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Abstract:  

This work studies the information brought by the degree of truth, falsity, and 

indeterminacy Membership in the Neutrosophic set (NS) defined as a vector 

representation. The tangent similarity measure into the Local Neutrosophic 

Rough set (LNRS) is proposed by tangent similarity measure for NSs and is 

also proved with some of its properties and an algorithm is generated for the 

proposed approach between two LNRS. Further, the proposed similarity 

measure is validated with the school selection problem. 
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1. Introduction 

In 1988, F. Smarandache [3] presented a new concept named NS. The idea of NS makes imprecise, 

indeterminate and inconsistent membership degrees independent, while explicitly quantifying 

indeterminacy. Indeterminacy is a significant factor in many real-world decision-making problems. 

Zadeh [11] initially invented the fuzzy set (FS) theory, which is used to express uncertainty and 

incomplete information. Atnassov [10] enhanced the idea of FS, namely Intuitionistic FS (IFS). IFS 

distinguishes itself by assigning a membership and non-membership degree to every element in the 

collection. Wang et al [4] initiated the concept of interval valued NS (IVNS). The concept expands the 

idea of interval valued numbers. The concept of Single Valued Neutrosophic Set (SVNS) was 

introduced by wang et al [5] as a subset of NS. SVNS have applications in technical and scientific 

domains. NS, SVNS and IVNS have been researched and used in several areas, including decision 

making [1], medical diagnosis, image segmentation and so on. 

Pawlak [20] developed the Rough Set (RS) concept in 1982. It is formed by two components: 

equivalence relation and crisp set. Rough Set theory has many applications and can be integrated into 

other fields. The reconstruction of a classical rough set is defined as a Local Rough Set (LRS). It was 

initiated by Yuhua Qian [19]. LRS controls limited labeled data, overfitting in attribute reduction and 

computational ineffectiveness. Rough Neutrosophic Set (RNS) concepts were first introduced by 

Broumi and F. Smarandache [14]. RNS is defined by using the ideas of NS and RS. The LNRS concept 

was initiated by S. Bharathi et al [12]. The handling of uncertainty problems is effectively managed by 

this LNRS tool. 

In decision-making scenarios, it is essential to consider the notion of similarity. The literature analysis 

reveals that several methods have been proposed to determine the level of similarity between NS, 

SVNS, and IVNS [7, 8]. Ye [7] illustrated the application of similarity metrics utilizing hamming and 

Euclidean distances to IVNS and presented an instance of decision-making issues. Surapati Pramanik, 
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and K.Mondal [16] suggested using the cosine similarity measure for RNS and also introduced a 

weighted fuzzy similarity measure based on the tangential function. Surapati Pramanik and K. Mondal 

[15,8] also introduced tangent SM between IFS and SVNS and investigated some of its properties.  

Tangent similarity measures were applied in FS, IFS, NS, IVNS, SVNS and SVBNS. However, there 

is no investigation combined with the LRS and NS. This work presents the notion of a tangent function 

based on Local Neutrosophic Rough similarity measure and investigates its properties. This proposed 

method aims to reduce the attribute and computational time. Further, it demonstrates the proposed 

approach to the school selection problem. 

2. Preliminaries 

Definition 2.1 [14]  

Let 𝑆 be non-zero set. Assume 𝑍 is a relation of equivalence in 𝑆 and 𝑊 be a relation of neutrosophic 

in 𝑆, also truth 𝑇𝑊, indeterminacy 𝐼𝑊 , falsity  𝐹𝑊 membership function. The upper and lower 

values of approximation on  𝑊,  the pair (𝑆, 𝑍) be approximation space defined 𝑁(𝑊) and 𝑁̅(𝑊) 

are provided below. 

