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Abstract 

Parallel processing is a key way to get good speed on difficult computer jobs 

thanks to how quickly computer technology is improving. Multistage 

Interconnection Networks (MINs) are very important in this situation 

because they make it easy for multiple working elements in parallel 

computer systems to share data and work together. The focus of this study is 

on how parallel methods can be used in MINs, with a focus on how these 

networks make it possible for nodes to communicate and process data 

quickly. We look at the layout and design of MINs and talk about how well 

they can handle apps that use a lot of data by spreading out work. We look at 

some of the most important parallel algorithms, like matrix multiplication, 

sorting, and Fast Fourier Transform (FFT), to show how they use the unique 

features of MINs to make computations faster and more flexible. The study 

also looks into the problems that come up when you try to use parallel 

methods, such as delay, timing issues, and load balance. It also talks about 

ways to deal with these problems, like route algorithms, timing methods, and 

fault-tolerant systems. The study shows how important parallel processing is 

for making high-performance computer systems work better. This helps 

make progress in areas like science models, big data analytics, and artificial 

intelligence. Through looking at how parallel algorithms and MINs work 

together, this study shows how parallel processing can speed up complicated 

calculations and make systems more efficient, leading to more advanced and 

scalable computing solutions. 

Keywords: Parallel Processing, Multistage Interconnection Networks 

(MINs), Parallel Algorithms, Data Communication, Computational 

Efficiency. 

 

 

I. Introduction 

Parallel processing has become a lot more popular as a way to solve hard computational problems as 

the need for high-performance computers grows in science, engineering, and business. Parallel 

processing lets several processes happen at the same time, which greatly cuts down on running time 

and improves the general efficiency of the system. Multistage Interconnection Networks (MINs) are 

the building blocks of efficient parallel processing. They allow processing elements to talk to each 

other very quickly. As algorithms get more complicated and more data needs to be processed, MINs 

are becoming more and more important for making parallel algorithms work well. This article goes 

into detail about how MINs help make parallel processing work well. It looks at how their design 

supports high-performance computing by making sure fast data flow, load balancing, and fault 

tolerance [1]. There are many organized networks that link many computers and memory units by 
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moving between them. They provide an easy, scalable, and low-cost way for computers to share data 

in parallel settings. This makes them perfect for many uses, from science models to big data 

analytics. The fact that MINs can handle many data transfer requests at the same time makes it 

possible for parallel algorithms that need to share and talk about a lot of data to run quickly [2]. 

When doing complicated calculations like matrix multiplication, sorting, and Fast Fourier Transform 

(FFT), this trait is very important because data relationships and communication between processes 

can have a big effect on total speed. In parallel computer [3] systems, MINs help reduce delay, avoid 

bottlenecks, and increase speed by setting up a clear path for data to move. 

When simultaneous algorithms are used with MINs, they create their own hurdles and possibilities. 

Making sure that data bits are routed efficiently across the network is one of the biggest problems. 

This is important for keeping delay low and network congestion to a minimum. To make parallel 

methods work as well as possible, problems like load sharing, timing, and fault tolerance must also 

be fixed [4]. By making sure that all working parts share the work equally, load balancing keeps any 

one point from becoming a problem. When you synchronize, on the other hand, all the parts of the 

processing work together, making sure that the data stays consistent and makes sense throughout the 

computing process. It's also important that the system can keep working well even if some hardware 

fails. This is especially important in settings with a lot of computers working together at the same 

time. These applications can use parallelism to speed up computations that would take too long to do 

using standard linear processing methods because MINs provide the necessary framework. The way 

that MINs are connected is meant to make high-bandwidth data exchanges possible [5]. This means 

that parallel programs can run with little delay, even when they have to deal with a lot of data. In 

fields like climate modeling, genetics, financial modeling, and fluid dynamics, being able to quickly 

handle huge datasets is essential for finding new information and making important discoveries. By 

looking into parallel algorithms in the context of MINs, we can get around the problems that regular 

computer systems have, like not being able to handle large amounts of data or slowdowns in 

performance. By using the simultaneous working features that MINs provide, computer systems can 

reach new levels of speed, flexibility, and scale. In this age of "big data," where the amount, speed, 

and range of data keep growing at an exponential rate, this is especially important. Parallel 

algorithms built into MINs can handle data streams in real time, which helps people make decisions 

faster and gives them useful information that drives innovation across all fields. Combining parallel 

methods with Multistage Interconnection Networks is a revolutionary way to do high-performance 

computing. This paper aims to give a full look at how MINs can be used to improve parallel 

processing by looking at the building design, mathematical methods, and problems that need to be 

solved in order to use parallelism to its fullest. This study looks at the complicated connection 

between parallel algorithms and MINs to show how important parallel processing is for meeting the 

computing needs of modern applications and, in the end, making computing systems that are more 

efficient and scalable. 

