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Abstract:  

This paper introduces new discoveries on the third Hankel determinant for 

the subclass C(β, δ) of bi-univalent functions in the open unit disk area D. 

The objective of this course is to ascertain the boundaries of the Hankel 

determinant of order 3, represented as H_3 (1). Furthermore, these 

calculations determine new boundaries for the third Hankel determinant 

inside the C(β, δ) family. 
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1. Introduction 

Consider 𝒜 to be a collection of functions 𝑓 that are analytic in the open unit disk 𝒟, defined 

as 𝒟 = {ʐ: ʐ ∈ ℂ, |ʐ| < 1}. An analytic function 𝑓 belonging to the class 𝒜 has a Taylor 

series expansion that may be expressed in the following form: 

                                        𝑓(ʐ) = ʐ +∑ an

∞

n=2

ʐ𝑛 , (ʐ 𝜖 𝒟).                                                                     (1) 

The class of every functions in 𝒜 that are univalent in 𝒟 is indicated by the symbol 𝑆. The 

Koebe One Quarter Theorem [11] states that for each function 𝑓 in class 𝑆, the domain 𝒟 will 

contain a disk with a radius of  
1

4
.  Clearly, for any function  𝑓 in the class 𝑆, we have an 

inverse function  𝑓−1 fulfills 𝑓−1(𝑓(ʐ)) = ʐ, (ʐ ∈ 𝒟) and 𝑓−1(𝑓(𝑤)) = 𝑤, (|𝑤| < 𝑟0(𝑓),

𝑟0(𝑓) ≥
1

4
), where 

 𝑔(𝑤) = 𝑓-1(𝑤) = 𝑤 − a2𝑤
2 + (2a2

2 − a3)𝑤
3 − (5a2

3 − 5a2a3 + a4)𝑤
4 +⋯                       (2)     

A function 𝑓  from the class Σ is deemed to be bi-univalent in the domain 𝒟 if both 𝑓(ʐ) with 

𝑓−1(ʐ) are univalent in 𝒟. 

 Several authors [14,17,18,20,28-30] have conducted research on H2(2) for different 

categories of functions and have determined its optimal upper limit. The absolute value of the 

difference between a3 and a2 squared, denoted as |a3 − a2
2|, is referred to as the Fekete-Szeg𝑜̈ 

functional H2(1). The functional |a3 − 𝜇a2
2| was extended to encompass both real and 
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complex values of μ.  Fekete and Szeg𝑜̈ calculated the precise estimates of |a3 − 𝜇a2
2| for a 

class of univalent functions 𝑓 ∈ 𝑆 and certain real values of μ. This estimate is sometimes 

referred to as the functional |a2a4 − a3
2| analogous to H2(2). The Hankel determinant H3(1) 

was also investigated by several authors (Refs. [21,27,31,32]). The primary objective of our 

research is to study the class C(𝛽, 𝛿) in relation to the Hankel determinant H3(1). 

Consider the class P of analytic functions p that are normalized by the condition: 

p(ʐ) = 1 + p
1
ʐ + p

2
ʐ2 +⋯ ,  Re(p(ʐ)) > 0, ʐ ∈ 𝒟. 

In 1976, Noonan and Thomas [22] introduced the q𝑡ℎ Hankel determinant of f  for n ≥ 1 such 

that q ≥ 1 as follows: 

Hq(n) = |

an an+1
⋯ an+q−1

an+1 an+2   ⋯ an+q         

⋮
an+q-1

⋮
an+q

    
⋮ ⋮

⋯ an+2q−2

| , (a1 = 1). 

For q = 2 and n = 1, it is established that the function  H2(1) may be represented as a3 − a2
2. 

The second Hankel determinant H2(2) is the absolute value of the expression |a2a4 − a3
2| for 

the classes of bi-starlike  and bi-convex ([3,4,5,6,7,8,9,12,23]). Al-Ameedee et al. [1] 

examined the second Hankel determinant for particular subclasses of bi-univalent functions. 