𝑁(𝑊) = {< 𝑔, 𝑇𝑁(𝑊)(𝑔), 𝐼𝑁(𝑊)(𝑔), 𝐹𝑁(𝑊)(𝑔) >| 𝑏 𝜖 [𝑔]𝑍, 𝑔 𝜖 𝑆 } 

𝑁̅(𝑊) = {< 𝑔, 𝑇𝑁(𝑊)(𝑔), 𝐼𝑁(𝑊)(𝑔), 𝐹𝑁(𝑊)(𝑔) >|𝑏 𝜖 [𝑔]𝑍, 𝑔 𝜖 𝑆} Where  

𝑇𝑁(𝑊)(𝑔) =∧𝑑𝜖[𝑔]𝑍
𝑇𝐷(𝑑),   𝐼𝑁(𝐷)(𝑐) = ∧𝑑𝜖[𝑐]𝑍

𝐼𝐷(𝑑) ,      𝐹𝑁(𝐷)(𝑐) = ∧𝑑𝜖[𝑐]𝑍
𝐹𝐷(𝑑) , 

𝑇𝑁̅(𝐷)(𝑐) =∨𝑑𝜖[𝑐]𝑍
𝑇(𝐷)(𝑑) ,  𝐼𝑁̅(𝐷)(𝑐) =∨𝑑𝜖[𝑐]𝑍

𝐼(𝐷)(𝑑) , 𝐹𝑁̅(𝐷)(𝑐) =∨𝑑𝜖[𝑐]𝑍
𝐹(𝐷)(𝑑)   

Such that  𝑇𝑁(𝐷)(𝑐) , 𝐼𝑁(𝐷)(𝑐), 𝐹𝑁(𝐷)(𝑐), 𝑇𝑁̅(𝐷)(𝑐), 𝐼𝑁̅(𝐷)(𝑐), 𝐹𝑁̅(𝐷)(𝑐): 𝐷𝜖[0,1], 

So, 0 ≤  𝑇𝑁(𝐷)(𝑐) + 𝐼𝑁(𝐷)(𝑐) + 𝐹𝑁(𝐷)(𝑐) ≤ 3 𝑎𝑛𝑑 

0 ≤ 𝑇𝑁̅(𝐷)(𝑐) + 𝐼𝑁̅(𝐷)(𝑐) +  𝐹𝑁̅(𝐷)(𝑐) ≤ 3. 

where symbols “∧” and” ∨” means maximum and minimum operators respectively.  Where [𝑐]𝑍   is 

equivalence class in 𝑍.  Then  (𝑁(𝐷), 𝑁̅(𝐷)) is defined as Rough Neutrosophic set in (𝑆, 𝑍). 

Definition 2.2 [19]  

Let (𝑆, 𝑄) being a space of approximations. Let 𝐷 be an including degree in 𝑃(𝑆)  ×  𝑃(𝑆). If any 𝐹 ⊆
𝑆 , the β – lower, γ- upper approximations are as follows 

𝑄𝛼(𝐹) = {𝑓|𝐷 (𝐹  [𝑞]𝑄  ≥  𝛼 , 𝑓 𝜖 𝐹 } ,⁄  

𝑄𝛽
(𝐹) = {𝑓|𝐷 (𝐹  [𝑞]𝑄 >  𝛽 , 𝑓 𝜖 𝐹 }⁄ . This pair (𝑄𝛼(𝐹), 𝑄𝛽

(𝐹)) is defined as LRS. 

Definition 2.3 [12]  

Let (𝑊, 𝑅)  be a space of approximation, 𝑊 be non-zero set and R be a relation of equivalence in 𝑊. 

Let 𝐾 be a neutrosophic rough set on 𝑊, defined by membership 𝜏𝐾, indeterminacy 𝛿𝐾  and 

non-membership 𝜂𝐾 . Let 0 ≤ 𝛽 < 𝛼 ≤ 1 at some 𝐾𝜖𝑊, the local α – lower and local β - upper 

approximations are defined as 𝑁𝛼(𝐾) 𝑎𝑛𝑑  𝑁𝛽(𝐾)  in 𝑊 respectively.  Define  

𝑁𝛼(𝐾) = {(𝑙 , 𝐷((𝜏𝑁𝛼(𝐾)(𝑙) , 𝛿𝑁𝛼(𝐾)(𝑙) , 𝜂𝑁𝛼(𝐾)(𝑙)) [𝑙]𝑅))  ≥  𝛼 | 𝑙 𝜖 𝑊⁄ , 

[𝑙]𝑅 ≠ ∅ }    
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𝑁𝛽(𝐾) = {(𝑙 , 𝐷((𝜏𝑁𝛽(𝐾)(𝑙) , 𝛿𝑁𝛽(𝐾)(𝑙) , 𝜂𝑁𝛽(𝐾)(𝑙)) [𝑙]𝑅))  >  𝛽 | 𝑙 𝜖 𝑊⁄ , [𝑙]𝑅 ≠ ∅ }, where 

