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1. Introduction

Consider A to be a collection of functions f that are analytic in the open unit disk D, defined
as D ={z:z € C,|z] <1}. An analytic function f belonging to the class A has a Taylor
series expansion that may be expressed in the following form:

F@) =7+ ) adl,(ze D) &
n=2

The class of every functions in A that are univalent in D is indicated by the symbol S. The
Koebe One Quarter Theorem [11] states that for each function £ in class S, the domain D will

contain a disk with a radius of i. Clearly, for any function f in the class S, we have an
inverse function f~1 fulfills f~X(f(z)) =z (z€ D) and f~(f(w)) = W,(|W| < 1o(f),

ro(f) = i) where
gw) =f1w)=w—aw? + (Za% — a3)w3 — (Sag — Saja; + 34)W4 4. 2)

A function f from the class X is deemed to be bi-univalent in the domain D if both f(z) with
f~1(z) are univalent in D.

Several authors [14,17,18,20,28-30] have conducted research on H,(2) for different
categories of functions and have determined its optimal upper limit. The absolute value of the
difference between a; and a, squared, denoted as |a; — a3|, is referred to as the Fekete-Szego
functional H,(1). The functional |a; — ua3| was extended to encompass both real and
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complex values of . Fekete and Szegé calculated the precise estimates of |a; — pa3| for a
class of univalent functions f € S and certain real values of p. This estimate is sometimes
referred to as the functional |a,a, — a3| analogous to H,(2). The Hankel determinant H;(1)
was also investigated by several authors (Refs. [21,27,31,32]). The primary objective of our
research is to study the class C(B, §) in relation to the Hankel determinant H;(1).

Consider the class P of analytic functions p that are normalized by the condition:
p(z) =1+p,z+p,a° + -, Re(p(z)) > 0,7 € D.

In 1976, Noonan and Thomas [22] introduced the q*"* Hankel determinant of £ for n > 1 such
that g = 1 as follows:

a Ay 7 Antg-1
e an
Hy(n) = | ™ ™2 T @ =D.
dntg-1  dntq "t Ani2q-2

For g = 2 and n = 1, it is established that the function H,(1) may be represented as a; — a3.
The second Hankel determinant H,(2) is the absolute value of the expression |a2a4 — a§| for
the classes of bi-starlike and bi-convex ([3,4,5,6,7,8,9,12,23]). Al-Ameedee et al. [1]
examined the second Hankel determinant for particular subclasses of bi-univalent functions.
Furthermore, Atshan et al.[2] examined the Hankel determinant of m-fold symmetric bi-
univalent functions utilising a novel operator. Fekete and Szego [13] investigated the Hankel
determinant of function f as

a @ 2
H,(1) = |az a3| = a,a; — aj.

An earlier investigation was conducted to determine the value of |a; — pa3|, where a; = 1
and u € R. In addition, as an illustration, individuals who have a value of |a3 — ,ua§| can refer

to [15]. The third Hankel determinant and these functions have been examined in the context
of the functional described in [7,10,19,24,25,26,33].

a4 a4 a4
H;()=[22 3 a|, (a;=1) and (n=1,q=3).
a3 aq Aaj

By utilizing the triangle inequality for H;(1), we may deduce
[H; (D) < lazllayas — a3l — lagllay — aa;3] + |as||a; — a3]. 3)
First, some preliminary lemmas.

Lemma 1 ([11]). Let’s consider the class P, which comprises all analytic functions p(z) can
be expressed as

p(z) =1+ Z P, 7%, 4)

Such that Re(p(z)) >0 V7€ D.Thus |p, | <2, Vn =12,
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Lemma 2 ([16]). If a function p belongs to the set P and is defined by equation (4), then
2p, =pi+ (4 —p})x
4py = py +2p, (4 = p})x —py (4 — p1)x* + 2(4 — 1) (1 - X))z
2. Main Results

Definition 1. A function f belonging to the class X is said to be in a class C(B, 9), if it
satisfies the following conditions:

f'@ " (@) "

Re (5a<m+m+ zf (z))) > f, (5)
g’(W) g”(W) nr

Re <6W <g(w) + 77w +wg (W))) > p, (6)

where (0 < <1),§ >0,zweDandg = fL

Theorem 1. Let f(z) be a function given by equation (1), belonging to the class C(B, 6),
where 0 < 8 < 1,8 > 0. Next, we possess

1-B)?116 4
|ayay —a3| < ( 526) m(l -p)*+ 17| ()
Proof. Based on equations (5) and (6), we may deduce
fl@ @ e\ — _
SZL(f(Z) + ) +zf (z)) =p+(1-p)p(2) (8)
and
gw) g"'w) _ _
Sw (g o o T (w)) =B+ (1 - Bqw), 9)

where (0 < <1;p,q€P), z weDand g=f"1.

