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1. Introduction

Partial differential equations (PDE) represented a special case of ordinary differential equations, with
multiple partial derivatives of unknown variables. PDE degree is identified via the highest derivative
that appears in operator equation. Using a mathematical approach that could solve PDE concludes a
function converts to identity when substituted into the operator equation. PDESs have been applied in
various scientific fields, which yield from their ability to express physical problems in a mathematical
model that can be manipulated and solved by some mathematical approach [1-3,16-18].

The significance of PDEs necessitated applying the most effective mathematical approaches for their
solution [4-7]. Integral technique’s ability to transform problems from one domain to another to
simplify their solution has positioned them as a priority in the domain of PDE solution. Authors have
proposed numerous integral transforms to find the exact solution of PDEs; every proposed technique
has particular cases where it shines [8-14]. The substantial field of partial operator differential
equations, on the other hand, has not yet benefited from the revolutionary AEM- integral transform.

The AEM technique is applied in this paper to find the solution of first and second order partial operator
differential equations, as well as practical applications of differential equations, which are regarded
important in the mathematical physical field.

1. Fundamental Properties of AEM Transform [15]
AEM transform of u(x, t) denoted by E(x, H(a),p(a)) is given by:

AEM (u(x,t)) = H(a) J t~P@+y (x, t)dt = E(x, H(a), P(a)) .
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Where x , t are variables and H(a), p(a) are functions of parameter «a.
1.1  AEM Transform Existence

AEM technique is considered to exist for sufficiently large parameter «, providing the integral:
H(a) ftofl t~ @@+ (x, )dt = lim ftrfl t~ @@+ (x, )dt .

= ol Je=
Criteria for Convergence (1)

AEM transform for the function u(x, t) exist, if it has exponential order and flmlu(x, t)|dt exist for
any m > 0.

Since the convergence is needed to be proven only for sufficient large parameter «, then it is going to
be assumed that p(a) > c and p(a) > 0.

H(a) f|t‘(p(“)+1)u(x, t)|dt =H(a)

t=1

n [0e]
f|t‘(p(“)+1)u(x, t)|de + f |t~ Pty (x, t)ldt],
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n

< H(a)

n
flu(x, t)|dt +
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= H(a) |[] luCx,t)|dt + M
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t—(p(a)—c(a))+1 ool

Forp(a) >c
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Jlu(x, Hldt+ M
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n-P@-c(@)+1
—(p(a) - c(a)) +1

The first integral exists by assumption, and the second term is finite p(a) > c.

= H(a)

The integralH (a) [, t~®P@*Dy(x, t)dt, converges absolutely and AEM{u(x, t)} exists.

Criteria for Convergence (11)

To satisfy criterion (1), AEM{u(x, t)} exists if:

u(x, t) is of exponential order and on the closed interval [1, m].

u(x, t) Is a bounded, piecewise, continuous and have a finite number of discontinuous requirements
implying that ;| £ () dt.

Where F(p) » 0asp — oo.
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Assuming u(x, t) satisfy criterion (1), which implies F(p) = AEM{u(x, t)} will exist if p > s for
some s.

Fp() = [H(a) [,_, t " P@+Dy(x, dt| < [[°|H(@)t=P@+Dy(x, 1)|dt = G(p) p -
o, H(a)t~®@+D 0 Fort > 1.
1.2 AEM Transform Uniqueness

Assume that the functions f and g are exponential type b, piecewise and continuous on [1, ). If
AEM{f (x,t)} = AEM{g(x,t)} whens > b, then f(x,t) = g(x,t) for all t greater than or equal one.

1.3 The Inverse of AEM Transform [15]
The inverse of AEM technique of E(x, H(a), P(a)) denoted by (AEM)~! and defined as:

(AEM)_l (AEM(u(x, t))) =u(x,t) = 1 (S+ie t@@+1)

2mi“6—ic  H(a)

E(x, H(a), P(a))da .