𝜏𝑁𝛼(𝐾)(𝑙) = 𝑚𝑖𝑛𝑚𝜖[𝑙]𝑅
𝜏𝐾(𝑚)   , 𝛿𝑁𝛼(𝐾)(𝑙) 

= 𝑚𝑎𝑥𝑚𝜖[𝑙]𝑅
𝛿𝐾(𝑚)    , 𝜂𝑁𝛼(𝐾)(𝑙) = 𝑚𝑎𝑥𝑚𝜖[𝑙]𝑅

𝜂𝐾(𝑚)   ,   

𝜏𝑁𝛽(𝐾)(𝑙) = 𝑚𝑎𝑥𝑚𝜖[𝑙]𝑅
𝜏𝐾(𝑚)   , 𝛿𝑁𝛽(𝐾)(𝑙) 

= 𝑚𝑖𝑛𝑚𝜖[𝑙]𝑅
𝛿𝐾(𝑚)    , 𝜂𝑁𝛽(𝐾)(𝑙) = 𝑚𝑖𝑛𝑚𝜖[𝑙]𝑅

𝜂𝐾(𝑚) 

Here 𝜏𝐾(𝑙), 𝛿𝐾(𝑙), 𝜂𝐾(𝑙) denoted as membership, indeterminacy & non membership of 𝑙 in 
𝐾.Therefore 

0 ≤  𝜏𝑁𝛼(𝐾)(𝑙) + 𝛿𝑁𝛼(𝐾)(𝑙) + 𝜂𝑁𝛼(𝐾)(𝑙) ≤ 3 , 

0 ≤ 𝜏𝑁𝛽(𝐾)(𝑙) + 𝛿𝑁𝛽(𝐾)(𝑙) + 𝜂𝑁𝛽(𝐾)(𝑙) ≤ 3. The functions 

𝜏𝑁𝛼(𝐾)(𝑙), 𝛿𝑁𝛼(𝐾)(𝑙), 𝜂𝑁𝛼(𝐾)(𝑙), 𝜏𝑁𝛽(𝐾)(𝑙) + 𝛿𝑁𝛽(𝐾)(𝑙) + 𝜂𝑁𝛽(𝐾)(𝑙): 𝐾 →]0−, 1+[ .  

The pair (𝑁𝛼(𝐾) , 𝑁𝛽(𝐾)) called LNRS in W. 

3. Local Neutrosophic Rough Similarity Measure on the basis of Tangent Function 

Definition 3.1 

Consider 𝑇𝐿𝑁𝑅𝑆 (𝐾,𝐿) = {𝑥𝑝, 𝜏(𝐾,𝐿)(𝑥𝑝), 𝛿(𝐾,𝐿)(𝑥𝑝), 𝜂(𝐾,𝐿)(𝑥𝑝)} 

𝑇𝐿𝑁𝑅𝑆 (𝐾,𝐿) = {𝑥𝑝, 𝜏(𝐾,𝐿)(𝑥𝑝), 𝛿
(𝐾,𝐿)

(𝑥𝑝), 𝜂
(𝐾,𝐿)

(𝑥𝑝)} 

𝑇𝐿𝑁𝑅𝑆 (𝐾,𝐿), 𝑇𝐿𝑁𝑅𝑆 (𝐾,𝐿) are two lower and upper LNRS. Here 𝜏, 𝛿, 𝜂 are the truth, indeterminate and 

incompatible membership values. The similarity measure of LNRS established with tangent function 

only on the direction of two vectors, and omits the effect of distance between those vectors. It can be 

represented as follows. 

𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) =
1

𝑛
∑ 1 − tan [

𝜋|𝜏𝐾(𝑥𝑝)−𝜏𝐿(𝑥𝑝)|+|𝛿𝐾(𝑥𝑝)−𝛿𝐿(𝑥𝑝)|+|𝜂𝐾(𝑥𝑝)−𝜂𝐿(𝑥𝑝)|

12
]𝑛

𝑝=1         (3.1)             

𝜏𝐾(𝑥𝑝) =
𝜏(𝐾)(𝑥𝑝)+𝜏(𝐾)(𝑥𝑝)

2
 , 𝜏𝐿(𝑥𝑝) =

𝜏(𝐿)(𝑥𝑝)+𝜏(𝐿)(𝑥𝑝)

2
 

𝛿𝐾(𝑥𝑝) =
𝛿(𝐾)(𝑥𝑝)+𝛿(𝐾)(𝑥𝑝)

2
, 𝛿𝐿(𝑥𝑝) =

𝛿(𝐿)(𝑥𝑝)+𝛿(𝐿)(𝑥𝑝)

2
 

𝜂𝐾(𝑥𝑝) =
𝜂(𝐾)(𝑥𝑝)+𝜂(𝐾)(𝑥𝑝)

2
, 𝜂𝐿(𝑥𝑝) =

𝜂(𝐿)(𝑥𝑝)+𝜂(𝐿)(𝑥𝑝)

2
. 

Preposition 3.2 

The LNRS is based on the tangent similarity measure with truth, indeterminate and incompatible 

function 𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿)  which satisfies the conditions as follows. 

I.0 ≤ 𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) ≤ 1 

II.𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) = 1 iff 𝐾 = 𝐿 

III.𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) = 𝑇𝐿𝑁𝑅𝑆(𝐿,𝐾) 

IV.Let 𝑀 be a LNRS and 𝐾 ⊂ 𝐿 ⊂ 𝑀 then 𝑇𝐿𝑁𝑅𝑆(𝐾,𝑀) ≤ 𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) and 𝑇𝐿𝑁𝑅𝑆(𝐾,𝑀) ≤ 𝑇𝐿𝑁𝑅𝑆(𝐿,𝑀). 
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Proof 

1. As known, truth, indeterminate and incompatible membership functions lie in [0,1] and the 

value of tangent function also lies between [0,1]. Then the tangent similarity measure also lies between 
[0,1].  

 Therefore, consequently  0 ≤ 𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) ≤ 1. 

2. For any pair 𝐾 and 𝐿 in LNRS, if 𝐾 = 𝐿 then 𝜏𝐾(𝑥𝑝) = 𝜏𝐿(𝑥𝑝) , 𝛿𝐾(𝑥𝑝) = 𝛿𝐿(𝑥𝑝) , 𝜂𝐾(𝑥𝑝) =

𝜂𝐿(𝑥𝑝). 

Also, 

|𝜏𝐾(𝑥𝑝) − 𝜏𝐿(𝑥𝑝)| = 0 , |𝛿𝐾(𝑥𝑝) − 𝛿𝐿(𝑥𝑝)| = 0 ,   

|𝜂𝐾(𝑥𝑝) − 𝜂𝐿(𝑥𝑝)| = 0 

Therefore 𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) = 1.  

Conversely, assume 𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) = 1, then 

|𝜏𝐾(𝑥𝑝) − 𝜏𝐿(𝑥𝑝)| = 0 , |𝛿𝐾(𝑥𝑝) − 𝛿𝐿(𝑥𝑝)| = 0 , |𝜂𝐾(𝑥𝑝) − 𝜂𝐿(𝑥𝑝)| = 0 

Which implies that 𝜏𝐾(𝑥𝑝) = 𝜏𝐿(𝑥𝑝) , 𝛿𝐾(𝑥𝑝) = 𝛿𝐿(𝑥𝑝) , 𝜂𝐾(𝑥𝑝) = 𝜂𝐿(𝑥𝑝). Thus 𝐾 = 𝐿. 

3. From definition 3.1,  

𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) =
1

𝑛
∑ 1 − tan [

𝜋|𝜏𝐾(𝑥𝑝)−𝜏𝐿(𝑥𝑝)|+|𝛿𝐾(𝑥𝑝)−𝛿𝐿(𝑥𝑝)|+|𝜂𝐾(𝑥𝑝)−𝜂𝐿(𝑥𝑝)|

12
]𝑛

𝑝=1   

 =
1

𝑛
∑ 1 − tan [

𝜋|𝜏𝐿(𝑥𝑝)−𝜏𝐾(𝑥𝑝)|+|𝛿𝐿(𝑥𝑝)−𝛿𝐾(𝑥𝑝)|+|𝜂𝐿(𝑥𝑝)−𝜂𝐾(𝑥𝑝)|

12
]𝑛

𝑝=1   

𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿)  = 𝑇𝐿𝑁𝑅𝑆(𝐿,𝐾). 