Furthermore, Atshan et al.[2] examined the Hankel determinant of m-fold symmetric bi-

univalent functions utilising a novel operator. Fekete and Szeg𝑜̈ [13] investigated the Hankel 

determinant of function  𝑓 as 

H2(1) = |
a1 a2

a2 a3
| = a1a3 − a2

2. 

An earlier investigation was conducted to determine the value of  |a3 − 𝜇a2
2|, where a1 = 1 

and 𝜇 ∈ ℝ. In addition, as an illustration, individuals who have a value of |a3 − 𝜇a2
2| can refer 

to  [15]. The third Hankel determinant and these functions have been examined in the context 

of the functional described in [7,10,19,24,25,26,33]. 

H3(1)= |

a1 a2 a3

a2 a3 a4

a3 a4 a5

|,   (a1 = 1)  and  (n = 1, q = 3). 

By utilizing the triangle inequality for H3(1), we may deduce 

                      |H3(1)| ≤ |a3||a2a4 − a3
2| − |a4||a4 − a2a3| + |a5||a3 − a2

2|.                                 (3) 

First, some preliminary lemmas. 

Lemma 1 ([11]). Let’s consider the class P, which comprises all analytic functions p(ʐ)  can 

be expressed as 

                                                        p(ʐ) = 1 +∑ p
n

∞

n=1

ʐn,                                                                    (4) 

Such that  Re(p(ʐ)) > 0  ∀ ʐ ∈ 𝒟. Thus |p
n
| ≤ 2,  ∀n = 1,2,⋯. 
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Lemma 2 ([16]).  If a function p belongs to the set P and is defined by equation (4), then 

2p
2
= p

1
2 + (4 − p

1
2)𝑥 

4p
3
= p

1
3 + 2p

1
(4 − p

1
2)x− p

1
(4 − p

1
2)x2 + 2(4 − p

1
2)(1 − |x|2)ʐ. 

2. Main Results 

Definition 1. A function 𝑓  belonging to the class Σ is said to be in a class C(𝛽, 𝛿), if it 
satisfies the following conditions: 

                                  Re(𝛿ʐ (
𝑓′(ʐ)

𝑓(ʐ)
+
𝑓′′(ʐ)

𝑓′(ʐ)
+ ʐ𝑓′′′(ʐ))) > 𝛽,                                                   (5) 

                                 Re(𝛿𝑤 (
𝑔′(𝑤)

𝑔(𝑤)
+
𝑔′′(𝑤)

𝑔′(𝑤)
+ 𝑤𝑔′′′(𝑤))) > 𝛽,                                            (6) 

where (0 < 𝛽 ≤ 1), 𝛿 > 0, ᶎ, 𝑤 ∈ 𝒟 and 𝑔 = 𝑓−1. 

Theorem 1. Let 𝑓(ʐ) be a function given by equation (1), belonging to the class C(𝛽, 𝛿), 
where 0 ≤ 𝛽 < 1, 𝛿 > 0. Next, we possess 

                                |a2a4 − a3
2| ≤

(1 − β)2

𝛿2
[
16

117
(1 − β)2 +

4

117
].                                              (7) 

Proof. Based on equations (5) and (6), we may deduce  

                           𝛿ʐ (
𝑓′(ʐ)

𝑓(ʐ)
+
𝑓′′(ʐ)

𝑓′(ʐ)
+ ʐ𝑓′′′(ʐ)) = 𝛽 + (1 − 𝛽)p(ʐ)                                         (8) 

and 

                          𝛿𝑤 (
𝑔′(𝑤)

𝑔(𝑤)
+
𝑔′′(𝑤)

𝑔′(𝑤)
+ 𝑤𝑔′′′(𝑤)) = 𝛽 + (1 − 𝛽)q(𝑤),                                (9) 

where (0 ≤ 𝛽 < 1; p, q ∈ P), ʐ, 𝑤 ∈ 𝒟 and  𝑔 = 𝑓−1. 