Given the function a and b, defined on the domain D and mapping to the range D, with
a(0) =b(0) =0,]a(z)| < 1,and |b(w)| < 1, we consider the functions p and q belonging to
the set P,with

1t+a@ . O,
p(z)—l_a(Z)—HZenzt

and

C1+bW) . O,
q(W)—l_—b(M/)—l-FnZlan.

B+ (=Fp@ =1+ ) (1-p)e (10)
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and

B+ (1=Baw) =1+ ) (1= B dw"

(11

Given that f € X has the Maclurian series specified by (1) and that its inverse, g = f~1, can

be represented using the expansion provided by (2), we can observe that

5a<f @) '@

@ F@ T Zf@)

= & + 38a,7 + 6 (14a; — 5a3)z% + 36(13a, — 7aya; + 3a3)7°
+ 5(84as5 — 36aya, — 20a3 + 52a3a; — 17a3)z* + -
and
g'w) g"w)
dw + = +wg'' (w)
<g(W) g9'(w)
= & — 38a,w + §(23a3 — 14a;)w? + 35(—54a3 + 58aja; — 13a,)w>

+ 5(468a,a, + 1003a3 — 1764aya; + 232a% — 84as + 208aja; )w*

It follows from (10) and (11), together with (12) and (13), that
3632 = (1 - ,B)ul'
6(14a3 — 5a§) =(1-P)u,,

35(13a, — 72533 + 3a3) = (1 — B)us,
5(84as — 36a,a, — 20a3 + 52aja; — 17a3) = (1 — By,
and
—36a, = (1 - B)vy,
§(23a3 — 14a3) = (1 — B)v,,
36(—54a3 + 58aja3 — 13a,) = (1 — B)vs,

5(468a,a, + 1003a3 — 1764a,a3 + 232a% — 84as + 208a3a;) = (1 — B)v,.

From (14) and (18), we have

1-Pu == p)v
36 2T 35

It follows that its
u = —vy,
Subtracting (15) from (19) and (16) from (20), we get

_A-pE (1 -pm )
B =952 285
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and

- 4(1 - )%} 4 65(1 — B)?uy(uy — v,) 4 (1—-p)(uz —v3)
¥ 35163 218442 7858 '
Thus, by applying (22), (24) and (25), we find that

(25)

a2 — _ 3 _ _ 4 _ 2 _
Aay —az = 50463 (1 B)?ui(u, —vy) — 11764‘ (1-p)*u 23462 (1= B)ui(uz — v3)
- i (1= P2 =% (26)
Next, according to Lemma 2 and (23), we have
4 —u?
= vy =——(x—y) @7
and
u 4 —uju 4 —u?)u
uz — V3 71 ( Zl)l(x y) ( 41)1(2+y2)
4 —y? ) 5
+—— (A = xDz—- A = lyHwl. (28)

For some x,y, z with w such that |x| < 1, |y| < 1 with [w| < 1.

Since p € P, it follows that the absolute value of |u;| < 2. Assuming u; = u, we can
presume, without any negative impact on the whole analysis, that u belongs to the interval
[0,2]. Thus, by replacing the equations (27) and (28) in equation (26), with the condition that
o= |x|<1land¢ = |y| <1, we obtain

laay —a3| < F; +Fy(0 + &) + F3(0% + &2) + F4(0 4+ §)* = F(0,9),

where
A=-p**(1-p2 1
Fr=Fy(f 0=t < 52 Z>>o
1-B)2%(4—v>)u? /(1 - 1
Fa= Faf ) = 3)9(52 = <(112§)+5_2>20'
1-— 4 —u?
F =m0 = e 1) <o
and
P2 (A — 12)2
Fo=Fy(p )= 2P G0

313652 o

Our objective is to optimize the function F(a,¢) over the closed square [0,1] x [0,1] for
values of u that range from 0 to 2. Given that F; < 0 with F5; + 2F, > 0, we may deduce that

the value of u is between 0 and 2. Additionally, the expression E, ;E; s — (Ec,,g)2 < 0.
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hence, the function E is incapable of possessing a local maximum inside the confines of a
closed square. Now, we examine the highest value of E along the perimeter of a closed
square. When the standard deviation o = 0 with 0 < ¢ < 1, the following condition holds:

E(0,8) =9() = F + Fp + (F3 + Fy)&%
Currently, we will examine the following two examples:

Case 1. The formula F; + F4 = 0 holds. Given the constraints, where 0 < & < 1, and any
constant value of u, where 0 <u < 2, it is clear that

9'(§) =F, + 2(F5 + F4)§ > 0,

The function 9(¢) is monotonically increasing. Hence, when u is a constant number within
the range of [0,2], the highest value of () is obtained when ¢ equals 1, with

maxd(¢) =9(1) =F, +F, + F; +F,.

