
Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

210

https://internationalpubls.com

Exploring Parallel Algorithm Implementation and the Role of Parallel

Processing in Multistage Interconnection Networks

Abhay B. Rathod1, Dr. Sanjay M. Gulhane2
1Jawaharlal Darda Institute of Engineering and Technology, Yavatmal, India

abhay_rathod@jdiet.ac.in
2Pravara Rural Engineering College, Loni, Ahmadnagar, India

sanjay.gulhane@pravara.in

Article History:

Received: 30-07-2024

Revised: 14-09-2024

Accepted: 22-09-2024

Abstract

Parallel processing is a key way to get good speed on difficult computer jobs

thanks to how quickly computer technology is improving. Multistage

Interconnection Networks (MINs) are very important in this situation

because they make it easy for multiple working elements in parallel

computer systems to share data and work together. The focus of this study is

on how parallel methods can be used in MINs, with a focus on how these

networks make it possible for nodes to communicate and process data

quickly. We look at the layout and design of MINs and talk about how well

they can handle apps that use a lot of data by spreading out work. We look at

some of the most important parallel algorithms, like matrix multiplication,

sorting, and Fast Fourier Transform (FFT), to show how they use the unique

features of MINs to make computations faster and more flexible. The study

also looks into the problems that come up when you try to use parallel

methods, such as delay, timing issues, and load balance. It also talks about

ways to deal with these problems, like route algorithms, timing methods, and

fault-tolerant systems. The study shows how important parallel processing is

for making high-performance computer systems work better. This helps

make progress in areas like science models, big data analytics, and artificial

intelligence. Through looking at how parallel algorithms and MINs work

together, this study shows how parallel processing can speed up complicated

calculations and make systems more efficient, leading to more advanced and

scalable computing solutions.

Keywords: Parallel Processing, Multistage Interconnection Networks

(MINs), Parallel Algorithms, Data Communication, Computational

Efficiency.

I. Introduction

Parallel processing has become a lot more popular as a way to solve hard computational problems as

the need for high-performance computers grows in science, engineering, and business. Parallel

processing lets several processes happen at the same time, which greatly cuts down on running time

and improves the general efficiency of the system. Multistage Interconnection Networks (MINs) are

the building blocks of efficient parallel processing. They allow processing elements to talk to each

other very quickly. As algorithms get more complicated and more data needs to be processed, MINs

are becoming more and more important for making parallel algorithms work well. This article goes

into detail about how MINs help make parallel processing work well. It looks at how their design

supports high-performance computing by making sure fast data flow, load balancing, and fault

tolerance [1]. There are many organized networks that link many computers and memory units by

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

211

https://internationalpubls.com

moving between them. They provide an easy, scalable, and low-cost way for computers to share data

in parallel settings. This makes them perfect for many uses, from science models to big data

analytics. The fact that MINs can handle many data transfer requests at the same time makes it

possible for parallel algorithms that need to share and talk about a lot of data to run quickly [2].

When doing complicated calculations like matrix multiplication, sorting, and Fast Fourier Transform

(FFT), this trait is very important because data relationships and communication between processes

can have a big effect on total speed. In parallel computer [3] systems, MINs help reduce delay, avoid

bottlenecks, and increase speed by setting up a clear path for data to move.

When simultaneous algorithms are used with MINs, they create their own hurdles and possibilities.

Making sure that data bits are routed efficiently across the network is one of the biggest problems.

This is important for keeping delay low and network congestion to a minimum. To make parallel

methods work as well as possible, problems like load sharing, timing, and fault tolerance must also

be fixed [4]. By making sure that all working parts share the work equally, load balancing keeps any

one point from becoming a problem. When you synchronize, on the other hand, all the parts of the

processing work together, making sure that the data stays consistent and makes sense throughout the

computing process. It's also important that the system can keep working well even if some hardware

fails. This is especially important in settings with a lot of computers working together at the same

time. These applications can use parallelism to speed up computations that would take too long to do

using standard linear processing methods because MINs provide the necessary framework. The way

that MINs are connected is meant to make high-bandwidth data exchanges possible [5]. This means

that parallel programs can run with little delay, even when they have to deal with a lot of data. In

fields like climate modeling, genetics, financial modeling, and fluid dynamics, being able to quickly

handle huge datasets is essential for finding new information and making important discoveries. By

looking into parallel algorithms in the context of MINs, we can get around the problems that regular

computer systems have, like not being able to handle large amounts of data or slowdowns in

performance. By using the simultaneous working features that MINs provide, computer systems can

reach new levels of speed, flexibility, and scale. In this age of "big data," where the amount, speed,

and range of data keep growing at an exponential rate, this is especially important. Parallel

algorithms built into MINs can handle data streams in real time, which helps people make decisions

faster and gives them useful information that drives innovation across all fields. Combining parallel

methods with Multistage Interconnection Networks is a revolutionary way to do high-performance

computing. This paper aims to give a full look at how MINs can be used to improve parallel

processing by looking at the building design, mathematical methods, and problems that need to be

solved in order to use parallelism to its fullest. This study looks at the complicated connection

between parallel algorithms and MINs to show how important parallel processing is for meeting the

computing needs of modern applications and, in the end, making computing systems that are more

efficient and scalable.