II. Related Work 

A lot of study has been done in the high-performance computer field for decades on how to apply 

algorithms in parallel and what role parallel processing plays in Multistage Interconnection Networks 

(MINs). As computing jobs get harder and require more data, many studies have been done on 

different parts of parallel algorithms and MIN structures to make them more efficient, scalable, and 

fault-tolerant [6]. This part talks about the important things that experts have done in this area, 

focusing on the main results, methods, and trends that have shaped the growth of parallel processing 

systems in MINs. Parallel methods for sorting, matrix multiplication, and Fast Fourier Transform 

(FFT) processes were studied early on and were one of the first things to add to this field. Many 

science and technical tasks depend on these methods, and they are also used to measure how well 
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parallel computer systems work. A lot of research has shown that MINs can be used with multiple 

methods to make computations much faster [7]. These algorithms [8] work best when they can 

communicate in the ways that the MIN design allows. This shows how important it is to have a 

network that is optimized to reduce delay and increase data flow. These early studies paved the way 

for later studies that worked on making more advanced parallel algorithms that could fully take 

advantage of the parallelism that MINs give. 

Another area [9] that has seen a lot of study is the creation of effective route methods for MINs. 

Parallel processing systems became easier to scale, but it became harder to keep track of how data 

was being sent and received at different points in the network. Researchers came up with dynamic 

routing methods that can change to different types of network traffic. This keeps data packets from 

colliding and makes sure that data flows smoothly across the network. It was found that these 

dynamic route methods cut down on communication delays and improved system performance 

overall, especially in situations with a lot of simultaneous processing. Adaptive routing methods 

made fault tolerance even better by letting MINs keep working well even when switches or links are 

broken. This is very important for keeping high reliability in real-world applications. Along with 

route methods, load balancing has become an important part of making parallel processing work best 

in MINs. Studies [10] have shown that speed problems can happen when computing tasks aren't 

spread out evenly among working parts. To solve this problem, load balance methods were created 

that make sure that no single working element gets too busy by distributing tasks among them based 

on how much work they already have. These methods are very helpful for making the best use of 

resources and getting the most out of MINs' parallel processing abilities. This is especially true in 

situations where a lot of data needs to be processed, like in weather forecasting and molecular 

dynamics simulations. 

In the setting of MINs, fault tolerance and dependability have also gotten a lot of attention. Because 

these networks are so important to high-performance computers, making sure they can handle 

hardware breakdowns is very important. Many fault-tolerant methods, like multiple route lines and 

error-correction systems, have been looked into to make MINs more reliable [11]. It has been shown 

that adding redundancy to the design of a network makes it much better at handling breakdowns 

without affecting speed. These fault-tolerant techniques have been improved over the years. More 

recent studies have looked into machine learning-based methods to predict and prevent breakdowns 

in real time, which makes parallel processing systems more reliable and last longer. A look at the 

role of MINs in high-performance computing from a design point of view has also been done. 

Various MIN designs, including the Omega network, the Banyan network, and the Butterfly network, 

have been studied to find out their pros and cons when it comes to allowing parallel algorithms. 

There have been in-depth analyses of these network designs, looking at how well they work in terms 

of growth, fault tolerance, and communication speed [12]. This comparison study was very helpful in 

designing and building more advanced MIN frameworks with better performance, which has led to 

the creation of more efficient parallel processing systems. 

Parallel algorithms and MINs are being studied more because of new uses like real-time data 

processing, machine learning, and big data analytics. These applications need a huge amount of 

computing power and the ability to handle a lot of data. This makes the role of MINs even more 

important for making parallel processing work well. Parallel algorithms have been studied as a way 

to handle big datasets, and it has been shown that MINs can greatly speed up data processing tasks, 

allowing for faster insights and decisions. Studies have shown that running machine learning 

algorithms like k-means clustering and neural network training in parallel on MINs can make them 

much faster. This makes them better for real-time analytics and predictive modeling. The wide range 

of topics covered in linked research on MINs and parallel algorithm implementation shows how 
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complex this area of study is. Contributions range from basic research on designing parallel 

algorithms to more in-depth studies of routing, load sharing, fault tolerance, and building 

improvements. By combining these parts, highly effective and dependable parallel processing 

systems have been created that can handle the needs of current computing jobs. Parallel algorithms 

are always getting better, and MIN architectures are getting better too. This means that high-

performance computing systems will be even more useful for dealing with the problems that come up 

with applications that are getting more complicated and use a lot of data. 