Case 2. LetF; + F4; < 0.Since 2(F; +F,) + F, >0for 0 <& <1withO <u<?2,itis
clear that 2(F; + F,) + F, < 2(F; + F4,)é + F, < F, and so 9(&) > 0. Therefore, the
maximum of 9(¢) occursat & = 1 suchthat0 < & < 1, we get

F(1,8) = ¢p(&) = (F3 + F)&% + (F, + 2F,)¢ + F; + F, + F3 + Fy.
Therefore, considering the instances of F; + F,, we obtain

Since 9(1) < ¢(1), we get max(F(a,¢)) = F(1,1) on the boundary of square [0,1] x [0,1].
The function G, defined on the open interval (0,1), is given by the following:

G(w) = max(F(0,§)) = F(1,1) = F; + 2F, + 2F; + 4F,.
Now, putting F,, F,, F5 and F, in the function G, we obtain

G = (1-p)*[C+D],

where

C_3 3952 +156

_wt [ -p)? 1]
and

D

B 4—-u)[v> @A-Pu> u N (4 —u?)
2 |78 2526 117~ 392
Through basic computations, it is determined that G(u) has a positive correlation with u.

Therefore, the maximum value of G(u) is achieved when u is equal to 2 and

(1-B)%[ 16 4
5z m(l—ﬁ)2+m.

This evidently completes the proof of the above Theorem.

max §(w) = G(2) =
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Theorem 2. Let f(z) € C(8,6),0 < < 1,6 > 0. Then, we have

laya; — a4l ( )2
(i(l—ﬁ) —1_ﬁ +ll n<u<?
< 3926 62 4 (29)

ﬁ(l_ﬁ)' 0<u<gmn,

where
it \/Cg —12¢;(¢; — ¢3)
B 3(cp —¢2) ’
_a-pa-p? 1
“ =395 52 " af
__a-pa-p 1
S 566 52|

and
C3—ﬁ( - p).

Proof. From (22), (24) and (25), we obtain

9(1 — ,3)311? 39(1 - ,3)2111012 -vy) (A-=pB)(uz—v3)
35163 2184652 B 7865 '

|3233 —ay| =

Lemma 2. States that we may make the assumption, without any limitations, that u belongs
to the interval [0,2]. Here, u; = u, thus for ¢ = |x| < 1 with { = |y| < 1, we obtain

layas — a4l < Jy + Jo(c + ) + Jz(c* + 7)) = J (6, ),

where
7B = ;9'?113 <(1 ;23)2 + %) >0,
TR ) = (1- ﬁ):;l —u?)u <(12;63) N %) >0
and
a8 ) = L= ﬂ(:d_ L (5+1)=o0.

By employing the identical methodology as Theorem 2, we determine that the highest value
is achieved when ¢ equals 1 and ¢ equals 1lin the closed square [0,2],

d(w) = max(J(5, Q) = gy + 2(J, + J3).

By replacing the value of J;, J, and J5 in the function ¢ (u), we obtain
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d() = qud + uu(4 —u?) + ¢3(4 —u?),

where
_a-pa-p 1
“ =395 52 4|
_(1-p) (1—ﬁ)+i
2= 566 | 52
and
1
% ﬁ(l - pB).
We have

d),(u) = 3(C1 - Cz)llz - 2C3u + 4‘C2,
¢" (u) = 6(c; — c2)u — 2cs.

If ¢; — ¢, > 0, then it means that ¢, is greater than c,. Next, we note that the derivative of
¢’ (u) > 0. Thus, the function ¢ (u) exhibits monotonically growing behavior within the
confined interval [0,2]. Therefore, the function ¢(u) attains its greatest value at u = 2, when

8(1-B)[1-p? 1
396 52 4

laja; —ay| < @(2) =
ifc; —¢; <0, let ¢’ (u) = 0, then we receive

3t \/Cg —12¢;(c; — ¢3)
u=n= ,
3(c; — ¢2)

when n < u < 2. As aresult, we find ¢’(u) > 0, indicating that the function on the closed
interval is [0,2]. Thus, the function ¢ (u) gets the maximum value at u = 2, This implies that
the constant ¢(u) is an decreasing function on the closed interval [0,2]. Thus, ¢(u) obtains
the maximum value at u = 0. We accept

2 1
@( = B).