II. Related Work

A lot of study has been done in the high-performance computer field for decades on how to apply

algorithms in parallel and what role parallel processing plays in Multistage Interconnection Networks

(MINs). As computing jobs get harder and require more data, many studies have been done on

different parts of parallel algorithms and MIN structures to make them more efficient, scalable, and

fault-tolerant [6]. This part talks about the important things that experts have done in this area,

focusing on the main results, methods, and trends that have shaped the growth of parallel processing

systems in MINs. Parallel methods for sorting, matrix multiplication, and Fast Fourier Transform

(FFT) processes were studied early on and were one of the first things to add to this field. Many

science and technical tasks depend on these methods, and they are also used to measure how well

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

212

https://internationalpubls.com

parallel computer systems work. A lot of research has shown that MINs can be used with multiple

methods to make computations much faster [7]. These algorithms [8] work best when they can

communicate in the ways that the MIN design allows. This shows how important it is to have a

network that is optimized to reduce delay and increase data flow. These early studies paved the way

for later studies that worked on making more advanced parallel algorithms that could fully take

advantage of the parallelism that MINs give.

Another area [9] that has seen a lot of study is the creation of effective route methods for MINs.

Parallel processing systems became easier to scale, but it became harder to keep track of how data

was being sent and received at different points in the network. Researchers came up with dynamic

routing methods that can change to different types of network traffic. This keeps data packets from

colliding and makes sure that data flows smoothly across the network. It was found that these

dynamic route methods cut down on communication delays and improved system performance

overall, especially in situations with a lot of simultaneous processing. Adaptive routing methods

made fault tolerance even better by letting MINs keep working well even when switches or links are

broken. This is very important for keeping high reliability in real-world applications. Along with

route methods, load balancing has become an important part of making parallel processing work best

in MINs. Studies [10] have shown that speed problems can happen when computing tasks aren't

spread out evenly among working parts. To solve this problem, load balance methods were created

that make sure that no single working element gets too busy by distributing tasks among them based

on how much work they already have. These methods are very helpful for making the best use of

resources and getting the most out of MINs' parallel processing abilities. This is especially true in

situations where a lot of data needs to be processed, like in weather forecasting and molecular

dynamics simulations.

In the setting of MINs, fault tolerance and dependability have also gotten a lot of attention. Because

these networks are so important to high-performance computers, making sure they can handle

hardware breakdowns is very important. Many fault-tolerant methods, like multiple route lines and

error-correction systems, have been looked into to make MINs more reliable [11]. It has been shown

that adding redundancy to the design of a network makes it much better at handling breakdowns

without affecting speed. These fault-tolerant techniques have been improved over the years. More

recent studies have looked into machine learning-based methods to predict and prevent breakdowns

in real time, which makes parallel processing systems more reliable and last longer. A look at the

role of MINs in high-performance computing from a design point of view has also been done.

Various MIN designs, including the Omega network, the Banyan network, and the Butterfly network,

have been studied to find out their pros and cons when it comes to allowing parallel algorithms.

There have been in-depth analyses of these network designs, looking at how well they work in terms

of growth, fault tolerance, and communication speed [12]. This comparison study was very helpful in

designing and building more advanced MIN frameworks with better performance, which has led to

the creation of more efficient parallel processing systems.

Parallel algorithms and MINs are being studied more because of new uses like real-time data

processing, machine learning, and big data analytics. These applications need a huge amount of

computing power and the ability to handle a lot of data. This makes the role of MINs even more

important for making parallel processing work well. Parallel algorithms have been studied as a way

to handle big datasets, and it has been shown that MINs can greatly speed up data processing tasks,

allowing for faster insights and decisions. Studies have shown that running machine learning

algorithms like k-means clustering and neural network training in parallel on MINs can make them

much faster. This makes them better for real-time analytics and predictive modeling. The wide range

of topics covered in linked research on MINs and parallel algorithm implementation shows how

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

213

https://internationalpubls.com

complex this area of study is. Contributions range from basic research on designing parallel

algorithms to more in-depth studies of routing, load sharing, fault tolerance, and building

improvements. By combining these parts, highly effective and dependable parallel processing

systems have been created that can handle the needs of current computing jobs. Parallel algorithms

are always getting better, and MIN architectures are getting better too. This means that high-

performance computing systems will be even more useful for dealing with the problems that come up

with applications that are getting more complicated and use a lot of data.