Given the function 𝔞 and 𝔟, defined on the domain 𝒟 and mapping to the range 𝒟, with 

𝔞(0) = 𝔟(0) = 0, |𝔞(ᶎ)| < 1, and |𝔟(𝑤)| < 1, we consider the functions p and q belonging to 

the set P,with  

p(ʐ) =
1 + 𝔞(ʐ)

1 − 𝔞(ʐ)
= 1 +∑ en

∞

n=1

ʐn 

and 

q(𝑤) =
1 + 𝔟(𝑤)

1 − 𝔟(𝑤)
= 1 +∑𝑑n

∞

𝑛=1

𝑤n. 

                                                  𝛽 + (1 − 𝛽)p(ʐ) = 1 +∑(1 − 𝛽)

∞

n=1

enʐ
n                                     (10) 
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and 

                                              𝛽 + (1 − 𝛽)q(𝑤) = 1 +∑(1 − 𝛽)

∞

n=1

𝑑n𝑤
n.                                     (11) 

Given that 𝑓 ∈ Σ has the Maclurian series specified by (1) and that its inverse, 𝑔 = 𝑓−1, can 

be represented using the expansion provided by (2), we can observe that 

𝛿ʐ(
𝑓′(ʐ)

𝑓(ʐ)
+
𝑓′′(ʐ)

𝑓′(ʐ)
+ ʐ𝑓′′′(ʐ))

= 𝛿 + 3𝛿a2ʐ + 𝛿(14a3 − 5a2
2)ʐ2 + 3𝛿(13a4 − 7a2a3 + 3a2

3)ʐ3

+ 𝛿(84a5 − 36a2a4 − 20a3
2 + 52a2

2a3 − 17a2
4)ʐ4 +⋯                                   (12) 

and 

𝛿𝑤 (
𝑔′(𝑤)

𝑔(𝑤)
+
𝑔′′(𝑤)

𝑔′(𝑤)
+ 𝑤𝑔′′′(𝑤))

= 𝛿 − 3δa2𝑤 + 𝛿(23a2
2 − 14a3)𝑤

2 + 3𝛿(−54a2
3 + 58a2a3 − 13a4)𝑤

3

+ 𝛿(468a2a4 + 1003a2
4 − 1764a2a3 + 232a3

2 − 84a5 + 208a2
2a3)𝑤

4

+⋯.                                                                                                                                                      (13) 

It follows from (10) and (11), together with (12) and (13), that 

                                                                3𝛿a2 = (1 − 𝛽)u1,                                                             (14) 

                                                       𝛿(14a3 − 5a2
2) = (1 − 𝛽)u2,                                                    (15) 

                                               3𝛿(13a4 − 7a2a3 + 3a2
3) = (1 − 𝛽)u3,                                          (16) 

                           𝛿(84a5 − 36a2a4 − 20a3
2 + 52a2

2a3 − 17a2
4) = (1 − 𝛽)u4                            (17) 

and 

                                                                 −3𝛿a2 = (1 − 𝛽)v1,                                                           (18) 

                                                    𝛿(23a2
2 − 14a3) = (1 − 𝛽)v2,                                                  (19) 

                                              3𝛿(−54a2
3 + 58a2a3 − 13a4) = (1 − 𝛽)v3,                                    (20) 

       𝛿(468a2a4 + 1003a2
4 − 1764a2a3 + 232a3

2 − 84a5 + 208a2
2a3) = (1 − 𝛽)v4.             (21) 

From (14) and (18), we have 

                                                     
(1 − 𝛽)u1

3𝛿
= a2 =

−(1 − 𝛽)v1

3𝛿
,                                                  (22) 

It follows that its 

                                                                       u1 = −v1,                                                                        (23)  

Subtracting (15) from (19) and (16) from (20), we get 

                                               a3 =
(1 − 𝛽)2u1

2

9𝛿2
+
(1 − 𝛽)(u2 − v2)

28𝛿
                                              (24) 
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and 

                a4 =
4(1 − 𝛽)3u1

3

351𝛿3
+
65(1 − 𝛽)2u1(u2 − v2)

2184𝛿2
+
(1 − 𝛽)(u3 − v3)

78𝛿
.                        (25) 

Thus, by applying (22), (24) and (25), we find that 

a2a4 − a3
2 =

1

504𝛿3
(1 − 𝛽)3u1

2(u2 − v2) −
1

117𝛿4
(1 − 𝛽)4u1

4 +
1

234𝛿2
(1 − 𝛽)2u1(u3 − v3)