This clearly concludes the demonstration of the aforementioned Theorem.

Theorem 3. Let f(z) € C(B,6), 0 < B < 1,8 > 0. Then, we have

laya; —as| < ¢(0) =

) 1
las —af| < %(1 - B), (30)
4 1

|as] S—%Z (1—ﬁ)z+%(1—ﬁ) (31)

Proof. By using the equation (24) and applying Lemma 1, we derive the result (31).

The definition of what comes after the Fekete-Szegs functional applies to u € C with f €

C(B.6),
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1-p)2u? 1- — v,
NEPRCET, Y, ()

By Lemma 1, we receive
|a; — pag] < _952 a-p2a- u)+—6(1—ﬁ),

When the value of u is equal to 1, the result we acquire is (30).
Theorem 4. Let f(z) € C(8,6),0 < < 1,6 > 0. Then we hold

1- 2
lay| < ( ﬁ) [35152( —ﬁ)z"'m( —ﬁ)‘l'@]' (32)
(1—p)[ 13720 95732 162337
las] = —5 [737153 =B+ 03102 L =B + Tga7gs 1 = A + E]' (33)

Proof. By applying Lemma 1 to the given information in (25), we obtain the result stated in
(32).

By computing the difference between the numbers (21) and (17), we obtain
1688as = 5048a,a, + 252823 + 1568a3a; + 1020823 — 17648aa; + (1 — B) (uy — v4).
By substituting properly (22), (24) and (25), we have

20580 49920
4 T 1 — A3l (u. —
a5 = T7e50a5t L~ A+ 110073658 1~ A) ul(uz V)
(1 —-R)?2 _ B 5
+3931262 (1= B)%uq (us V3)+13171252(1 B)?(uy — vy)
76t s L |
453687 By ul — Tqi1aar 4~ A milw — v,

+Tegs (1~ A (s —va).
By using Lemma 1, we derive equation (33).

Theorem 5. Consider a function f(z) € C(f,6),0 < < 1,8 > 0. Next, we possess

(1- ﬁ)2
:]C.‘]C .7(:2 %( _ﬁ) 4 +.7(37<:4, ’VLSUSZ
H; (D) < (34)
- <u<
KK 1~ 395 ( ﬁ) 0<u< n,
where X, K, K,, K5, K, and » are obtained by equation (31), (7), (32), (33) and (30),
respectively.
Proof. Since
[H3(1)| = a3(aya4 — a3) — az(a; — aya3) + as(az — a3).
By utilizing the triangle inequality, we receive the result (3).
Substituting |a;| < 52 (1-p)? +- (1 -B),
243
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1— )2 4
laay — a3| < ( '8) [117 (1-p)? +m],
(1- B) 65 2
lag| < [35152 A=)+ om5 (1= F) +3_9]'
(1- ﬂ) 13720 95732 162337
las| < [737153 —B’H 2013162 0~ Y+ T8727ss L At 42]

1
|a; — a3 37—5(1—5)

IH3(D)| < las]|aray — a3| — |agllas — aras] + |as||a; — a3],

we obtain (34).

This concludes the demonstration of the aforementioned Theorem.
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Discussion

Our research enhances the comprehensive understanding of bi-univalent functions,
their subclasses, and their prospective applications across several mathematical domains.
The data acquired may provide a basis for subsequent research into the characteristics and
uses of bi-univalent functions and their subclasses. Future research endeavors may
investigate more improvements of the boundaries and analyse other subclasses of bi-
univalent functions to reveal new insights into their properties and potential applications.
This study facilitates a more profound investigation of the intriguing domain of bi-
univalent functions and their significance in mathematics.
onclusions:

This article conducted a thorough examination of the third Hankel determinant H; (1)
for a specific subclass of bi-univalent functions, C(B,6). This subclass holds
considerable significance in multiple mathematical domains, including complex analysis
and geometric function theory. We defined the bi-univalent functions C(8,4§) and
established constraints on the coefficients |a,|. Our findings established the top bounds
for bi-univalent functions within this newly created subclass, specifically for n = 2,3,4
and 5.
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