Table 1: Summary of relate work

Algorithm

Focus

MIN

Architecture

Routing

Technique

Load

Balancing

Strategy

Fault

Tolerance

Application

Area

Matrix

Multiplication

[13]

Omega

Network

Static

Routing

Static

Distribution

No Fault

Tolerance

Scientific

Simulations

Sorting

Algorithms [14]

Butterfly

Network

Dynamic

Routing

Dynamic

Load

Balancing

Limited

Redundancy

Data

Sorting/Analytics

FFT (Fast

Fourier

Transform) [15]

Banyan

Network

Adaptive

Routing

Dynamic

Task

Allocation

Error

Correction

Signal Processing

Graph Traversal

[16]

Omega

Network

Static

Routing

Static Task

Distribution

No Fault

Tolerance

Network Analysis

k-Means

Clustering [11]

Butterfly

Network

Dynamic

Routing

Dynamic

Load

Balancing

Partial

Redundancy

Machine

Learning

Neural Network

Training [17]

Multistage

Cube

Adaptive

Routing

Dynamic

Task

Allocation

Real-Time

Error

Detection

Deep Learning

Sorting

Networks [18]

Benes

Network

Static

Routing

Static

Distribution

Limited Fault

Tolerance

Real-Time

Sorting

Convolution

Operations [19]

Banyan

Network

Adaptive

Routing

Load

Balancing

Algorithms

Redundant

Links

Image Processing

Matrix

Inversion [20]

Omega

Network

Static

Routing

Dynamic

Distribution

Real-Time

Error

Correction

Linear Algebra

Data Shuffling

[21]

Butterfly

Network

Dynamic

Routing

Dynamic

Load

Balancing

Fault-Tolerant

Switching

Big Data

Analytics

Sparse Matrix

Computation

[22]

Benes

Network

Adaptive

Routing

Dynamic

Task

Allocation

Partial Fault

Tolerance

Scientific

Computing

Parallel Search

Algorithms [23]

Banyan

Network

Adaptive

Routing

Load

Balancing

Algorithms

Fault

Detection

Mechanisms

Database Search

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

214

https://internationalpubls.com

III. Multistage Interconnection Networks (MINs)

A. MIN Architecture:

Multistage Interconnection Networks (MINs) are complicated, architecture shown in figure 1, multi-

layered communication networks that make it easier for parallel computer systems to send and

receive data between multiple processors and memory units. MINs are made up of many stages with

switching elements that are all linked to each other. These stages are usually set up in a number of

layers that make paths for data to move from inputs to outputs. At each stage of the network, there

are small, basic switches that can connect one input to multiple outputs or the other way around. This

makes it easy for data to move around the network.

Figure 1: Overview of MIN architecture

Multistage Interconnection Networks (MINs) Models

1. Network Topology Model

Step 1: Define the number of stages S in the MIN as a function of the total inputs/outputs N. For a

typical MIN, the number of stages S can be expressed as:

 𝑆 = 𝑙𝑜𝑔2(𝑁)

This equation indicates that the network requires log2(N) stages to connect N inputs to N outputs. It

shows that as the size of the network increases, the number of stages grows logarithmically, making

it scalable.

2. Switching Element Connection Model

Step 2: Express the connections in each stage. Let n be the number of inputs/outputs, and k be the

number of switching elements per stage. The relationship between n and k is:

 𝑘 =
𝑁

2

Each stage contains N/2 switches, where each switch typically connects two inputs to two outputs.

This model helps calculate the number of switches needed at each stage, essential for determining the

network’s hardware requirements.

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

215

https://internationalpubls.com

3. Routing Path Model

Step 3: Define the path from input i to output j. The binary representation of i and j determines the

switch selection at each stage. Let P(i, j) be the path:

 𝑃(𝑖, 𝑗) = 𝑖 ⊕ 𝑗

The Exclusive OR (XOR) operation ⊕ identifies the switching pattern needed to connect input i to

output j. This step ensures accurate routing and helps manage traffic through the network.

4. Blocking Probability Model

Step 4: Calculate the blocking probability B, which is the chance that a connection request cannot be

completed due to congestion. For a given MIN with k switches and p blocking points:

 𝐵 = 1 − (1 − (
1

𝑘
))

𝑝

This model estimates how likely it is that the network will face traffic congestion. Understanding the

blocking probability helps in designing fault-tolerant and efficient MINs.

The switches in these steps are linked in certain ways, which lets data go through the network in

more than one way. This makes the system flexible and able to handle problems. The Omega,

Butterfly, and Banyan networks are all common MIN designs. Each has its own link patterns that

affect how well it routes traffic and how much it can grow. To give you an example, in an Omega

network, the switches are set up so that data can move quickly through log2(N) steps, where N is the

number of inputs and outputs. MINs are made up of switching elements, connecting patterns, and

various steps that all work together to let data flow in parallel. Because of their structure, MINs are

perfect for uses that need to quickly move data, be scalable, and be able to handle errors in parallel

processing systems.

IV. Parallel Algorithms in MINs

Parallel algorithms are ways to use computers to break up a problem into smaller, more manageable

jobs that can be done at the same time by several machines. In contrast to sequential algorithms,

which only handle one action at a time, parallel algorithms use concurrency to greatly cut down on

processing time and improve efficiency.