Table 1: Summary of relate work 

Algorithm 

Focus 

MIN 

Architecture 

Routing 

Technique 

Load 

Balancing 

Strategy 

Fault 

Tolerance 

Application 

Area 

Matrix 

Multiplication 

[13] 

Omega 

Network 

Static 

Routing 

Static 

Distribution 

No Fault 

Tolerance 

Scientific 

Simulations 

Sorting 

Algorithms [14] 

Butterfly 

Network 

Dynamic 

Routing 

Dynamic 

Load 

Balancing 

Limited 

Redundancy 

Data 

Sorting/Analytics 

FFT (Fast 

Fourier 

Transform) [15] 

Banyan 

Network 

Adaptive 

Routing 

Dynamic 

Task 

Allocation 

Error 

Correction 

Signal Processing 

Graph Traversal 

[16] 

Omega 

Network 

Static 

Routing 

Static Task 

Distribution 

No Fault 

Tolerance 

Network Analysis 

k-Means 

Clustering [11] 

Butterfly 

Network 

Dynamic 

Routing 

Dynamic 

Load 

Balancing 

Partial 

Redundancy 

Machine 

Learning 

Neural Network 

Training [17] 

Multistage 

Cube 

Adaptive 

Routing 

Dynamic 

Task 

Allocation 

Real-Time 

Error 

Detection 

Deep Learning 

Sorting 

Networks [18] 

Benes 

Network 

Static 

Routing 

Static 

Distribution 

Limited Fault 

Tolerance 

Real-Time 

Sorting 

Convolution 

Operations [19] 

Banyan 

Network 

Adaptive 

Routing 

Load 

Balancing 

Algorithms 

Redundant 

Links 

Image Processing 

Matrix 

Inversion [20] 

Omega 

Network 

Static 

Routing 

Dynamic 

Distribution 

Real-Time 

Error 

Correction 

Linear Algebra 

Data Shuffling 

[21] 

Butterfly 

Network 

Dynamic 

Routing 

Dynamic 

Load 

Balancing 

Fault-Tolerant 

Switching 

Big Data 

Analytics 

Sparse Matrix 

Computation 

[22] 

Benes 

Network 

Adaptive 

Routing 

Dynamic 

Task 

Allocation 

Partial Fault 

Tolerance 

Scientific 

Computing 

Parallel Search 

Algorithms [23] 

Banyan 

Network 

Adaptive 

Routing 

Load 

Balancing 

Algorithms 

Fault 

Detection 

Mechanisms 

Database Search 
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III. Multistage Interconnection Networks (MINs) 

A. MIN Architecture: 

Multistage Interconnection Networks (MINs) are complicated, architecture shown in figure 1, multi-

layered communication networks that make it easier for parallel computer systems to send and 

receive data between multiple processors and memory units. MINs are made up of many stages with 

switching elements that are all linked to each other. These stages are usually set up in a number of 

layers that make paths for data to move from inputs to outputs. At each stage of the network, there 

are small, basic switches that can connect one input to multiple outputs or the other way around. This 

makes it easy for data to move around the network. 

 
Figure 1: Overview of MIN architecture 

Multistage Interconnection Networks (MINs) Models 

1. Network Topology Model 

Step 1: Define the number of stages S in the MIN as a function of the total inputs/outputs N. For a 

typical MIN, the number of stages S can be expressed as: 

   𝑆 =  𝑙𝑜𝑔2(𝑁) 

This equation indicates that the network requires log2(N) stages to connect N inputs to N outputs. It 

shows that as the size of the network increases, the number of stages grows logarithmically, making 

it scalable. 

2. Switching Element Connection Model 

Step 2: Express the connections in each stage. Let n be the number of inputs/outputs, and k be the 

number of switching elements per stage. The relationship between n and k is: 

   𝑘 =
𝑁

2
 

Each stage contains N/2 switches, where each switch typically connects two inputs to two outputs. 

This model helps calculate the number of switches needed at each stage, essential for determining the 

network’s hardware requirements. 
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3. Routing Path Model 

Step 3: Define the path from input i to output j. The binary representation of i and j determines the 

switch selection at each stage. Let P(i, j) be the path: 

   𝑃(𝑖, 𝑗)  =  𝑖 ⊕  𝑗 

The Exclusive OR (XOR) operation ⊕ identifies the switching pattern needed to connect input i to 

output j. This step ensures accurate routing and helps manage traffic through the network. 