−
1

784𝛿2
(1 − 𝛽)2(u2 − v2)

2.                                                                                (26) 

Next, according to Lemma 2 and (23), we have 

                                                        u2 − v2 =
4 − u1

2

2
(x− y)                                                           (27) 

and 

u3 − v3 =
u1

3

2
+
(4 − u1

2)u1

2
(x+ y) −

(4 − u1
2)u1

4
(x2 + y2)

+
4 − u1

2

2
[(1 − |x|2)ʐ − (1 − |y|2)𝑤].                                                                (28) 

For some x,y, ᶎ with w such that |x| ≤ 1, |y| ≤ 1 with |𝑤| ≤ 1.  

Since p ∈ P, it follows that the absolute value of  |u1| ≤ 2. Assuming u1 = u, we can 

presume, without any negative impact on the whole analysis, that u belongs to the interval 
[0,2]. Thus, by replacing the equations (27) and (28) in equation (26), with the condition that  

𝜎 = |x| ≤ 1 and 𝜉 = |y| ≤ 1, we obtain 

|a2a4 − a3
2| ≤ F1 + F2(𝜎 + 𝜉) + F3(𝜎

2 + 𝜉2) + F4(𝜎 + 𝜉)
2 = F(𝜎, 𝜉), 

where 

F1 = F1(𝛽 , u) =
(1 − 𝛽)2u4

117𝛿2
(
(1 − 𝛽)2

𝛿2
+
1

4
) ≥ 0, 

F2 = F2(𝛽 , u) =
(1 − 𝛽)2(4 − u2)u2

9𝛿2
(
(1 − 𝛽)

112𝛿
+
1

52
) ≥ 0, 

F3 = F3(𝛽 , u) =
(1 − 𝛽)2(4 − u2)u

468𝛿2
(
u

2
− 1) ≤ 0 

and 

F4 = F4(𝛽 , u) =
(1 − 𝛽)2(4 − u2)2

3136𝛿2
≥ 0. 

Our objective is to optimize the function F(𝜎, 𝜉) over the closed square [0,1] × [0,1] for 

values of u that range from 0 to 2. Given that  F3 ≤ 0 with F3 + 2F2 ≥ 0, we may deduce that 

the value of u is between 0 and 2. Additionally, the expression  E𝜎,𝜎E𝜉,𝜉 − (E𝜎,𝜉)
2
< 0. 
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hence, the function E is incapable of possessing a local maximum inside the confines of a 

closed square. Now, we examine the highest value of  E along the perimeter of a closed 

square. When the standard deviation  𝜎 = 0 with 0 ≤ 𝜉 ≤ 1, the following condition holds:  

E(0, 𝜉) = 𝜗(𝜉) = F1 + F2𝜉 + (F3 + F4)𝜉
2. 

Currently, we will examine the following two examples: 

Case 1. The formula F3 + F4 ≥ 0  holds. Given the constraints, where  0 ≤ 𝜉 ≤ 1, and any 

constant value of u, where   0 ≤ u < 2, it is clear that 

𝜗′(𝜉) = F2 + 2(F3 + F4)𝜉 > 0, 

The function 𝜗(𝜉) is monotonically increasing. Hence, when u is a constant number within 

the range of [0,2], the highest value of 𝜗(𝜉) is obtained when 𝜉 equals 1, with  

max𝜗(𝜉) = 𝜗(1) = F1 + F2 + F3 + F4. 

Case 2. Let F3 + F4 < 0. Since 2(F3 + F4) + F2 ≥ 0 for  0 < 𝜉 < 1 with 0 < u < 2, it is 

clear that 2(F3 + F4) + F2 < 2(F3 + F4)𝜉 + F2 < F2 and so 𝜗(𝜉) > 0.  Therefore,  the 

maximum of 𝜗(𝜉) occurs at 𝜉 = 1 such that 0 ≤ 𝜉 ≤ 1, we get 

F(1, 𝜉) = 𝜙(𝜉) = (F3 + F4)𝜉
2 + (F2 + 2F4)𝜉 + F1 + F2 + F3 + F4. 