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

216

https://internationalpubls.com

Figure 2: Workflow of Multistage Interconnection Networks with Parallel Processing

Because of this, they are very useful in high-performance computing, which needs to handle large

amounts of data, run complex models, and do real-time analytics. Parallel methods are necessary for

Multistage Interconnection Networks (MINs) to make data movement and computing as efficient as

possible, the workflow for Multistage Interconnection Networks with Parallel Processing has been

illustrate in figure 2. This lets working elements talk to each other quickly. Parallel algorithms are

essential for apps like science models, big data analytics, and machine learning because they make

the best use of computing resources by spreading work across multiple paths within MINs. This

ensures high speed, scaling, and efficient use of computing resources.

A. Parallel Algorithms:

Matrix multiplication is one of the most important operations in both science computing and machine

learning. In a parallel method, the matrix is broken up into smaller submatrices, and different

processors are given the job of multiplying each submatrix. This parallel processing cuts

computation time by a huge amount, especially for big matrices. Then, the partial goods are added

together to get the end output quickly. This parallelization makes it possible for fast data flow

between processors in Multistage Interconnection Networks (MINs), which speeds up matrix

processes by a large amount. Sorting algorithms, like simultaneous quicksort and merge sort, are

needed to put data in order in many different types of programs, from databases to numerical

simulations. In parallel sorting, the data set is broken up into smaller pieces, and different computers

sort each piece separately. The final sorted list is made by putting these sorted parts together. Using

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

217

https://internationalpubls.com

MINs makes sure that data moves quickly between computers during the sorting and joining steps,

which improves speed overall.

A lot of people use Fast Fourier Transform (FFT) to handle signals, look at images, and run science

models. The simultaneous FFT method breaks the data up into smaller pieces so that more than one

processor can change it at the same time. This parallel handling cuts down on computation time,

especially for big data sets. MINs allow processing elements to talk to each other without any

problems, which speeds up the FFT process and makes it easier to scale.

Step-Wise Mathematical Model for Parallel Algorithms:

Step 1: Define Input Matrices

Let A and B be two matrices to be multiplied, where:

 𝐴 = [𝑎_{𝑖𝑗}] 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑚 𝑥 𝑛), 𝐵 = [𝑏_{𝑗𝑘}] 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑛 𝑥 𝑝)

The resulting matrix C will be of size (m x p).

Step 2: Divide the Matrices for Parallel Processing

Divide matrix A into P submatrices A1, A2, ..., AP, and matrix B into P submatrices B1, B2, ..., BP,

where P is the number of processors:

 𝐴 = ∪ 𝐴_𝑖, 𝐵 = ∪ 𝐵_𝑖

Step 3: Assign Submatrices to Processors

Assign each processor P_i (where i = 1, 2, ..., P) a pair of submatrices A_i and B_i to compute a

partial product.

Step 4: Calculate Partial Product in Each Processor

For each processor P_i, calculate the partial matrix C_i:

 𝐶𝑖 = 𝐴𝑖𝑥 𝐵𝑖 = ∑(𝑎{𝑖𝑘} ∗ 𝑏{𝑘𝑗})𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛

Step 5: Sum the Partial Results Locally

Each processor stores its computed elements c_{ij}^{(i)}:

 𝑐{𝑖𝑗}
{(𝑖)}

= ∑(𝑎{𝑖𝑘} ∗ 𝑏{𝑘𝑗})𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛

Step 6: Communicate Results via MINs

Using MINs, the results C_i from all processors P_i are transferred to an aggregation processor. The

communication path is defined as:

 𝑃(𝑖) → 𝑃(𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟)

Step 7: Aggregate Partial Results

The aggregation processor collects all partial results C_i to form the final matrix C:

 𝐶 = ∑ 𝐶𝑖𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑃

Step 8: Final Element Calculation

Each element c_{ij} in matrix C is calculated as:

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

218

https://internationalpubls.com

 𝑐{𝑖𝑗} = ∑ 𝑐{𝑖𝑗}
{(𝑖)}

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑃

Step 9: Output the Resulting Matrix

The final matrix C is the product of matrices A and B, with all elements c_{ij} computed:

 𝐶 = 𝐴 𝑥 𝐵

This model demonstrates the step-wise parallel computation of matrix multiplication using MINs,

leveraging simultaneous calculations across processors to achieve efficiency and speedup.

V. Routing Techniques in MINs for Parallel Processing

A. Static and Dynamic Routing

Routing methods are very important in Multistage Interconnection Networks (MINs) because they

decide how data bits are sent from source nodes to target nodes. Static routing and dynamic routing

are the two main types of routing. Each has its own pros and cons when it comes to data transfer

speed.

In static routing, the methods for sending data are set in stone. No matter what the network

conditions are or how much traffic there is, once the routing method is set, all data bits will follow it.

The best things about static routing are that it is easy to use, doesn't cost much, and works the same

way every time. This makes it perfect for smaller networks with regular traffic trends. But static

routing can't change as easily when network conditions do, which could cause bottlenecks if a certain

way gets crowded or a switch breaks. This lack of adaptability can lead to waste, especially in big

parallel processing systems where the amount of data that needs to be transferred changes all the

time.