4. Blocking Probability Model 

Step 4: Calculate the blocking probability B, which is the chance that a connection request cannot be 

completed due to congestion. For a given MIN with k switches and p blocking points: 

   𝐵 =  1 −  (1 −  (
1

𝑘
))

𝑝

 

This model estimates how likely it is that the network will face traffic congestion. Understanding the 

blocking probability helps in designing fault-tolerant and efficient MINs. 

The switches in these steps are linked in certain ways, which lets data go through the network in 

more than one way. This makes the system flexible and able to handle problems. The Omega, 

Butterfly, and Banyan networks are all common MIN designs. Each has its own link patterns that 

affect how well it routes traffic and how much it can grow. To give you an example, in an Omega 

network, the switches are set up so that data can move quickly through log2(N) steps, where N is the 

number of inputs and outputs. MINs are made up of switching elements, connecting patterns, and 

various steps that all work together to let data flow in parallel. Because of their structure, MINs are 

perfect for uses that need to quickly move data, be scalable, and be able to handle errors in parallel 

processing systems. 

IV. Parallel Algorithms in MINs 

Parallel algorithms are ways to use computers to break up a problem into smaller, more manageable 

jobs that can be done at the same time by several machines. In contrast to sequential algorithms, 

which only handle one action at a time, parallel algorithms use concurrency to greatly cut down on 

processing time and improve efficiency.  



Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 28 No. 2 (2025) 

 

216 
 

https://internationalpubls.com 

 
Figure 2: Workflow of Multistage Interconnection Networks with Parallel Processing 

Because of this, they are very useful in high-performance computing, which needs to handle large 

amounts of data, run complex models, and do real-time analytics. Parallel methods are necessary for 

Multistage Interconnection Networks (MINs) to make data movement and computing as efficient as 

possible, the workflow for Multistage Interconnection Networks with Parallel Processing has been 

illustrate in figure 2. This lets working elements talk to each other quickly. Parallel algorithms are 

essential for apps like science models, big data analytics, and machine learning because they make 

the best use of computing resources by spreading work across multiple paths within MINs. This 

ensures high speed, scaling, and efficient use of computing resources. 

A. Parallel Algorithms:  

Matrix multiplication is one of the most important operations in both science computing and machine 

learning. In a parallel method, the matrix is broken up into smaller submatrices, and different 

processors are given the job of multiplying each submatrix. This parallel processing cuts 

computation time by a huge amount, especially for big matrices. Then, the partial goods are added 

together to get the end output quickly. This parallelization makes it possible for fast data flow 

between processors in Multistage Interconnection Networks (MINs), which speeds up matrix 

processes by a large amount. Sorting algorithms, like simultaneous quicksort and merge sort, are 

needed to put data in order in many different types of programs, from databases to numerical 

simulations. In parallel sorting, the data set is broken up into smaller pieces, and different computers 

sort each piece separately. The final sorted list is made by putting these sorted parts together. Using 
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MINs makes sure that data moves quickly between computers during the sorting and joining steps, 

which improves speed overall. 

A lot of people use Fast Fourier Transform (FFT) to handle signals, look at images, and run science 

models. The simultaneous FFT method breaks the data up into smaller pieces so that more than one 

processor can change it at the same time. This parallel handling cuts down on computation time, 

especially for big data sets. MINs allow processing elements to talk to each other without any 

problems, which speeds up the FFT process and makes it easier to scale. 

Step-Wise Mathematical Model for Parallel Algorithms: 

Step 1: Define Input Matrices 

Let A and B be two matrices to be multiplied, where: 

   𝐴 =  [𝑎_{𝑖𝑗}] 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑚 𝑥 𝑛), 𝐵 =  [𝑏_{𝑗𝑘}] 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑛 𝑥 𝑝) 

The resulting matrix C will be of size (m x p). 

Step 2: Divide the Matrices for Parallel Processing 

Divide matrix A into P submatrices A1, A2, ..., AP, and matrix B into P submatrices B1, B2, ..., BP, 

where P is the number of processors: 

   𝐴 = ∪  𝐴_𝑖, 𝐵 = ∪  𝐵_𝑖 

Step 3: Assign Submatrices to Processors 

Assign each processor P_i (where i = 1, 2, ..., P) a pair of submatrices A_i and B_i to compute a 

partial product. 