In general, u = 6§ + ie with § and ¢ being real numbers,i € C. The integral converges when
Re(P(a)) =6 >0.And§ < 0, E(x, H(a),P(a)) = 0.
14 Properties of AEM transform [15]
Theorem (2.4.1). (Linearity): If u(x,t) = Cuy(x,t) + Du,(x,t),where C and D are constants then
AEM(Cuy (x,t) + Duy(x, ) = CH(a) [, t=®P@+ Dy, (x, 6)dt + DH(a) [, t~P@+Duy, (x, D)dt,
= C AEM(uy(x,t)) + D AEM (u,(x,t)).
Table (2.4.1) [15]

u(t) E(H(a),P(a))
K , constant K H(a)
p(a)
t™,m=1,23, .. H(a)
pla) —m
In(t) H(a)
(@)’
t™ In(t) H(a)
(p(a) —m)?
sin(aln(t)) , a constsnt aH(a)
(p(@)” + a2
cos(aln(t)) p(a)H(a)
(p(@)” + a2
sinh(aln (t)) aH(a)
(p(@)" - a?
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Theorem (2.4.2): AEM((In(t))™) =

= H(a) | (In(£)™ —

cosh(aln(t)) p(a)H(a)
(p(@)" - a?
mH(ﬁil ,Wherem = 1,2,3 ..
(p(@)
Proof: By the definition AEM ((In(t))™) = H(a) floo(]n(t))mt—(p(a)+1)dt
-p(a) |” -(p()+1)
@ f m(In(t))™ ! m—on) dt

H (a)

((—f(ln(t))m 1¢- (p(a)+1)dt )

= AEM((ln(t))m D,

=m(m—1)

)zj(ln(t))m_zt—(p(a)ﬂ)dt,
1

=m(m-1)(m-2).. 4ﬁj (In(t))3¢t~P@+D gt
(p(@
_ H(a) g~p@|® t—@@+1)
= m(m = 1)(m - 2) .4 =0 (@) S| - [ 30n@)*
= m(m — D)(m —2) .. 43—"9__ [*(In(£)2t~P@+D gt = m(m — 1)(m — 2) ... 4.3 L")
(p(@) 1 (r(@)
_ H(a) 2t~ t~ (p(a)+1)
= m(m = 1)(m - 2) .43 0= n(0)? 5]~ [ 2In(0)
H(a)
= - —2)..43. 1 ~(p(@+1)g
m(m—1)(m—2) 432(}9(0!))"1-1[ n(t)t t
H(a)
=m(m—-—1)(m—2)..4.3.2 —T
(p(®)
B m! H(a)
(p(a))m+1 :
Theorem (2.4.3) [15]: If  AEM(u(x,t)) = E(x,H(a),p(«)) , then AEM(t™u(x,t)) =
E(x,H(a),p(a) —m).
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Proof: By the definition, we have:
AEM(t™u(x, D) = H(@) f @D my(x Dde = H(a) f @D My (o Ot
1 1

= H(a) [ t~(@@-m+ )y (x, )dt = E(x, H(a), p(a) — m).
2. AEM Transform of derivatives of u(x, t)
(1) AEM(tu,(x,0) = H(a) [t~ P@ Dty (x, )dt |

[0e]

tP@yu(x, )| = | ulx,t). —p(a)t~P@+D gt
1
1

= H(a)

)

= H(@)[—u(x, 1) + p(a) [,” ulx, ).t~ P@Dqt] = —H(@)u(x, 1) +
p(@E(x, H(a), p(a)).

(2)  AEM(t?uy(x,0) = H(a) [, t=P@D ¢2y, (x,)dt = H(a) [, t " P@ Dy, (x,0)dt,
= H(a) [t_(p(“)_l)ut(x, O = [ u(x,0).—(p(@) - DeP@ dt],
= —H(@u(x, 1) — (p(a) = DH(@u(x,t) + p(@)(p(a) — DE(x, H(a),p(a)) .
2.1  Theorem: Let u(x, t) be continuous on (1, o) and if u;, us, ...,ugm) exist, then
AEM[t™u™ (x,6)| = =H(@)u{™ P (x, 1) — H(@)(p(@) — (m = 1))u{™ 2 (x, 1) - -

—H(@)(p(@) = (m = D)(p(a) — (n — 2)) ... (p(@) = Dulx, 1) + pa)(p(a) - 1) ..
(p(@) = (m = 1D)E(x, H(a), p(a)).

Proof:

By mathematical induction

o fm=1

AEM (tu,(x,t)) = H(a) f t~®P@O+Dy (x, t)dt,
1

o)

t P @y, )| — | ulx, ). —p(a)t=®P@+D gt|,
1
1

= H(a)

= H(a)

—u(x, 1) + p(a)f u(x, t).t‘(p(“)“)dt]
1

= —H(@)u(x, 1) + p(@)E(x, H(@), p(a)).
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J True for m

AEM[t™u™ (x,6)| = —H()u{™ P (x,1) — H(@) (p(@) — (m = 1))u{™ 2 (x, 1) - -
~H(a)(p(a) = (m = D)(p(a) — (n = 2)) ... (p(a) — Dux, 1) + pa)(pla) - 1) ..
(p(@) = (m = D)E(x, H(@), p(@)).