Static Routing Algorithm:

Step 1: Initialize the Network Parameters

- Define the network graph G = (V, E), where V represents the nodes (switches) and E represents the

edges (links) connecting them.

- Identify the source node S and the destination node D.

Step 2: Establish Fixed Paths

- Precompute and establish a fixed path P_fixed from source S to destination D using a predefined

routing table.

- The routing table is configured based on the network topology and remains constant for all data

packets traveling from S to D.

Step 3: Assign Path Information to Each Node

- Assign each intermediate node N_i along the path P_fixed with routing instructions that specify the

next hop towards D.

Step 4: Transfer Data Packets

- When a data packet originates at S, it follows the predetermined path P_fixed according to the

routing table instructions.

Step 5: Forward Data Packets through Intermediate Nodes

- Each intermediate node N_i receives the data packet, checks the routing table, and forwards it to the

next specified node along P_fixed.

Step 6: Reach the Destination Node

- The data packet continues along the fixed path P_fixed until it reaches the destination D without

any deviation or rerouting.

Step 7: End the Transmission

- The data packet arrives at D, completing the static routing process.

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

219

https://internationalpubls.com

Dynamic Routing, on the other hand, lets data bits change their routes based on how the network is

working right now. Dynamic routing algorithms can move packets to different lines if they notice

congestion or a fault. This makes sure that data flow is quick and smooth. This flexibility makes it

better at handling errors and making the best use of network resources, which makes it perfect for

big, complicated networks. But dynamic route uses more computer power and adds extra work

because it has to make decisions and watch things all the time.

B. Adaptive Routing Mechanisms:

Adaptive routing mechanisms are advanced methods that change data transfer paths on the fly based

on how the network is performing in Multistage Interconnection Networks (MINs). Instead of static

routing, where paths are set in stone, adaptive routing constantly checks things like traffic load,

delays, and hardware problems to find the best way for data bits at any given time. One of the best

things about adaptive routing is that it can improve network speed by making the flow of data more

efficient. When a certain road gets crowded, the flexible system can find other, less crowded routes.

This keeps data flow speedy and lowers delay. This ability to change is especially helpful in high-

performance computer systems, where jobs are hard to predict and data flow changes quickly.

Adaptive route also makes it much easier to deal with errors. If a switch or link breaks, the network

can move data bits right away, so people can still talk to each other without having to do anything.

Because of this feature, flexible routing is very reliable, even in big, complicated networks where

problems are more likely to happen.

Adaptive Routing Mechanism Step-Wise Algorithm

Step 1: Initialize the Network Parameters

- Define the network graph 𝐺 = (𝑉, 𝐸), where V represents the set of nodes (switches) and E

represents the set of edges (links) connecting them.

- Let S be the source node and D the destination node.

Step 2: Monitor Network Traffic and Congestion Levels

- Measure the traffic load T(e) on each link e ∈ E.

- Define C(e) as the capacity of link e.

The congestion factor η(e) for each link is calculated as:

 𝜂(𝑒) =
𝑇(𝑒)

𝐶(𝑒)

This ratio indicates how congested a link is compared to its maximum capacity.

Step 3: Identify Available Paths

- Identify all possible paths 𝑃 = {𝑃1, 𝑃2, . . . , 𝑃𝑛} from S to D using a path-finding algorithm (e.g.,

Breadth-First Search).

- For each path P_i, calculate the total congestion factor η(P_i):

 𝜂(𝑃𝑖) = ∑ 𝜂(𝑒) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝑃𝑖

Description: This summation provides the overall congestion level of the path.

Step 4: Evaluate Path Efficiency

- Define the cost function f(P_i) for each path P_i as:

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

220

https://internationalpubls.com

 𝑓(𝑃𝑖) = 𝑤1 ∗ 𝜂(𝑃𝑖) + 𝑤2 ∗ 𝐿(𝑃𝑖)

Where:

 - L(P_i) is the latency (total number of hops) of path P_i.

 - w1 and w2 are weights representing the importance of congestion and latency.

Step 5: Select the Optimal Path

- Select the path P_optimal with the minimum cost:

 𝑃_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓(𝑃_𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃_𝑖

Description: This step determines the most efficient path based on congestion and latency.

Step 6: Reroute Data Packets

- Reroute data packets along P_optimal. Continuously monitor the network and adjust routing if the

congestion factor η(e) changes significantly.

Step 7: Update Routing Information

- Update the routing table at each node with the new optimal paths and congestion factors to adapt to

network changes dynamically.