Step 4: Calculate Partial Product in Each Processor 

For each processor P_i, calculate the partial matrix C_i: 

   𝐶𝑖 =  𝐴𝑖𝑥 𝐵𝑖 =  ∑(𝑎{𝑖𝑘} ∗  𝑏{𝑘𝑗})𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛 

Step 5: Sum the Partial Results Locally 

Each processor stores its computed elements c_{ij}^{(i)}: 

   𝑐{𝑖𝑗}
{(𝑖)}

=  ∑(𝑎{𝑖𝑘} ∗  𝑏{𝑘𝑗})𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛 

Step 6: Communicate Results via MINs 

Using MINs, the results C_i from all processors P_i are transferred to an aggregation processor. The 

communication path is defined as: 

   𝑃(𝑖) →  𝑃(𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟) 

Step 7: Aggregate Partial Results 

The aggregation processor collects all partial results C_i to form the final matrix C: 

   𝐶 =  ∑ 𝐶𝑖𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑃 

Step 8: Final Element Calculation 

Each element c_{ij} in matrix C is calculated as: 
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   𝑐{𝑖𝑗} =  ∑ 𝑐{𝑖𝑗}
{(𝑖)}

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑃 

Step 9: Output the Resulting Matrix 

The final matrix C is the product of matrices A and B, with all elements c_{ij} computed: 

   𝐶 =  𝐴 𝑥 𝐵 

This model demonstrates the step-wise parallel computation of matrix multiplication using MINs, 

leveraging simultaneous calculations across processors to achieve efficiency and speedup. 

V. Routing Techniques in MINs for Parallel Processing 

A. Static and Dynamic Routing 

Routing methods are very important in Multistage Interconnection Networks (MINs) because they 

decide how data bits are sent from source nodes to target nodes. Static routing and dynamic routing 

are the two main types of routing. Each has its own pros and cons when it comes to data transfer 

speed. 

In static routing, the methods for sending data are set in stone. No matter what the network 

conditions are or how much traffic there is, once the routing method is set, all data bits will follow it. 

The best things about static routing are that it is easy to use, doesn't cost much, and works the same 

way every time. This makes it perfect for smaller networks with regular traffic trends. But static 

routing can't change as easily when network conditions do, which could cause bottlenecks if a certain 

way gets crowded or a switch breaks. This lack of adaptability can lead to waste, especially in big 

parallel processing systems where the amount of data that needs to be transferred changes all the 

time. 

Static Routing Algorithm:  

Step 1: Initialize the Network Parameters 

- Define the network graph G = (V, E), where V represents the nodes (switches) and E represents the 

edges (links) connecting them. 

- Identify the source node S and the destination node D. 

Step 2: Establish Fixed Paths 

- Precompute and establish a fixed path P_fixed from source S to destination D using a predefined 

routing table. 

- The routing table is configured based on the network topology and remains constant for all data 

packets traveling from S to D. 

Step 3: Assign Path Information to Each Node 

- Assign each intermediate node N_i along the path P_fixed with routing instructions that specify the 

next hop towards D. 

Step 4: Transfer Data Packets 

- When a data packet originates at S, it follows the predetermined path P_fixed according to the 

routing table instructions. 

Step 5: Forward Data Packets through Intermediate Nodes 

- Each intermediate node N_i receives the data packet, checks the routing table, and forwards it to the 

next specified node along P_fixed. 

Step 6: Reach the Destination Node 

- The data packet continues along the fixed path P_fixed until it reaches the destination D without 

any deviation or rerouting. 

Step 7: End the Transmission 

- The data packet arrives at D, completing the static routing process. 
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Dynamic Routing, on the other hand, lets data bits change their routes based on how the network is 

working right now. Dynamic routing algorithms can move packets to different lines if they notice 

congestion or a fault. This makes sure that data flow is quick and smooth. This flexibility makes it 

better at handling errors and making the best use of network resources, which makes it perfect for 

big, complicated networks. But dynamic route uses more computer power and adds extra work 

because it has to make decisions and watch things all the time. 

B. Adaptive Routing Mechanisms:  

Adaptive routing mechanisms are advanced methods that change data transfer paths on the fly based 

on how the network is performing in Multistage Interconnection Networks (MINs). Instead of static 

routing, where paths are set in stone, adaptive routing constantly checks things like traffic load, 

delays, and hardware problems to find the best way for data bits at any given time. One of the best 

things about adaptive routing is that it can improve network speed by making the flow of data more 

efficient. When a certain road gets crowded, the flexible system can find other, less crowded routes. 

