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1. Introduction

Singularly perturbed singular boundary value problems (SPSBVP) are encountered in many areas of
engineering and science, including quantum mechanics, fluid mechanics, chemical reactor theory,
optimal control, and so on. There are numerous methods for solving the problems listed above. The
authors in [1-2] solved similar problems in the past, but their solutions are only applicable to non-
singular problems. Mohanty et al. [3] proposed a spline in compression method to solve SPSBVP
numerically. Mohanty and Jha [4] developed spline in compression methods on variable mesh to solve
the same problem. Bava [5] suggested several computational techniques based on spline to solve linear
singularly perturbed boundary value problems. Rashidinia et al. [6] solved a singularly perturbed
singular boundary value problem using cubic spline.

Phaneendra et al. [7] suggested a fourth order convergence finite difference scheme using a non-
polynomial spline for solving SPSBVP. Wang et al. [8] proposed a new numerical scheme using
Fourier sine series for the solution of singular and singularly perturbed boundary value problems. The
procedure removes the singularity of the problem in a natural way. Miller et al. [9] devised uniformly
convergent numerical schemes composed of upwind-difference operators on uniform meshes. Geng
[10] constructed a novel method using reproducing kernel method for solving a class of singularly
perturbed boundary value problems.
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Zahra and Ashraf [11] solved a singularly perturbed semi-linear boundary value problem having two-
parameters using an exponential spline on a Shishkin mesh. Rai and Sharma [12] solved a problem
having layer behaviour which arise in computational neuroscience in the modelling of neuronal
variability. Authors derived an exponentially fitted scheme based on Il'in-Allen-Southwell on a
specially designed mesh. Miller and O'Riordan [13] constructed a robust numerical method with a
specially constructed piecewise-uniform mesh that is used to solve a singularly perturbed problem
arising in the modelling of enzyme kinetics. Liu and Huang [14] proposed tailored finite point method
for a fourth order singularly perturbed partial differential equation reduced to a second order PDE
system with coupled boundary conditions. Swarnakar et al. [15] applied exponential spline method for
numerical solution of singularly perturbed two-point singular boundary value problem.

1. Objectives

The proposed adaptive spline method provides high accuracy across the entire solution domain. It
remains numerically stable and convergent, in the presence of the small perturbation perameter. This
method is particularly well-suited for solving singularly perturbed two-point singular boundary value
problems efficiently.

3. Problem description
Let a singularly perturbed two-point singular boundary value problem

szV; + p(v)i—v: +qyw(w)=gw), 0<v<I (1)
where 0 < e << I,p(v) < L < 0,q(v) > 0 and L is a positive constant and the boundary
conditions are w(0) = Candw(/) =D (2)
where C and D are finite constants.
4. Numerical Approach using an Adaptive Spline

Consider a mesh with grid points v; on [a, b] suchthat 4: a = vy, < v; <...< vy_; < vy = b Where
h=v;—v;_;fori=12,...,N. Let the exact solution of w at the grid point v; denoted as W; and w;
be its approximate solution.

Letp; = p(vi), ¢ = q(vy) and g; = g(v;).
A function S, (v, u) of class C?[a, b] which interpolates w(v) at the mesh points v; depends on a
parameter u, reduces to cubic spline S,(v) in [a,b] as u — 0 is termed as adaptive spline function.
The spline function satisfies the following differential equation.

V=Vi—

aS;(v,1) = bS,(v, ) = (aM; = bm) (=) + (@M = bmi) () @)

where a and b are constants, S, (v;, ) = m;, S,(v;, w) = M; and v € (v;_;, v;)

Solving the Eqg. (3) and applying the interpolation conditions S, (v;_;, u) = w;_; and Sy (v;, 1) =
w;, it becomes

W u222 u vi—v
SA(U,‘M) = Ri +Ai€”Z —E[7+uZ+ I] + (Ml —;mi)( 7 )
W [u’(1-2)’
+ 5| w2 + 1| (Mg =By (@)
where
hZ #2 ,Ll hZ MZ M
Ri(e”“ - 1) = —-w; + e#Wi—l - E[(? +[,l + 1) — ,ue”:| (Ml —Emi) —'u—3|:<7— 1z + 1) - M] (Mi—l —Emi_l),
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2

aie = 1) = wi=wi g+ [ (Gt 1) (=) + (5= 1) (v~ m ),

VUi

bh
p=— and Z = p

on the interval [v;, v;,,], the function S, (v, i) is obtained by replacing i by (i + /) in the Eq. (4).
Using the continuity condition of the first or second derivatives of S, (v, 1) at v = v; generates the
following equation
2
(s =) oo (-4t 1) = 1] (4~ 2m)
(W ’ u w’
e (5= (5 2) o (=S (=1 4
= —= [e_ﬁWH_] - (1 + e_ﬁ)Wi + Wi—]] (5)