The performance of Multistage Interconnection Networks (MINs) is greatly improved by adaptive

routing, which lets data bits change their paths based on the current state of the network. Adaptive

routing constantly checks things like traffic jams, delay, and network load, while standard routing

sticks to paths that have already been planned. This gives data bits the freedom to skip over busy or

broken lines, which speeds up data transfer. This makes the network work better generally, which is

especially helpful in high-performance computer systems where tasks change a lot. By spreading

traffic out well, adaptive routing gets rid of jams, speeds up data transfers, and makes better use of

network resources, all of which are important for applications that need to send and receive data

quickly and reliably. When it comes to fault tolerance, adaptive routing protects the network from

hardware problems and broken links. When something goes wrong, the flexible routing system finds

it and automatically sends data through other ways that work. As long as this real-time change is

made, transmission will continue even if there are multiple breakdowns. This keeps the network

reliable. In large-scale parallel processing systems, where downtime can have very bad effects, this

feature is very important. By changing with the times, adaptive routing not only keeps speed high but

also makes sure the network stays strong and fault-tolerant in settings that are hard to predict and

work well.

C. Evaluation of Routing Efficiency

1. Communication Latency (L)

Communication latency refers to the time it takes for data to travel from a source to a destination.

The latency L for a routing path in an MIN is typically expressed as:

 𝐿 = 𝐻 × 𝑑

Where:

- H is the number of hops (switching stages) in the network path.

- d is the average delay per hop.

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

221

https://internationalpubls.com

Static routing tends to have fixed paths with a predetermined H, which may lead to longer paths and

increased latency under congested conditions. Adaptive routing can select paths with fewer hops or

less congestion, minimizing L and enhancing efficiency.

2. Congestion Factor (η)

The congestion factor η on a link e is defined as:

 𝜂(𝑒) =
𝑇(𝑒)

𝐶(𝑒)

Where:

- T(e) is the traffic load on link e.

- C(e) is the capacity of link e.

For a complete path P:

 𝜂(𝑃) = ∑ 𝜂(𝑒) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝑃

Impact: High congestion (η(P)) leads to delays. Adaptive routing reduces congestion by dynamically

selecting less crowded paths.

3. Bandwidth Utilization (U)

Bandwidth utilization is given by:

 𝑈 = 𝐷 / (𝐵 × 𝑇)

Where:

- D is the total data transferred.

- B is the available bandwidth.

- T is the total time taken.

Static routing can be inefficient with bandwidth, while adaptive routing balances the data load across

paths, optimizing U.

4. Speedup Factor (S) of Parallel Algorithms

The speedup factor S is influenced by routing efficiency:

 𝑆 = 𝑇_𝑠𝑒𝑞/(𝑇_𝑝𝑎𝑟 + 𝐿)

Where:

- T_seq is the sequential execution time.

- T_par is the parallel execution time without communication delays.

- L is the communication latency.

5. Scalability (Σ)

Scalability is defined as:

 𝛴 =
1

1 + (
𝐿

𝑇𝑐𝑜𝑚𝑝
)

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

222

https://internationalpubls.com

Where:

- L is the average latency per communication round.

- T_comp is the computation time.

VI. Performance Analysis of Parallel Algorithms in MINs

Matrix Multiplication has a delay of 12.5 ms, which is a bit higher than other methods. This means

that it takes a little longer to move data and do calculations. Even so, it manages to reach a rate of 5.6

GB/s, which shows that the method is good at handling large amounts of data. With a speedup factor

of 3.5x, matrix multiplication works more than three times faster when it is done in parallel instead

of sequentially. But with an 85% scaling rating, it means that it grows pretty well, but there may be

some problems as the network gets bigger or as more data is added.

Table 2: Performance Analysis Of Parallel Algorithms In MINs

Algorithm Latency (ms) Throughput (GB/s) Speedup (x) Scalability (%)

Matrix Multiplication 12.5 5.6 3.5 85

Sorting 9.8 6.9 4.2 90

FFT 7.2 8.3 5.1 95

Graph Traversal 11.1 6.1 3.8 88

Sorting algorithms have lower delay, at 9.8 ms, which means that data moves faster across the

network. It can handle data more quickly than matrix multiplication, as shown by its output of 6.9

GB/s. With a speedup of 4.2x, parallel processing makes sorting tasks much faster, which makes it

very useful in parallel settings, as illustrate in figure 3. The scale number of 90% also shows that

sorting algorithms can work well with bigger networks or more work, while still being efficient.

Figure 3: Latency and Throughput Analysis Of Parallel Algorithms

Fast Fourier Transform (FFT) has the smallest delay, at 7.2 ms. This means that data can be sent very

quickly within the MINs, which is important for apps that need to handle signals in real time. With a

speed of 8.3 GB/s, it definitely moves data quickly, making it the best method for data transfer out of

all the ones that were looked at. FFT has the biggest improvement in processing time, with a speedup

factor of 5.1x. This is because it benefits a lot from parallelization. At 95%, its scaling is the greatest.

This means that FFT is very flexible and keeps working well even as the system gets bigger, which

makes it perfect for big projects. With a lag of 11.1 ms, Graph Traversal has average speed. This

means that the algorithm takes a little longer to run than sorting and FFT, but it is still pretty

efficient. With a rate of 6.1 GB/s, it can process data pretty well, though not as quickly as sorts. The

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

223

https://internationalpubls.com

speedup factor of 3.8x means that parallel work is sped up a lot, which is good for settings that use

parallel processing, as represent in figure 4.