4. If 𝐾 ⊂ 𝐿 ⊂ 𝑀 then 𝜏𝐾(𝑥𝑝) ≤ 𝜏𝐿(𝑥𝑝) ≤ 𝜏𝑀(𝑥𝑝) , 𝛿𝐾(𝑥𝑝) ≥ 𝛿𝐿(𝑥𝑝) ≥ 𝛿𝑀(𝑥𝑝) and 

𝜂𝐾(𝑥𝑝) ≥ 𝜂𝐿(𝑥𝑝) ≥ 𝜂𝑀(𝑥𝑝). 

Which implies the following inequalities, 

|𝜏𝐾(𝑥𝑝) − 𝜏𝐿(𝑥𝑝)| ≤ |𝜏𝐾(𝑥𝑝) − 𝜏𝑀(𝑥𝑝)| , |𝜏𝐿(𝑥𝑝) − 𝜏𝑀(𝑥𝑝)| ≤ |𝜏𝐾(𝑥𝑝) − 𝜏𝑀(𝑥𝑝)|, 

|𝛿𝐾(𝑥𝑝) − 𝛿𝐿(𝑥𝑝)| ≥ |𝛿𝐾(𝑥𝑝) − 𝛿𝑀(𝑥𝑝)|, |𝛿𝐿(𝑥𝑝) − 𝛿𝑀(𝑥𝑝)| ≥ |𝛿𝐾(𝑥𝑝) − 𝛿𝑀(𝑥𝑝)|, 

|𝜂𝐾(𝑥𝑝) − 𝜂𝐿(𝑥𝑝)| ≥ |𝜂𝐾(𝑥𝑝) − 𝜂𝑀(𝑥𝑝)| , |𝜂𝐿(𝑥𝑝) − 𝜂𝑀(𝑥𝑝)| ≥ |𝜂𝐾(𝑥𝑝) − 𝜂𝑀(𝑥𝑝)|. 

Hence  𝑇𝐿𝑁𝑅𝑆(𝐾,𝑀) ≤ 𝑇𝐿𝑁𝑅𝑆(𝐾,𝐿) and 

  𝑇𝐿𝑁𝑅𝑆(𝐾,𝑀) ≤  𝑇𝐿𝑁𝑅𝑆(𝐿,𝑀). 

4. Algorithm for the proposed method 

Let the attribute 𝑍𝑖 = {𝑧1, 𝑧2, … 𝑧𝑐} and let 𝐻𝑗 = {ℎ1, ℎ2, … ℎ𝑞} be the criteria. To calculate the decision 

making for all attributes  𝑍𝑖{𝑖 = 1,2, … 𝑐} corresponding to alternatives  𝐺𝑑{𝑑 = 1,2, … 𝑒} based on 

LNRS. We can create a decision matrix by utilizing all of the evaluation data provided by the decision 

makers for each choice. The algorithm for the proposed method is as follows. 

Step:1 Formulate the decision matrix between attributes and criteria by applying LNRS. It can be 

denoted as below. 
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 𝒛𝟏 𝒛𝟐 … 𝒛𝒄 

𝒉𝟏 𝒔𝟏𝟏(𝒉𝟏,𝒛𝟏), 𝒔𝟏𝟏(𝒉𝟏,𝒛𝟏) 𝒔𝟏𝟐(𝒉𝟏,𝒛𝟐), 𝒔𝟏𝟐(𝒉𝟏,𝒛𝟐) … 𝒔𝟏𝒄(𝒉𝟏,𝒛𝒄), 𝒔𝟏𝒄(𝒉𝟏,𝒛𝒄) 

𝒉𝟐 𝒔𝟐𝟏(𝒉𝟐,𝒛𝟏), 𝒔𝟐𝟏(𝒉𝟐,𝒛𝟏) 𝒔𝟐𝟐(𝒉𝟐,𝒛𝟐), 𝒔𝟐𝟐(𝒉𝟐,𝒛𝟐) … 𝒔𝟐𝒄(𝒉𝟐,𝒛𝒄), 𝒔𝟐𝒄(𝒉𝟐,𝒛𝒄) 