Therefore, considering the instances of   F3 + F4, we obtain 

max𝜙(𝜉) = 𝜙(1) = F1 + 2F2 + 2F3 + 4F4. 

Since 𝜗(1) ≤ 𝜙(1),  we get max(F(𝜎, 𝜉)) = F(1,1) on the boundary of square [0,1] × [0,1]. 

The function 𝒢, defined on the open interval (0,1), is given by the following:  

𝒢(𝑢) = max(F(𝜎, 𝜉)) = F(1,1) = F1 + 2F2 + 2F3 + 4F4. 

Now, putting F1,F2,F3 and F4 in the function 𝒢, we obtain 

𝒢(u) = (1 − 𝛽)2[C+ D], 

where 

C =
u4

3
[
(1 − 𝛽)2

39𝛿2
+

1

156
] 

and 

D =
(4 − u2)

2
[
u2

78
+
(1 − 𝛽)u2

252𝛿
−

u

117
+
(4 − u2)

392
]. 

Through basic computations, it is determined that  𝒢(𝑢) has a positive correlation with u.  

Therefore, the maximum value of 𝒢(u) is achieved when u is equal to 2 and  

max𝒢(u) = 𝒢(2) =
(1 − 𝛽)2

𝛿2
[
16

117
(1 − 𝛽)2 +

4

117
]. 

This evidently completes the proof of the above Theorem. 
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Theorem 2. Let 𝑓(ʐ) ∈ C(𝛽 , 𝛿), 0 ≤ 𝛽 < 1, 𝛿 > 0. Then, we have 

                   |a2a3 − a4|

≤

{
 

 
8

39𝛿
(1 − 𝛽) [

(1 − 𝛽)2

𝛿2
+
1

4
] ,   𝓃 ≤ u ≤ 2

2

39𝛿
(1 − 𝛽),                              0 ≤ u ≤ 𝓃,

                                               (29) 

where 

𝓃 =
𝔠3 ±√𝔠3

2 − 12𝔠2(𝔠1 − 𝔠2)

3(𝔠1 − 𝔠2)
, 

𝔠1 =
(1 − 𝛽)

39𝛿
[
(1 − 𝛽)2

𝛿2
+
1

4
], 

𝔠2 =
(1 − 𝛽)

𝛿
[
(1 − 𝛽)

56𝛿
+
1

52
], 

and 

𝔠3 =
1

78𝛿
(1 − 𝛽). 

Proof. From (22), (24) and (25), we obtain 

|a2a3 − a4| = |
9(1 − 𝛽)3u1

3

351𝛿3
−
39(1 − 𝛽)2u1(u2 − v2)

2184𝛿2
−
(1 − 𝛽)(u3 − v3)

78𝛿
|. 

Lemma 2. States that we may make the assumption, without any limitations, that u belongs 

to the interval [0,2]. Here, u1 = u, thus for 𝜍 = |x| ≤ 1 with  𝜁 = |y| ≤ 1, we obtain 

|a2a3 − a4| ≤ 𝒥1 + 𝒥2(𝜍 + 𝜁) + 𝒥3(𝜍
2 + 𝜁2) = 𝒥(𝜍, 𝜁), 

where 

𝒥1(𝛽 , u) =
(1 − 𝛽)u3

39𝛿
(
(1 − 𝛽)2

𝛿2
+
1

4
) ≥ 0, 

𝒥2(𝛽 , u) =
(1 − 𝛽)(4 − u2)u

4𝛿
(
(1 − 𝛽)

28𝛿
+
1

39
) ≥ 0 

and 

𝒥3(𝛽 , u) =
(1 − 𝛽)(4 − u2)

156𝛿
(
u

2
+ 1) ≥ 0. 

By employing the identical methodology as Theorem 2, we determine that the highest value 

is achieved when  𝜍  equals 1 and  𝜁  equals 1in the closed square [0,2], 

𝜙(u) = max(𝒥(𝜍, 𝜁)) = 𝒥1 + 2(𝒥2 + 𝒥3). 

