GBM is another gradient boosting framework developed by Microsoft. It is designed to be 

faster and more memory-efficient than traditional gradient boosting implementations. Light GBM 

uses a novel technique called Gradient-based One-Side Sampling (GOSS) to select only the 

informative instances for growing trees, reducing computational costs. It also employs Exclusive 

Feature Bundling (EFB) to further optimize memory usage by grouping related features together. 

ADABoost (Adaptive Boosting): 

ADA Boost is an ensemble learning technique that combines multiple weak learners to create a 

strong learner. Unlike gradient boosting methods like XGBoost and LightGBM, ADABoost assigns 

weights to each training instance and adjusts these weights at each iteration to focus on the instances 

that are harder to classify. Weak learners in ADABoost are typically shallow decision trees, known 

as "stumps." ADABoost sequentially trains a series of weak learners, with each new learner paying 

more attention to the instances that were misclassified by the previous ones. ADABoost is known for 

its simplicity and effectiveness, particularly in situations where data is not too complex or noisy.  
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2. Research Significance 

The use of ML in developing predictive models for self-healing concrete offers significant benefits to 

the civil industry, including early detection of damage, optimized maintenance strategies, increased 

durability and longevity of infrastructure, improved safety, cost savings, sustainability, and enhanced 

resilience to extreme events. By leveraging the power of data analytics and machine learning, civil 

engineers can improve the performance, reliability, and sustainability of concrete infrastructure, 

ultimately contributing to safer and more resilient built environments.  

3. Methodology 

A flowchart below represents the steps followed to compare the various ML techniques to develop a 

predictive model. 

Figure 1: Flowchart depicting the steps followed in ML Tools 

 

Problem Definition 

This involves clearly defining the problem which is required to be solved. In this work, as the 

laboratory experiments can be costly and time-consuming, the machine learning algorithms can 

assist in the development of better formulations for concrete. 

Data Collection 

A 702 dataset along with 14 parameters including Fineness of Cement, Fineness of Flyash, Fineness 

of GGBS, Soundness of Cement, Specific Gravity of Aggregates, Water Absorption of Aggregates, 

Aggregate Crushing Value, Zone of Sand, Silt Content %, pH of Water, Water- Cement Ratio, Mix 

Design, Mineral Admixture and Slump are used for comparison among various ML Tools. These 

parameters are selected after detailed literature review and their importance is as follows: 

Fineness of Cement: It affects the rate of hydration and thus the strength development of concrete. 

Finer cement particles increase the surface area available for hydration, leading to higher early 

strength and improved workability. 

Fineness of Fly Ash and GGBS (Ground Granulated Blast Furnace Slag): Similar to cement, the 

fineness of these supplementary cementitious materials influences their reactivity and pozzolanic 

activity, which in turn affects the strength, durability, and workability of concrete. 
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Soundness of Cement: Soundness refers to the ability of cement to retain its volume after setting 

without delayed expansion. Excessive expansion can cause cracking and durability issues in concrete 

structures. 

Specific Gravity of Aggregates: It indicates the density of aggregates relative to the density of 

water. Specific gravity affects the mix proportions, workability, and density of concrete. 

Water Absorption of Aggregates: High water absorption can lead to a higher water-cement ratio, 

reducing the strength and durability of concrete. It also affects the workability and permeability of 

concrete. 

Aggregate Crushing Value: This measures the resistance of aggregate to crushing under gradually 

applied compressive load. It helps assess the strength of aggregates and their suitability for use in 

concrete. 

Zone of Sand: Sand is classified into different zones based on particle size distribution. The zone of 

sand affects the workability, strength, and durability of concrete. 

Silt Content %: High silt content in aggregates can adversely affect the workability, strength, and 

durability of concrete. It can also lead to increased water demand and reduced cohesion. 

pH of Water: The pH of mixing water can influence the setting time and strength development of 

concrete. Extreme pH levels can affect the hydration process and cause corrosion of reinforcement. 

Water-Cement Ratio: It is one of the most crucial factors influencing the strength and durability of 

concrete. The ratio determines the amount of water needed for hydration relative to the cement 

content, affecting the workability, strength, and durability of concrete. 

Mix Design: Mix design involves selecting the proportions of ingredients (cement, aggregates, 

water, admixtures) to achieve the desired properties of concrete, such as strength, workability, and 

durability, based on specific project requirements and conditions. 

Mineral Admixture in Concrete: Mineral admixtures like fly ash, GGBS, and silica fume are added 

to concrete to improve its properties, such as strength, durability, and workability. They can also 

enhance resistance to chemical attack and reduce heat of hydration. 