… … … … … 

𝒉𝒒 𝒔𝒒𝟏(𝒉𝒒,𝒛𝟏), 𝒔𝒒𝟏(𝒉𝒒,𝒛𝟏) 𝒔𝒒𝟐(𝒉𝒒,𝒛𝟐), 𝒔𝒒𝟐(𝒉𝒒,𝒛𝟐) … 𝒔𝒒𝒄(𝒉𝒒,𝒛𝒄), 𝒔𝒒𝒄(𝒉𝒒,𝒛𝒄) 

Table:1 

Step: 2 Formulate the decision matrix between attributes and alternatives. 

 𝒈𝟏 𝒈𝟐 … 𝒈𝒎 

𝒛𝟏 𝒔𝟏𝟏(𝒛𝟏,𝒈𝟏), 𝒔𝟏𝟏(𝒛𝟏,𝒈𝟏) 𝒔𝟏𝟐(𝒛𝟏,𝒈𝟐), 𝒔𝟏𝟐(𝒛𝟏,𝒈𝟐) … 𝒔𝟏𝒎(𝒛𝟏,𝒈𝒎), 𝒔𝟏𝒎(𝒛𝟏,𝒈𝒎) 

𝒛𝟐 𝒔𝟐𝟏(𝒛𝟐,𝒈𝟏), 𝒔𝟏𝟏(𝒛𝟐,𝒈𝟏) 𝒔𝟐𝟐(𝒛𝟐,𝒈𝟐), 𝒔𝟐𝟐(𝒛𝟐,𝒈𝟐) … 𝒔𝟐𝒎(𝒛𝟐,𝒈𝒎), 𝒔𝟐𝒎(𝒛𝟐,𝒈𝒎) 

… … … … … 

𝒛𝒄 𝒔𝒄𝟏(𝒛𝒄,𝒈𝟏), 𝒔𝒄𝟏(𝒛𝒄,𝒈𝟏) 𝒔𝒄𝟐(𝒛𝒄,𝒈𝟐), 𝒔𝒄𝟐(𝒛𝒄,𝒈𝟐) … 𝒔𝒄𝒎(𝒛𝒄,𝒈𝒎), 𝒔𝒄𝒎(𝒛𝒄,𝒈𝒎) 

Table:2 

Step: 3 Computation of the lower approximation (LA) and upper approximation (UA) utilizing 

LNRS. For 𝑛 = 1 to 𝑘. 

I.Compute [𝐴𝑛]𝑅 of  𝐴𝑛,  𝐴𝑛𝜖𝐴, 𝐴 is the universal set.       //Calculating the equivalence classes.  

II.Find the inclusion degree 

Fix the value of 𝛼 and 𝛽. If 𝐷(𝐴/[𝐴𝑛]𝑅) ≥ 𝛼 

Then 𝐿𝐴 ∪ {𝐴𝑛} → 𝐿𝐴, 𝑛 → 𝑛 + 1. And 𝐷(𝐴/[𝐴𝑛]𝑅) < 𝛽 

Then 𝑈𝐴 ∪ {𝐴𝑛} → 𝑈𝐴 

Step: 4 Finding the tangent similarity measure between attributes and alternatives 

Calculate the tangent similarity measure based on lower and upper approximation from Table 1 and 

Table 2. 

Step: 5 Priority of the alternatives 

The calculated measure value is sorted in ascending order. The priority that has the highest measure 

value is the most appropriate alternative. 

5. Demonstration of proposed approach 

This section demonstrates the LNRS strategy with the utilization and efficiency of the proposed 

approach. Let’s examine the following problem in decision making. This assumes that the three parents 

can provide their children with a proper education at an appropriate school. They select three schools 

for their kids to get admission. Assume that there are three parents 𝑃 = {𝑝1, 𝑝2, 𝑝3}, S =  {Montessori 

school, International school, Matriculation school, CBSE School, Private public school} be a set of 

schools. The following five criteria require the parent to make a decision. B =  {Financial health, 

Quality of education, Transportation, Sports and other activities, Environment and Safety concerns}. 

Parents can make decisions by using the following LNRS approach. 