Some additional relations for the adaptive spline are listed below

. 1

) mi; = —hR;Mi_; + RoM;) + - (W — wi_)

.. 1

(i) my=h(RsMi_; + RyM;) + - (Wi — wi_p)

(iii) %Mi—l = —(Rymi_; + Rymy) + % (Wi —wi_))

(iv) %Mi = (Rsm—; + Rymy) + % (Wi —wi)) (6)

1 X 1 X 1 X
where R, =Z(1+X)+Z’ R2=;(]_X)_Z:R3 =Z(] +X)_Z’

R4=£(1—X)+%, A=1U-X), A=—10+X andx=cot(§)—§

and obtain,
1
RoMiy; + (R + R)OM; + RsM;_; = o5 Wiy — 2w + wi_p) (7
in the limiting case u — 0, then
X 1 1 1 1 1
XZO’EZE'RI :R4:§!R2:R3:gﬂA1 ZE’AZZ_E
and the spline function given by the Eq. (4) reduces to cubic spline.
5. Application of the method
At the grid points v; the proposed Eq. (1) may be discretized by
ew; + piw; + qiw; = g (8)
by using moment of spline in Eqg. (8), we get
eM; + p;w; + qw; = g; )
where eM; = g; — piw; — ;W
using the following approximations for first derivative of w, let
' 1
Wiys = 5 [3Wirs — 4w; + wi] (10)
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: I

Wi_g = 5 [~Wips + 4w — 3w ] (11)

’ 1 1

(= 5 U+ 200 gy + 0h(pig s + P DWigs — 5 [+ 208 gy — 0h(piy +
30i-D)IWi-; = 20([pis; + Pieg] + Wh[Givs + gini] (12)

by substituting the Egs. (9) and (10) -(12) in the Eq. (7) and simplifying, the following tri-diagonal
system is derived.

w

3 R
[~ & = 3Rspies h— (R; + RY) pih{] + 20k’ qi_; — wh(Diy; + 3pi- )} + F P sh +
Ryqi— W' lwi_; + [%8 + 2R; pi—y h— 4(R; + Ry) pi’ 0(Dis s + Dict) — 2Ropissh + 2(R; +
2 2
RYGih Iwi + [— e = piey h+ (R; + Ry) pih{] + 20" qi— ) + wh(3pis; + pi-} +
;Rza)piﬂh + RZqi+]h2]Wi+] fori=1,2,...,N (13)
solving the Eq. (13), the solution w(v) of are w;,w,,...,w,_; at v, vs,..., Vy_;.

However, the method fails when the coefficients of p(v), q(v) and g(v) have singularities at v=0.
Hence, the scheme in the Eq. (13) fails for i=1. To overcome this, the following approximations can
be considered.

Pir; = p; £ hp, + O(h) (14)
Qi+1 = @ £ hqi + O(K) (15)
Gi+1 = gi T hgy + 0(K°) (16)

now using the approximations from the Egs. (14) -(16) in the Eq. (13) and ignoring higher order
terms, the following difference schemes obtains in compact form as

|—& = 3Rs(pi = P Vh = (R, + ROpih + 20k°(q; = har) = 20h(2p; = hpy) + 52 (py + hp Y +
R;(q; — hqi’)hz] wi—; + [2€ + 2R;(p; — hp Yh — 8(R; + RIpih° w — 2R, (p; + hp; Yh +

2(R; + RO |wy + |~ = 52 (o = hp Yh + (R; + R)pih + 20k’ (q; — hay) + 20h(2p; + hp,) +
;RZ(U(pi + hp; Yh + Ry(q; + hqi’)hz] Wit

= —h’[(R; + R, + R; + R)g; + R, — R; — 2(R, + R)whp;hg;] fori = 12,..,N (17)

6. Convergence Analysis

To establish the convergence analysis, the difference scheme of the Eq. (17) is being considered as
[—e— §R3 (i = hpdh = (R; + Ry) pih{] + 20k’ (q; — hqy) — 20h(2p; — hp)} + %(Pi + hph +
R3(a; = ha)h’Iwiz; + [2 + 2R; (p; = hp)h = 8(R; + Ry) pih’w — 2Ry(pi + hp)h + 2(R; +
R)qih’ Iwi+ [— & — % (i — hp) h+ (R; + Ry) pih{l + 2wh’(q; — hqp) + 20h(2p; + hp))} +
ZRow(p; + hpDh + +Ry(q; + hq)h’Iwiy; + by + Ty(h) = 0 with w(0) = C,w(I) =D fori =
12,,...,N (18)

here b; = W’[(R; + R, + R; + R,)g; + {R> — R; — 2(R, + R,)whp;)hg;}] and the truncation error is
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Ti(h) = e[(R, + R + R; + R;) — [J°w, + [e(R, — RO + (5 (R2 + Ry) + 20e (R, + R,) -
Z(R; + Ry + Ry + ROpih* )| wi” + S[=1 + 6(R; + R)IH*w™ + = Ry — R)[piw™ + (2p; +
qw;" + 6(p;" + q)w;" + 2(p;" + 3g)w; + 2wiq — 29,1 + 0(h®) for i=1.2,..,N.