By replacing the value of 𝒥1, 𝒥2 and 𝒥3 in the function 𝜙(u), we obtain 
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𝜙(u) = 𝔠1u3 + 𝔠2u(4 − u2) + 𝔠3(4 − u2), 

where 

𝔠1 =
(1 − 𝛽)

39𝛿
[
(1 − 𝛽)2

𝛿2
+
1

4
], 

𝔠2 =
(1 − 𝛽)

𝛿
[
(1 − 𝛽)

56𝛿
+
1

52
] 

and 

𝔠3 =
1

78𝛿
(1 − 𝛽). 

We have 

𝜙′(u) = 3(𝔠1 − 𝔠2)u
2 − 2𝔠3u+ 4𝔠2, 

𝜙′′(u) = 6(𝔠1 − 𝔠2)u− 2𝔠3. 

If 𝔠1 − 𝔠2 > 0, then it means that 𝔠1 is greater than 𝔠2. Next, we note that the derivative of  

𝜙′(u) > 0. Thus, the function 𝜙(u) exhibits monotonically growing behavior within the 

confined interval [0,2]. Therefore, the function 𝜙(u) attains its greatest value at u = 2, when 

|a2a3 − a4| ≤ 𝜙(2) =
8(1 − 𝛽)

39𝛿
[
(1 − 𝛽)2

𝛿2
+
1

4
], 

if 𝔠1 − 𝔠2 < 0, let 𝜙′(u) = 0, then we receive 

u = 𝓃 =
𝔠3 ±√𝔠3

2 − 12𝔠2(𝔠1 − 𝔠2)

3(𝔠1 − 𝔠2)
, 

when 𝓃 < u ≤ 2. As a result, we find  𝜙′(u) > 0, indicating that the function on the closed 

interval is [0,2]. Thus, the function 𝜙(u) gets the maximum value at u = 2, This implies that 

the constant  𝜙(u) is an decreasing function on the closed interval [0,2]. Thus, 𝜙(u) obtains 

the maximum value at u = 0. We accept 

|a2a3 − a4| ≤ 𝜙(0) =
2

39𝛿
(1 − 𝛽). 

This clearly concludes the demonstration of the aforementioned Theorem. 

Theorem 3. Let 𝑓(ʐ) ∈ C(𝛽 , 𝛿), 0 ≤ 𝛽 < 1, 𝛿 > 0. Then, we have 

                                                   |a3 − a2
2| ≤

1

7𝛿
(1 − 𝛽),                                                                  (30) 

                                   |a3| ≤
4

9𝛿2
(1 − 𝛽)2 +

1

7δ
(1 − 𝛽)                                                                (31) 

Proof. By using the equation (24) and applying Lemma 1, we derive the result (31). 

The definition of what comes after the Fekete-Szeg𝑜̈  functional applies to 𝜇 ∈ ℂ with 𝑓 ∈
C(𝛽 , 𝛿),  
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a3 − 𝜇a2
2 =

(1 − 𝛽)2u1
2

9𝛿2
(1 − 𝜇) +

(1 − 𝛽)(u2 − v2)

28𝛿
. 

By Lemma 1, we receive 

|a3 − 𝜇a2
2| ≤

4

9𝛿2
(1 − 𝛽)2(1 − 𝜇) +

1

7𝛿
(1 − 𝛽), 

When the value of  𝜇 is equal to 1, the result we acquire is (30). 

Theorem 4. Let 𝑓(ʐ) ∈ C(𝛽 , 𝛿), 0 ≤ 𝛽 < 1, 𝛿 > 0. Then we hold 

                     |a4| ≤
(1 − 𝛽)

𝛿
[
32

351𝛿2
(1 − 𝛽)2 +

65

273𝛿
(1 − 𝛽) +

2

39
],                                   (32) 

 |a5| ≤
(1 − 𝛽)

𝛿
[
13720

7371𝛿3
(1 − 𝛽)3 +

95732

40131𝛿2
(1 − 𝛽)2 +

162337

187278𝛿
(1 − 𝛽) +

1

42
].     (33) 

Proof. By applying Lemma 1 to the given information in (25), we obtain the result stated in 

(32). 