Let the attribute 𝑄 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} be a universal set. The equivalence classes of the attributes are 

{𝑑1, 𝑑2}, {𝑑3, 𝑑4}, {𝑑5} and 𝑋 =  {𝑑1, 𝑑2, 𝑑4}. Assume that the parameter 𝛼 = 0.6 and 𝛽 = 0.2. Here the 

attribute is defined as 

𝑄 = { Financial health, Quality of education, Transportation, 

 Sports and other activities, Environment and Safety concerns}  respectively 
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The following table shows that the relationship is based on parents and their criteria. 

𝑄 
Financial 

health  

Quality of 

education 
Transportation 

Sports and other 

activities 

Environment and 

Safety concern 

𝑝1 
(. 2, .4, .4) 

   (.6, .2, .2) 

(. 2, .6, .4) 

   (.4, .4, .2) 

(. 8, .1, .1) 

    (.8, .1, .3) 

(. 5, .2, .3) 

   (.7, .4, .1) 

(0, .8, .4) 

   (.2, .6, .2) 

𝑝2 
(. 9, .1, .1) 
(. 9, .1, .1) 

(. 8, .2, .1) 

   (.6, .2, .3) 

(. 2, .7, .2) 

    (.2, .7, .2) 

(. 6, .2, .2) 

   (.8, .2, .2) 

(. 8, .1, .2) 

   (.8, .1, .2) 

𝑝3 
(. 6, .4, .1) 

   (. 8,.2, .1) 

(. 6, .4, .2) 

   (.4, .2, .2) 

(. 3, .6, .3) 

    (.5, .4, .1) 

(. 5, .1, .4) 

   (.5, .1, .6) 

(. 2, .8, .1) 

   (.4, .6, .1) 

Table:3 

The following table presents the relationship between the criteria and their respective schools. 

Relation 
Montessori 

school 

International 

school 

Matriculation 

school 

CBSE 

School 

Private 

public 

school 

Financial 

health 

(. 8, .2, 0) 

   (.4, .6, .2) 

(. 2, .5, .3) 

   (.6, .3, .3) 

(. 9, .1, 0) 

    (.9, .1, 0) 

(. 1, .6, .3) 

   (.7, .2, .1) 

(. 6, .2, .2) 

   (.2, .8, .2) 

Quality of 

education 

(. 7, .1, .2) 
(. 7, .3, .2) 

(. 3, .7, 0) 

   (.5, .3, .2) 

(. 7, .2, .1) 

    (.1, .6, .5) 

(. 2, .6, .2) 

   (.8, .4, 0) 

(. 5, .3, .2) 

   (.7, .1, .4) 

Transportation 
(. 2, .6, .2) 

   (. 8,.2, .2) 

(. 8, .1, .1) 

   (.6, .3, .3) 

(. 3, .5, .2) 

    (.5, .3, .4) 

(. 3, .7, 0) 

   (.7, .1, .4) 

(. 8, .1, .1) 

   (.2, .7, .3) 

Sports and 

other 

activities 

(. 5, .3, .2) 
(. 3, .5, .4) 

(. 4, .3, .3) 

   (.2, .7, .5) 

(. 5, .4, .1) 

    (.3, .8, .5) 

(. 3, .6, .1) 

   (.7, .2, .3) 

(. 7, .1, .2) 

   (.3, .1, .2) 

Environment 

and Safety 

concern 

(. 2, .5, .3) 

   (. 4,.3, .7) 

(. 1, .7, .2) 

   (.3, .3, .2) 

(. 8, .1, .1) 

    (.2, .1, .3) 

(. 6, .1, .3) 

   (.2, .3, .3) 

(. 5, .1, .4) 

   (.3, .3, .4) 

Table:4 

 To determine the upper and lower approximations by using LNRS. 

[𝑑1]𝑅 = {𝑑1, 𝑑2},  [𝑑2]𝑅 = {𝑑1, 𝑑2},  [𝑑4]𝑅 = {𝑑3, 𝑑4}   

𝐷(𝑋/[𝑑1]𝑅) =
2

3
 , 𝐷(𝑋/[𝑑2]𝑅) =

2

3
 , 𝐷(𝑋/[𝑑4]𝑅) =

1

3
 . 