Data Preprocessing  

The datasets is preprocessed i.e cleaned which includes replacing missing values with estimated 

ones, deletion of rows or columns with missing values, or using algorithms that can handle missing 

values internally. Feature Scaling is done to ensure they have the same scale. Common techniques 

include Min-Max scaling and z-score normalization. The categorical variables are converted into 

numerical representations suitable for ML algorithms.  

Data Splitting 

Before training and testing, data is split into training and test sets in a proportion of 70,30.The 

training set is used to train the model, while the testing set is used to evaluate its performance. 
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Figure 2: Identifying Null values and Cleaning data 

 

Choosing a Model 

An appropriate machine learning model based on the problem type (e.g., classification, regression) 

and the characteristics of the data is choosen. 

Training the Model 

Using the training data to train the selected model. This involves adjusting the model's parameters to 

minimize the difference between predicted and actual outcomes. 

Machine Learning  

ML models were developed with Python language and the following frameworks: Pandas version 

1.3.4, NumPy version 1.21.3 [23], Matplotlib version 3.3.4 [25], and Seaborn version 0.11.1 [40].  

Model Evaluation 

The trained model's performance is evaluated using the testing data. Common evaluation metrics 

include accuracy, precision, recall, F1-score (for classification), and mean squared error, R-squared 

(for regression). Mean Squared Error metrics is used in this study. 

The methods sections often come disguised with other article-specific section titles, but serve a 

unified purpose: to detail the methods used in an objective manner without introduction of 

interpretation or opinion. The methods sections should tell the reader clearly how the results were 

obtained. They should be specific. They should also make adequate reference to accepted methods 

and identify differences. The governing principle is as follows: Describe all of the techniques used to 

obtain the results in a separate, objective Methods section[3]. 

In the case of a paper that develops both an analytical model and laboratory results, it is common to 

write separate methods sections for each. At the conclusion of the methods sections, the reader 

should be able to form an educated opinion about the quality of the results to be presented in the 

remaining sections . 
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4. Results and Discussions 

The results of various ML tools are summarized in the table below: 

ML Tool Accuracy Error (MSE) 

Support Vector Machine 91.10 % 4.55 

Random Forests 96.03% 2.02 

XG Boost 95.55% 2.27 

ADABoost 97.09% 1.48 

Light GBM 96.72% 1.67 

It is observed that ADABoost gave the highest accuracy of about 97.09% with minimum MSE 

followed by Light GBM. ADABoost is effective for a wide range of classification problems, 

particularly when there is a class imbalance. The advantage of ADABoost is, it is less prone to 

overfitting. Contrary, it requires careful tuning of hyper parameters, such as the number of weak 

learners and the learning rate. 

LightGBM is particularly used in scenarios with large-scale datasets. It facilitates lower memory 

usage compared to other gradient boosting frameworks and has good accuracy, predictive 

performance as well. 

Random Forests are versatile and perform well on both structured and unstructured data. They are 

particularly effective when dealing with high-dimensional datasets and can handle categorical and 

numerical features effectively. One of its demerits include slower to train and predict compared to 

other algorithms, especially on large datasets. XGBoost, on the other hand, offers superior 

performance and scalability, making it suitable for large-scale applications where speed and 

efficiency are critical. 

Support Vector Machines gave the least accuracy of about 91.10% with maximum MSE. Though 

SVM find applications due to their versatility and effectiveness in classification, regression, and 

anomaly detection tasks, it has several hyperparameters that need to be carefully tuned to achieve 

optimal performance, including the regularization parameter (C) and kernel parameters (e.g., gamma 

for radial basis function kernel). Improper tuning of these parameters can lead to overfitting or 

underfitting, and finding the right set of hyperparameters often requires extensive experimentation 

and cross-validation. 

6. Conclusions 

In this study, comparison of various machine learning tools using support vector machine, random 

forest regression, gradient boosting regression is done with the aim of developing a predictive model 

for self-healing smart concrete. 

It is observed that algorithms have different strengths and weaknesses, making them suitable for 

various types of machine learning tasks. The choice of algorithm depends on factors such as the 

nature of the problem, the characteristics of the data, computational resources, and the desired level 

of interpretability. 
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The results showed that the ADA Boost algorithm performed better in predictions giving 97.09% 

accuracy and with least Mean Squared Error of about 1.485 followed by Light GBM with 96.72% 

accuracy and error of about 1.67. The Support Vector Machine tool gave least accuracy and with 

maximum error considering the parameters in the datasets. 

It can therefore be concluded that ADABoost algorithm can be applied to develop predictive model 

for assessing the performance of self-healing smart concrete.  

7. Conflict of Interest: The author declares no Conflict of Interest. 
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