ie., T;(h) = 0(h®) forR, =R; =—,R, + R, = —and w = —

with the given boundary conditions, w, = C and wy,; = D. Incorporating the boundary conditions,
the matrix form of the system of the Eq. (18) is

D+DHW+F+Th)=0 (29)
[28 —& 0 0o .. 0 ]
|—¢ 2 —¢ 0o .. 0 |
where D =[-g2,—¢]=|0 & 2 —¢ 0|
l 0 0 -—¢ 2$J
[k] [ 0 0 0 ]
Z) k2 lz 0 0
J=lzk, i 1=|0 2z ks s 0

|
Lo o . 0 zv, kyl
1 ] 2 ’ ] 2
zi = 5hpi(3Rs = Ry) + 5 °pi’(Ry + 3Rs) + 5 hpi(R; + ROUL + 2wh™ (9; — hai?)
—2wh(2q; — hq;") — Rsh’(q; — hay"),
ki = 2h[(R, — Rspi) + (R; + Rphqi 1 + (R, + Ry) (dwp® — q;' I,

li = éhpi(Rﬁ’ —3R,) — éthzf@Rz + R3)
—~ éhpi(R, + R)[I + 20k (q; + hq; )i’ + 2wh(2p; + hp})],
F =[b; 4+ (=& +2,)C,bs,bs,...,by_; + (—& + w,_;)D] and
G; = W'p;[(R; + Ry + R; + R)g; + {R, — R; — 2(R,; + R,)hwp;}hg;] respectively
fori=12,...,N — 1.

Let W = [W,W,,...,Wy_,1%, T(h) = [T, T5,...,Ty—;]%, 0 =[0,0,...,0]" are associated vectors
with the Eq. (19). Let w = [w;,w,,...,wy_;]T = W which satisfies the equation

D+)Dw+F =0 (20)

Lete; =y; — Y, fori = 1,2,...,N — I be the discretization error so that e = [e;, e,,...,ey_;]T =
w — W. Subtracting the Eq. (19) from the Eq. (20), the error equation is obtained as

(D+)E =T(h) (21)

Let [p()| < C,, [p' ()| < €, lg(w)| < €5 and |q'(v)| < C, which are positive constants. If J; ; be
the (i,j)" element of J,then
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2[C1(R; = 3R;) — hCy(3R; + R3) — C;(R; + R){1 + 20k’ (Cs + C;h)

Vil = 1 +2wh(2C; + hC)}]

fori=12,...,.N—2

g[c, (3R; — R)) + hCy(R, + 3R;) + C;(R; + R){I + 2wh’(C; + C,h)

liizt| = lzil < )

fori =23,...,N—1
thus, for small values of h, let
iivs| <€ fori=12,...,N—2. (22)
and liici| <& fori=23,... ,N-1 (23)

hence (D + )) is irreducible [15]. Let S; be the sum of the elements of the i row of the matrix (D +

J), then
Si=e+k;+1;for i=1,
S;=zi+k;+1;fori=23,...,N—2,
S;=e+k;+1lfori=N-—1

Let C;» = minlp(v)|,C; = max|p(v)|, C, = min|p' (v)|, C; = max|p' ()|,
D, = minlq(w)|,D; = max|q(v)|, D, = min|q' )|, D; = max|q'Ww)|fori=12,..,N

Since 0 < € « I and a0 (h), it is verified that (D + J) is monotone [16,17],
hence(D + J)~‘exhist and (D + J)~! = 0. Thus, from the Eq. (21), it is clear that

IEN < [0+ DIt (24)
let (D + J); be the (i, k)*" element of (D + J)~! and define
| +D~!|| = max TN/ + NS ITW)| = max|T(h)| for 1,2,...,N—1  (25)
since (D +))ip = 0and XR=/(D + )ip Sy =1 fori=12,...,N — I,
.y L 1 .
then (D +])i'k S 5,: < hz[(RI+R2+R4)D1*—2(R]+R4)(L)C12*] for L= ] (26)
.y i 1 - _
D+ i < Si " W[(RI+R2+R)D;"=2(R;+R)wC] fori=N-—1. (27)
.y i 1 . _
D+ )ik = 5 < W RTRARRD, fori=23,...,.N—2 (28)

with the help of the Egs. (26) - (28) and using the Eq. (21), it is clear that

IEIl < 0(h)

hence the proposed method is fourth order convergent on uniform mesh for R, = R; = ]—12 , R+

5 -1
R, = Zandwz—

12 20¢
7. Numerical Examples

To test the viability of the proposed method based on adaptive spline and to demonstrate
computationally their convergence, the following problems are chosen.
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2
Example 7.1: SZTVZV + éw =g(v), 0<v < I, whose exactsolution is w(v) = vsinhv

. d’w
Example 7.2: e+

1 dw
v dv

Table 1. The RMS error in Example 7.1 for various values of ¢.