𝑇0.6(𝑋) = {𝑑1, 𝑑2} 

𝑇0.2(𝑋) = [𝑑1]𝑅 ∪ [𝑑2]𝑅 ∪ [𝑑4]𝑅, 𝑇0.4(𝑋) = {𝑑1, 𝑑2, 𝑑3, 𝑑4}. 

Reduce the attributes in Tables 3 and 4 using these lower and upper approximations. Further, apply 

these values in equation (3.1) with a reduction of the attributes. Table 5 determines the tangent 

similarity measure for selecting a suitable school. 

LNRS 

similarity 

measure 

Montessori 

School 

International 

School 

Matriculation 

School 

CBSE 

School 

Private 

Public 

School 

𝑝1 0.7698 0.8337 0.7466 0.8017 0.8028 
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𝑝2 0.7848 0.7315 0.8172 0.7644 0.8078 

𝑝3 0.8124 0.8020 0.7798 0.7911 0.8028 

Table:5 

The greatest similarity measure in Table 5 is the decision to select a proper school. Thus, parent 𝑝1 can 

select an International school, the parent 𝑝2 can select Matriculation school, parent 𝑝3 can select 

Montessori School. 

6. Comparative analysis 

The effectiveness of the proposed LNRS approach based on tangent function is illustrated through a 

comparison with the existing similarity measures of cosine, cosecant, and tangent logarithmic distance 

of RNS were discussed in [2, 16]. They are listed below. 

Cosine SM of RNS [16] 

𝐶𝑅𝑁𝑆(𝐾, 𝐿) =   

1

𝑛
∑

𝜔𝑇𝐾(𝑥𝑓)𝜔𝑇𝐿(𝑥𝑓)+𝜔𝐼𝐾(𝑥𝑓)𝜔𝐼𝐿(𝑥𝑓)+𝜔𝐹𝐾(𝑥𝑓)𝜔𝐹𝐿(𝑥𝑓)

√(𝜔𝑇𝐾(𝑥𝑓))2+(𝜔𝐼𝐾(𝑥𝑓))2+(𝜔𝐹𝐾(𝑥𝑓))2   √(𝜔𝑇𝐿(𝑥𝑓))2+(𝜔𝐼𝐿(𝑥𝑓))2+(𝜔𝐹𝐿(𝑥𝑓))2

𝑛
𝑓=1                        (6.2)  

Tangent logarithmic distance and cosecant SM of RNS [2] 

I.𝑇𝐿𝐷𝑅𝑁𝑆(𝐾, 𝐿) = 

1

2(𝑛+1)
[∑[tan (log (1 + |𝜏𝐾(𝑥𝑝) − 𝜏𝐿(𝑥𝑝)| + |𝛿𝐾(𝑥𝑝) − 𝛿𝐿(𝑥𝑝)| + |𝛾𝐾(𝑥𝑝) − 𝛾𝐿(𝑥𝑝)| + |𝜏𝐾(𝑥𝑝) −

𝜏𝐿(𝑥𝑝)| + |𝛿𝐾(𝑥𝑝) − 𝛿𝐿(𝑥𝑝)|                                                                                (6.3)                                                                                     

II.𝐶𝑂𝑆𝐸𝐶𝑅𝑁𝑆(𝐾, 𝐿) =
1

5𝑛
[∑ 𝐶𝑂𝑆𝐸𝐶[

(𝜋(1+𝑋+𝑌))

4𝑛
]].                                                             (6.4) 

Applying these three equations (6.2,6.3,6.4), without attribute reduction and diagnosing the three 

patients suffering from viral fever [2, 16]. The proposed approach involving attribute reduction should 

be utilized to address the challenge of achieving an accurate diagnosis. This reduction reduces 

computational time while also making it more deterministic. Using lower and upper approximations 

to reduce the attribute in the given problem [2, 16]. The highest values are obtained, for the patients 

suffering from viral fever.  

Conclusion 

This paper describes tangent SM and proves some of its properties. The utility of this proposed method 

is that it reduces the computational time. Also, we provided a comparative study of the current 

approaches. Further, an application was given to the proposed method, that provides parents to select 

suitable schools for their kids for proper education. In future the proposed concept can be applied in 

clustering analysis and medical diagnosis. 
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