This keeps data flow speedy and lowers delay. This ability to change is especially helpful in high-

performance computer systems, where jobs are hard to predict and data flow changes quickly. 

Adaptive route also makes it much easier to deal with errors. If a switch or link breaks, the network 

can move data bits right away, so people can still talk to each other without having to do anything. 

Because of this feature, flexible routing is very reliable, even in big, complicated networks where 

problems are more likely to happen. 

Adaptive Routing Mechanism Step-Wise Algorithm  

Step 1: Initialize the Network Parameters 

- Define the network graph 𝐺 =  (𝑉, 𝐸), where V represents the set of nodes (switches) and E 

represents the set of edges (links) connecting them. 

- Let S be the source node and D the destination node. 

Step 2: Monitor Network Traffic and Congestion Levels 

- Measure the traffic load T(e) on each link e ∈ E. 

- Define C(e) as the capacity of link e. 

The congestion factor η(e) for each link is calculated as: 

   𝜂(𝑒) =
𝑇(𝑒)

𝐶(𝑒)
 

This ratio indicates how congested a link is compared to its maximum capacity. 

Step 3: Identify Available Paths 

- Identify all possible paths 𝑃 =  {𝑃1, 𝑃2, . . . , 𝑃𝑛} from S to D using a path-finding algorithm (e.g., 

Breadth-First Search). 

- For each path P_i, calculate the total congestion factor η(P_i): 

   𝜂(𝑃𝑖) =  ∑ 𝜂(𝑒) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈  𝑃𝑖 

Description: This summation provides the overall congestion level of the path. 

Step 4: Evaluate Path Efficiency 

- Define the cost function f(P_i) for each path P_i as: 
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   𝑓(𝑃𝑖) =  𝑤1 ∗  𝜂(𝑃𝑖) +  𝑤2 ∗  𝐿(𝑃𝑖) 

Where: 

  - L(P_i) is the latency (total number of hops) of path P_i. 

  - w1 and w2 are weights representing the importance of congestion and latency. 

Step 5: Select the Optimal Path 

- Select the path P_optimal with the minimum cost: 

   𝑃_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓(𝑃_𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃_𝑖 

Description: This step determines the most efficient path based on congestion and latency. 

Step 6: Reroute Data Packets 

- Reroute data packets along P_optimal. Continuously monitor the network and adjust routing if the 

congestion factor η(e) changes significantly. 

Step 7: Update Routing Information 

- Update the routing table at each node with the new optimal paths and congestion factors to adapt to 

network changes dynamically. 

The performance of Multistage Interconnection Networks (MINs) is greatly improved by adaptive 

routing, which lets data bits change their paths based on the current state of the network. Adaptive 

routing constantly checks things like traffic jams, delay, and network load, while standard routing 

sticks to paths that have already been planned. This gives data bits the freedom to skip over busy or 

broken lines, which speeds up data transfer. This makes the network work better generally, which is 

especially helpful in high-performance computer systems where tasks change a lot. By spreading 

traffic out well, adaptive routing gets rid of jams, speeds up data transfers, and makes better use of 

network resources, all of which are important for applications that need to send and receive data 

quickly and reliably. When it comes to fault tolerance, adaptive routing protects the network from 

hardware problems and broken links. When something goes wrong, the flexible routing system finds 

it and automatically sends data through other ways that work. As long as this real-time change is 

made, transmission will continue even if there are multiple breakdowns. This keeps the network 

reliable. In large-scale parallel processing systems, where downtime can have very bad effects, this 

feature is very important. By changing with the times, adaptive routing not only keeps speed high but 

also makes sure the network stays strong and fault-tolerant in settings that are hard to predict and 

work well. 

C. Evaluation of Routing Efficiency 

1. Communication Latency (L) 

Communication latency refers to the time it takes for data to travel from a source to a destination. 

The latency L for a routing path in an MIN is typically expressed as: 

   𝐿 =  𝐻 ×  𝑑 

Where: 

- H is the number of hops (switching stages) in the network path. 

- d is the average delay per hop. 
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Static routing tends to have fixed paths with a predetermined H, which may lead to longer paths and 

increased latency under congested conditions. Adaptive routing can select paths with fewer hops or 

less congestion, minimizing L and enhancing efficiency. 

2. Congestion Factor (η) 

The congestion factor η on a link e is defined as: 

   𝜂(𝑒) =
𝑇(𝑒)

𝐶(𝑒)
 

Where: 

- T(e) is the traffic load on link e. 

- C(e) is the capacity of link e. 