) Is it True for (m+1)?

AEM [tm+1u§m+1) (x, t)] = H(a) [ t~@@+Dgm+1, D (g,

= H(a) j £~ @@-my M+ (o 1yqp,
1

oo

£~ @@=m)y, (M) (. t)| + f u™ (x,t). (p(a) — m)t~(@@-m-1) gt
1
1

= —H(@)u{™(x, 1) + (p(@) - m)AEM (t"u{™ (x, 1)),

= H(a)

= —H(@)u™(x,1)
+ (p(@) = m)|=H(@u{™ P (x, 1) — H(@)(p(@) — (m = 1))u™ > (x, 1)
— H(@)(p(a) — m — D) (p(a) — (mn — 2))u™ P (x, 1) — -
+p(@)(p(@) = D@P@) - 2) .. (p(@) = (m — D)E(x, H(a), p(a))],

= —H(@)u™ (x,1) = (p(@) — m)H(@)u™ " (x,1) — H(a) (p(a) — m)(p(a) — (m —
1))u§m_2)(x; 1) — H@)(p(a) — m)(p(a) — (m — 1)) (p(a) — (m — 2))u§m‘3) (x,1) — -+
p(a)(p(a) — D (p(a) = 2) ... (p(@) = (m — 1)) (p(a) — M)E (x, H(a), p(a)).

2.2  Examples of Applying AEM transform on partial differential equations with variable
coefficients

Problem (3.2.1): Consider the following partially differential equation:
t2u,(x, t) + tus(x, t) + 2u(x, t) = t 1 In(t).
With initial conditions (x,1) = 10,u.(x,1) = —1. (3.2.1)
By Applying AEM transform on equation (3.2.1), we obtain
AEM (t%ug (x,8)) + AEM (tue(x, 1)) + 2AEM (u(x, t)) = AEM(t~* In(t))

—H(@)u,(x,1) — H(@)(p(a) — Du(x,1) + p(a)(p(a) — DE(x, H(a),p(a)) — H(@)u(x, 1)

+ p(a)E(x, H(a), p(a)) + ZE(x, H(a), p(a))
H(a)

= o@D (3.2.2)
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And by applying the initial condition and simplify equation (3.2.2)

E(x, H(a), p(a)) =

H(a) ___H@ 10H(a)p(a)
(P(@+1D2((@)?+2)  @@)?+2)  (P(@)?+2)

After using partial fraction of the last equation, we get

E(x,H(a),p(a))
2/9 3/9 2/9 p(a) 1 1 1
C@+D (@ +1) @@?+2) G @+ G o
N 10p(a)
(p(@)? +2)
By applying the inverse of AEM transform to equation (3.2.3), we require

u(x,t) = (2/9)t'1 + (3/9)t‘1 Int + 8798cos (V2Int) — %sin (v2Int).

= H(a) .(3.2.3)

Problem (3.2.2): Consider the following partially differential equation:
2tu,(x,t) — 7u(x, t) = x? sin(In(t)).
With initial condition u(x,1) = —3. (3.2.4)
By Applying AEM transform on equation (3.2.4), we obtain:
AEM (2tu,(x,t)) — 7AEM (u(x,t)) = AEM (x%sinIn(t)).
x*H(a)
(p(a))2 + 1) .

—2H(a)u(x,1) + Zp(a)E(x,H(a),p(a)) - 7E(x, H(a),p(a)) = ( (3.2.5)

Via applying the initial condition and simplify equation (3.2.5):

x%H(ar) __6H()
(p(a))2+1)(2p(a)—7) @p(a)-7)

E(x,H(a),p(a)) = (

After using partial fraction and simplify the last equation, we get:

E(x,H(a),p(@)) =

__2 p(a) _ l 1 +i 1 ~ 6H ()

>3 ((P(a))z + 1) 53 ((p(a))z + 1) 53 (2p(a) = 7) Cpla)=7)

By applying the inverse of AEM transform to equation (3.2.6), that is:

x2H(a) (3.2.6)

2
u(x, t) = (_2/53)3(2 cos(In(t)) — (7/53)x2 sin(int) + Zsigt7/2 — 3t/

3. Conclusion

The AEM integral technique has been used to evaluate the exact solution of partial operator differential
equations. The proofs that accompanied using the AEM technique to partial differential operator
equations and the solution of a practical example solidify the AEM transform's ability to efficiency
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handle and provide the solution to the PDEs, making it a strong competitor to other integral transforms
in solving partial differential operator equations.
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