Figure 4: Speedup and Scalability Analysis Of Parallel Algorithms

This table 3 shows the performance analysis of parallel algorithms on four different Multistage

Interconnection Network (MIN) architectures: Omega, Butterfly, Banyan, and Benes. It shows how

these networks handle data transfer, load balancing, fault tolerance, and scalability.

Table 3: Performance of parallel algorithms in different MIN architectures

MIN Architecture Latency (ms) Throughput

(GB/s)

Load Balancing

Efficiency (%)

Fault

Tolerance (%)

Scalability

(%)

Omega Network 10.2 6.2 78 70 88

Butterfly Network 8.5 7.5 85 75 92

Banyan Network 7.8 8 82 68 90

Benes Network 9 7 80 72 89

The Omega Network has a delay of 10.2 ms, which means that it transfers data not as quickly as

other designs. It can handle 6.2 GB/s of data at a time, which is a good amount for multiple

processing. But the load balance efficiency is only 78%, which isn't very good. This suggests that the

Omega Network might not spread out work as widely as other networks. This could cause speed

problems, especially when there are a lot of things to do. The 70% fault tolerance level means that

the Omega Network can handle some problems, but it might not be as strong as other designs. The

scalability grade of 88% shows that it can adapt to networks that get bigger, but it might have some

problems when they get really big.

Figure 5: Latency and Throughput Analysis Of MIN Architectures

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

224

https://internationalpubls.com

With a lower delay of 8.5 ms, the Butterfly Network does better than others. This means that data

transfers are faster and communication across the network works better. With a rate of 7.5 GB/s, it

can handle a lot of jobs at once, making it one of the best designs for apps that use a lot of data. The

Butterfly Network efficiently spreads tasks across its nodes, ensuring peak performance, with a load

balancing rate of 85%., as illustrate in figure 5. It is more stable than the Omega Network because its

fault tolerance level of 75% means it can handle breakdowns better. At 92%, its scaling shows that it

can easily adapt to larger jobs or network sizes.

Figure 6: Comparison of Efficiency, Fault Tolerance, and Scalability Analysis of MIN Architectures

This makes it perfect for large-scale parallel processing tasks. The Banyan Network has the lowest

delay, at 7.8 ms, which shows that it can send data very quickly, which is good for real-time apps. At

8 GB/s, it has the best speed, which means it works very well with big amounts of data. Its load

balancing effectiveness, on the other hand, is 82%, which is a little lower than the Butterfly Network.

This means that while it handles tasks well, there may be rare mismatches. The fault tolerance for the

Banyan Network is only 68%, which is the lowest of all the designs. This means that it is more likely

to fail. It has a growth rating of 90%, which means it works well as network numbers grow but isn't

as flexible as the Butterfly Network, shown in figure 6. The delay of the Benes Network is 9.0 ms,

and its output is 7.0 GB/s. This means that it works well, but not as well as the Butterfly or Banyan

networks. Its load balancing rate is 80%, which means it can fairly spread out the work. The Benes

Network is somewhat resistant to breakdowns, with a fault tolerance of 72%. It works better than the

Banyan and Omega networks. With an 89% growth grade, it does a good job of adapting to bigger

networks, though not quite as well as the Butterfly Network.

VII. Conclusion

The study of how parallel algorithms are put into action and what part they play in Multistage

Interconnection Networks (MINs) shows how important they are for making high-performance

computing more efficient. By looking at different parallel algorithms and MIN designs, it is clear that

delay, speed, load handling efficiency, fault tolerance, and scaling are some of the most important

factors that affect how well parallel processing works. When run in MINs, different parallel

algorithms, like sorting, matrix multiplication, Fast Fourier Transform (FFT), and graph traversal,

show different levels of speed. FFT is the most efficient algorithm because it has the lowest delay,

the highest output, and the best scaling. This makes it perfect for processing data in real time in

complex apps. Sorting algorithms also work well. Matrix multiplication and graph traversal aren't as

good, but flexible route methods in MINs can make them much better. The comparison of the MIN

designs Omega, Butterfly, Banyan, and Benes shows how important it is to pick the right architecture

for running parallel algorithms efficiently. Because it has lower delay, faster speed, better load

balance, and fault tolerance, the Butterfly Network always does better than others. This makes it the

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

225

https://internationalpubls.com

best choice for large-scale parallel processing jobs. The Omega and Benes Networks offer fair

performance for more general uses, while the Banyan Network is very efficient but not as good at

handling errors. Adaptive routing mechanisms emerge as a key factor in enhancing both performance

and fault tolerance in parallel processing. They change based on real-time network conditions,

making sure that data transfers quickly, traffic is kept to a minimum, and fault tolerance is raised. All

of these things are necessary to keep parallel algorithm processing running at high levels of

efficiency. It is possible to get very good results with complicated computer jobs by using

simultaneous processing in MINs. It is possible to greatly improve the speed of parallel algorithms

by choosing the right algorithms, setting up effective route strategies, and using the right MIN

designs. This is why MINs are an essential part of current high-performance computing systems.