For a complete path P: 

   𝜂(𝑃) =  ∑ 𝜂(𝑒) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈  𝑃 

Impact: High congestion (η(P)) leads to delays. Adaptive routing reduces congestion by dynamically 

selecting less crowded paths. 

3. Bandwidth Utilization (U) 

Bandwidth utilization is given by: 

   𝑈 =  𝐷 / (𝐵 ×  𝑇) 

Where: 

- D is the total data transferred. 

- B is the available bandwidth. 

- T is the total time taken. 

Static routing can be inefficient with bandwidth, while adaptive routing balances the data load across 

paths, optimizing U. 

4. Speedup Factor (S) of Parallel Algorithms 

The speedup factor S is influenced by routing efficiency: 

   𝑆 =  𝑇_𝑠𝑒𝑞/(𝑇_𝑝𝑎𝑟 +  𝐿) 

Where: 

- T_seq is the sequential execution time. 

- T_par is the parallel execution time without communication delays. 

- L is the communication latency. 

5. Scalability (Σ) 

Scalability is defined as: 

   𝛴 =
1

1 +  (
𝐿

𝑇𝑐𝑜𝑚𝑝
)
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Where: 

- L is the average latency per communication round. 

- T_comp is the computation time. 

VI. Performance Analysis of Parallel Algorithms in MINs 

Matrix Multiplication has a delay of 12.5 ms, which is a bit higher than other methods. This means 

that it takes a little longer to move data and do calculations. Even so, it manages to reach a rate of 5.6 

GB/s, which shows that the method is good at handling large amounts of data. With a speedup factor 

of 3.5x, matrix multiplication works more than three times faster when it is done in parallel instead 

of sequentially. But with an 85% scaling rating, it means that it grows pretty well, but there may be 

some problems as the network gets bigger or as more data is added. 

Table 2: Performance Analysis Of Parallel Algorithms In MINs 

Algorithm Latency (ms) Throughput (GB/s) Speedup (x) Scalability (%) 

Matrix Multiplication 12.5 5.6 3.5 85 

Sorting 9.8 6.9 4.2 90 

FFT 7.2 8.3 5.1 95 

Graph Traversal 11.1 6.1 3.8 88 

 

Sorting algorithms have lower delay, at 9.8 ms, which means that data moves faster across the 

network. It can handle data more quickly than matrix multiplication, as shown by its output of 6.9 

GB/s. With a speedup of 4.2x, parallel processing makes sorting tasks much faster, which makes it 

very useful in parallel settings, as illustrate in figure 3. The scale number of 90% also shows that 

sorting algorithms can work well with bigger networks or more work, while still being efficient.  

 
Figure 3: Latency and Throughput Analysis Of Parallel Algorithms 

Fast Fourier Transform (FFT) has the smallest delay, at 7.2 ms. This means that data can be sent very 

quickly within the MINs, which is important for apps that need to handle signals in real time. With a 

speed of 8.3 GB/s, it definitely moves data quickly, making it the best method for data transfer out of 

all the ones that were looked at. FFT has the biggest improvement in processing time, with a speedup 

factor of 5.1x. This is because it benefits a lot from parallelization. At 95%, its scaling is the greatest. 

This means that FFT is very flexible and keeps working well even as the system gets bigger, which 

makes it perfect for big projects. With a lag of 11.1 ms, Graph Traversal has average speed. This 

means that the algorithm takes a little longer to run than sorting and FFT, but it is still pretty 

efficient. With a rate of 6.1 GB/s, it can process data pretty well, though not as quickly as sorts. The 
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speedup factor of 3.8x means that parallel work is sped up a lot, which is good for settings that use 

parallel processing, as represent in figure 4.  

 
Figure 4:  Speedup and Scalability Analysis Of Parallel Algorithms 

This table 3 shows the performance analysis of parallel algorithms on four different Multistage 

Interconnection Network (MIN) architectures: Omega, Butterfly, Banyan, and Benes. It shows how 

these networks handle data transfer, load balancing, fault tolerance, and scalability. 

Table 3: Performance of parallel algorithms in different MIN architectures 

MIN Architecture Latency (ms) Throughput 

(GB/s) 

Load Balancing 

Efficiency (%) 

Fault 

Tolerance (%) 

Scalability 

(%) 

Omega Network 10.2 6.2 78 70 88 

Butterfly Network 8.5 7.5 85 75 92 

Banyan Network 7.8 8 82 68 90 

Benes Network 9 7 80 72 89 

 

The Omega Network has a delay of 10.2 ms, which means that it transfers data not as quickly as 

other designs. It can handle 6.2 GB/s of data at a time, which is a good amount for multiple 

processing. But the load balance efficiency is only 78%, which isn't very good. This suggests that the 

Omega Network might not spread out work as widely as other networks. This could cause speed 

problems, especially when there are a lot of things to do. The 70% fault tolerance level means that 

the Omega Network can handle some problems, but it might not be as strong as other designs. The 

scalability grade of 88% shows that it can adapt to networks that get bigger, but it might have some 

problems when they get really big. 