By computing the difference between the numbers (21) and (17), we obtain 

168𝛿a5 = 504𝛿a2a4 + 252𝛿a3
2 + 156𝛿a2

2a3 + 1020𝛿a2
4 − 1764𝛿a2a3 + (1 − 𝛽)(u4 − v4). 

By substituting properly (22), (24) and (25), we have 

a5 =
20580

176904𝛿4
(1 − 𝛽)4u1

4 +
49920

1100736𝛿3
(1 − 𝛽)3u1

2(u2 − v2)

+
504

39312𝛿2
(1 − β)2u1(u3 − v3) +

252

131712𝛿2
(1 − 𝛽)2(u2 − v2)

2

−
1764

4536𝛿3
(1 − 𝛽)3u1

3 −
1764

14112𝛿2
(1 − 𝛽)2u1(u2 − v2)

+
1

168𝛿
(1 − 𝛽)(u4 − v4). 

By using Lemma 1, we derive equation (33). 

Theorem 5. Consider a function 𝑓(ʐ) ∈ C(𝛽 , 𝛿) , 0 ≤ 𝛽 < 1, 𝛿 > 0. Next, we possess 

|H3(1)| ≤

{
 

 

 
𝒦𝒦1 −𝒦2 (

8

39𝛿
(1 − 𝛽) [

(1 − 𝛽)2

𝛿2
+
1

4
]) +𝒦3𝒦4,     𝓃 ≤ u ≤ 2

𝒦𝒦1 −
2

39𝛿
(1 − 𝛽),                                                                  0 ≤ u ≤ 𝓃,

          (34) 

where 𝒦,𝒦1, 𝒦2, 𝒦3, 𝒦4 and 𝓃 are obtained by equation (31), (7), (32), (33) and (30), 

respectively. 

Proof. Since 

|H3(1)| = a3(a2a4 − a3
2) − a4(a4 − a2a3) + a5(a3 − a2

2).  

By utilizing the triangle inequality, we receive the result (3). 

Substituting |a3| ≤
4

9𝛿2
(1 − 𝛽)2 +

1

7δ
(1 − 𝛽), 
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|a2a4 − a3
2| ≤

(1 − 𝛽)2

𝛿2
[
16

117
(1 − 𝛽)2 +

4

117
], 

|a4| ≤
(1 − 𝛽)

𝛿
[
32

351𝛿2
(1 − 𝛽)2 +

65

273𝛿
(1 − 𝛽) +

2

39
], 

|a5| ≤
(1 − 𝛽)

𝛿
[
13720

7371𝛿3
(1 − 𝛽)3 +

95732

40131𝛿2
(1 − 𝛽)2 +

162337

187278𝛿
(1 − 𝛽) +

1

42
] 

and 

|a3 − a2
2| ≤

1

7𝛿
(1 − 𝛽) 

in 

|H3(1)| ≤ |a3||a2a4 − a3
2| − |a4||a4 − a2a3| + |a5||a3 − a2

2|, 

we obtain (34). 

This concludes the demonstration of the aforementioned Theorem. 

3. Discussion 

     Our research enhances the comprehensive understanding of bi-univalent functions, 

their subclasses, and their prospective applications across several mathematical domains. 

The data acquired may provide a basis for subsequent research into the characteristics and 

uses of bi-univalent functions and their subclasses. Future research endeavors may 

investigate more improvements of the boundaries and analyse other subclasses of bi-

univalent functions to reveal new insights into their properties and potential applications. 

This study facilitates a more profound investigation of the intriguing domain of bi-

univalent functions and their significance in mathematics. 

4.Conclusions: 

     This article conducted a thorough examination of the third Hankel determinant H3(1) 

for a specific subclass of bi-univalent functions, C(𝛽, 𝛿). This subclass holds 

considerable significance in multiple mathematical domains, including complex analysis 

and geometric function theory. We defined the bi-univalent functions C(𝛽, 𝛿) and 

established constraints on the coefficients |𝑎𝑛|. Our findings established the top bounds 

for bi-univalent functions within this newly created subclass, specifically for 𝑛 = 2,3,4 

and 5. 
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