This study shows that we need to keep looking into adaptable methods and advanced designs to

make parallel processing systems even more efficient and scalable.

References

[1] Abutaleb, M. A novel QCA shuffle-exchange network architecture with multicast and broadcast communication

capabilities. Microelectron. J. 2019, 93, 104640.

[2] Abedini, R.; Ravanmehr, R. Parallel SEN: A new approach to improve the reliability of shuffle-exchange network.

J. Supercomput. 2020, 76, 10319–10353.

[3] Gupta, S.; Pahuja, G.L. SEGIN-Minus: A New Approach to Design Reliable and Fault-Tolerant MIN. Recent Adv.

Comput. Sci. Commun. Former. Recent Patents Comput. Sci. 2020, 13, 370–380.

[4] Gholizadeh, R.; Valinataj, M. Reliability Improvement of Fault-Tolerant Shuffle Exchange Interconnection

Networks. In Proceedings of the IEEE 2020 10th International Conference on Computer and Knowledge

Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; pp. 336–341.

[5] Prakash, A.; Yadav, D.K.; Choubey, A. Terminal reliability analysis of multistage interconnection networks. Int. J.

Syst. Assur. Eng. Manag. 2020, 11, 110–125.

[6] Kamiura, N.; Kodera, T.; Matsui, N. A fault tolerant multistage interconnection network with partly duplicated

switches. J. Syst. Archit. 2002, 47, 901–916.

[7] Diab, H.; Tabbara, H.; Mansour, N. Simulation of dynamic input buffer space in multistage interconnection

networks. Adv. Eng. Softw. 2000, 31, 13–24.

[8] Skliarova, I. A Survey of Network-Based Hardware Accelerators. Electronics 2022, 11, 1029.

[9] Miranda, G.H.S.; Alexandrino, A.O.; Lintzmayer, C.N.; Dias, Z. Approximation Algorithms for Sorting λ-

Permutations by λ-Operations. Algorithms 2021, 14, 175.

[10] Nelson, M.; Sorenson, Z.; Myre, J.M.; Sawin, J.; Chiu, D. Parallel acceleration of CPU and GPU range queries over

large data sets. J. Cloud Comput. Adv. Syst. Appl. 2020, 9, 44.

[11] Donato, D. Simple, efficient allocation of modelling runs on heterogeneous clusters with MPI. Environ. Model.

Softw. 2017, 88, 48–57.

[12] Avesani, D.; Galletti, A.; Piccolroaz, S.; Bellin, A.; Maione, B. A dual-layer MPI continuous large-scale

hydrological model including Human Systems. Environ. Model. Softw. 2021, 139, 105003.

[13] Ahn, J.M.; Kim, H.; Cho, J.G.; Kang, T.; Kim, Y.-S.; Kim, J. Parallelization of a 3-Dimensional Hydrodynamics

Model Using a Hybrid Method with MPI and OpenMP. Processes 2021, 9, 1548.

[14] Lee, W.K.; Seo, H.; Zhang, Z.; Hwang, S.O. Tensorcrypto: High throughput acceleration of lattice-based

cryptography using tensor core on gpu. IEEE Access 2022, 10, 20616–20632.

[15] Lee, K.; Gowanlock, M.; Cambou, B. SABER-GPU: A Response-Based Cryptography Algorithm for SABER on

the GPU. In Proceedings of the 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing

(PRDC), Perth, Australia, 1–4 December 2021; pp. 123–132.

[16] Gupta, N.; Jati, A.; Chauhan, A.K.; Chattopadhyay, A. Pqc acceleration using gpus: Frodokem, newhope, and

kyber. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 575–586.

[17] Seo, S.C. SIKE on GPU: Accelerating supersingular isogeny-based key encapsulation mechanism on graphic

processing units. IEEE Access 2021, 9, 116731–116744.

[18] An, S.; Seo, S.C. Efficient parallel implementations of LWE-based post-quantum cryptosystems on graphics

processing units. Mathematics 2020, 8, 1781.

[19] Daly, P.; Qazi, H.W.; Flynn, D. Rocof-constrained scheduling incorporating non-synchronous residential demand

response. IEEE Trans. Power Syst. 2019, 34, 3372–3383.

[20] Nawaz, A.; Wang, H. Distributed stochastic security constrained unit commitment for coordinated operation of

transmission and distribution system. CSEE J. Power Energy Syst. 2021, 7, 708–718.

Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 28 No. 2 (2025)

226

https://internationalpubls.com

[21] Luburić, Z.; Pandžić, H.; Carrión, M. Transmission expansion planning model considering battery energy storage,

tcsc and lines using ac opf. IEEE Access 2020, 8, 203429–203439.

[22] Zhuo, Z.; Zhang, N.; Yang, J.; Kang, C.; Smith, C.; O’Malley, M.J.; Kroposki, B. Transmission expansion planning

test system for ac/dc hybrid grid with high variable renewable energy penetration. IEEE Trans. Power Syst. 2020,

35, 2597–2608.