 
Figure 5: Latency and Throughput Analysis Of MIN Architectures 



Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 28 No. 2 (2025) 

 

224 
 

https://internationalpubls.com 

With a lower delay of 8.5 ms, the Butterfly Network does better than others. This means that data 

transfers are faster and communication across the network works better. With a rate of 7.5 GB/s, it 

can handle a lot of jobs at once, making it one of the best designs for apps that use a lot of data. The 

Butterfly Network efficiently spreads tasks across its nodes, ensuring peak performance, with a load 

balancing rate of 85%., as illustrate in figure 5. It is more stable than the Omega Network because its 

fault tolerance level of 75% means it can handle breakdowns better. At 92%, its scaling shows that it 

can easily adapt to larger jobs or network sizes.  

 
Figure 6: Comparison of Efficiency, Fault Tolerance, and Scalability Analysis of MIN Architectures 

This makes it perfect for large-scale parallel processing tasks. The Banyan Network has the lowest 

delay, at 7.8 ms, which shows that it can send data very quickly, which is good for real-time apps. At 

8 GB/s, it has the best speed, which means it works very well with big amounts of data. Its load 

balancing effectiveness, on the other hand, is 82%, which is a little lower than the Butterfly Network. 

This means that while it handles tasks well, there may be rare mismatches. The fault tolerance for the 

Banyan Network is only 68%, which is the lowest of all the designs. This means that it is more likely 

to fail. It has a growth rating of 90%, which means it works well as network numbers grow but isn't 

as flexible as the Butterfly Network, shown in figure 6. The delay of the Benes Network is 9.0 ms, 

and its output is 7.0 GB/s. This means that it works well, but not as well as the Butterfly or Banyan 

networks. Its load balancing rate is 80%, which means it can fairly spread out the work. The Benes 

Network is somewhat resistant to breakdowns, with a fault tolerance of 72%. It works better than the 

Banyan and Omega networks. With an 89% growth grade, it does a good job of adapting to bigger 

networks, though not quite as well as the Butterfly Network. 

VII. Conclusion 

The study of how parallel algorithms are put into action and what part they play in Multistage 

Interconnection Networks (MINs) shows how important they are for making high-performance 

computing more efficient. By looking at different parallel algorithms and MIN designs, it is clear that 

delay, speed, load handling efficiency, fault tolerance, and scaling are some of the most important 

factors that affect how well parallel processing works. When run in MINs, different parallel 

algorithms, like sorting, matrix multiplication, Fast Fourier Transform (FFT), and graph traversal, 

show different levels of speed. FFT is the most efficient algorithm because it has the lowest delay, 

the highest output, and the best scaling. This makes it perfect for processing data in real time in 

complex apps. Sorting algorithms also work well. Matrix multiplication and graph traversal aren't as 

good, but flexible route methods in MINs can make them much better. The comparison of the MIN 

designs Omega, Butterfly, Banyan, and Benes shows how important it is to pick the right architecture 

for running parallel algorithms efficiently. Because it has lower delay, faster speed, better load 

balance, and fault tolerance, the Butterfly Network always does better than others. This makes it the 
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best choice for large-scale parallel processing jobs. The Omega and Benes Networks offer fair 

performance for more general uses, while the Banyan Network is very efficient but not as good at 

handling errors. Adaptive routing mechanisms emerge as a key factor in enhancing both performance 

and fault tolerance in parallel processing. They change based on real-time network conditions, 

making sure that data transfers quickly, traffic is kept to a minimum, and fault tolerance is raised. All 

of these things are necessary to keep parallel algorithm processing running at high levels of 

efficiency. It is possible to get very good results with complicated computer jobs by using 

simultaneous processing in MINs. It is possible to greatly improve the speed of parallel algorithms 

by choosing the right algorithms, setting up effective route strategies, and using the right MIN 

designs. This is why MINs are an essential part of current high-performance computing systems. 

This study shows that we need to keep looking into adaptable methods and advanced designs to 

make parallel processing systems even more efficient and scalable. 
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