— + (I + v)w = g(v), 0 < v < 1, whose exact solution is w(v) = eV’

https://internationalpubls.com

Present Method
hl| e=271 | =27 | e=27" | =27 | e=2% | g=2% | g=277 | g=271"
2731 0.1461(- | 0.8485(- | 0.1266(- |0.5743(- | 0.5788(- | 0.5130(- | 0.1810(- | 0.8241(-
3) 3) 2) 2) 4) 3) 2) 3)

2741 0.1451(- |0.8290(- | 0.1161(- |0.2756(- | 0.1255(- | 0.3063(- | 0.3280(- | 0.1062(-
3) 4) 3) 3) 3) 4) 5) 3)
27710.1362(- | 0.7894(- | 0.1091(- |0.2309(- | 0.2654(- | 0.2534(- | 0.2428(- | 0.2411(-
5) 5) 4) 4) 4) 4) 4) 4)
27910.1240(- | 0.7320(- | 0.1027(- | 0.2058(- | 0.3753(- | 0.5955(- | 0.3334(- | 0.2206(-
6) 6) 5) 5) 5) 5) 5) 5)
27710.1115(- | 0.6649(- | 0.9524(- |0.1877(- | 0.4543(- | 0.1081(- | 0.6673(- | 0.9558(-
7) 7) 7) 6) 6) 5) 6) 6)
27%10.9888(- | 0.5961(- | 0.8677(- | 0.1710(- | 0.4896(- | 0.1548(- | 0.1077(- | 0.2708(-
9) 8) 8) 7) 7) 6) 6) 5)
27710.8767(- | 0.5307(- | 0.7802(- | 0.1543(- | 0.4812(- | 0.2041(- | 0.1541(- |0.2750(-
10) 9) 9) 8) 8) 7) 7) 7)
27190.7760(- | 0.4707(- | 0.695(- |0.1380(- | 0.4473(- | 0.2268(- | 0.1914(- | 0.1863(-
11) 10) 10) 9) 9) 8) 8) 8)
Results in [3]

Wl e=2"1 ] e=27 | =277 | e=27 | =20 | e=2% | e=277 | g=271"

27310.2143(- | 0.2385(- -- -- - -- -- -
2) 2)
24| 0.5520(- | 0.5035(- | 0.1983(- -- -- -- -- -
3) 3) 2)
277 0.1390(- | 0.1212(- | 0.3151(- | 0.2485(- | 0.2485(- -- -- -
3) 3) 3) 3) 3)
279 0.3475(- | 0.3010(- | 0.6779(- | 0.6301(- | 0.6301(- -- -- -
4) 4) 4) 4) 4)
2771 0.8676(- | 0.7512(- | 0.1604(- | 0.1949(- | 0.1949(- | 0.1642(- -- -
5) 5) 4) 4) 4) 4)
27%1 0.2166(- | 0.1876(- | 03932(- | 0.5845(- | 0.5845(- | 0.5232(- | 0.5434(- -
5) 5) 5) 5) 5) 5) 3)
27| 0.5411(- | 0.4687(- | 0.9765(- | 0.1606(- | 0.1606(- | 0.2053(- | 0.1419(- | 0.5261(-
6) 6) 6) 5) 5) 5) 5) 5)
2719 0.1352(- | 0.1171(- | 0.2435(- | 0.4170(- | 0.4170(- | 0.7589(- | 0.8411(- | 0.1281(-
6) 6) 6) 6) 6) 6) 6) 5)
Table 2. The RMS error in Example 7.2 for various values of «.
hi| e e=27 | e=2"|e=27 | e=2"0| =27 |e=2F% =27 ¢
_ 52 _ 10
27710.289(- | 0.316(- |0.3340(- | 0.3459(- | 0.357(- |0.371(- | 0.383(- | 0.367(- | 0.329(-
3) 3) 3) 3) 3) 3) 3) 3) 3)
172
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275 [0.272(- [0.295(- [0.3102(- | 0.3184(- | 0.324(- |0.329(- | 0.337(- | 0.348(- | 0.361(-

27100.318(- | 0.5594(- | 0.9825(- | 0.1784(- | 0.336(- | 0.648(- | 0.127(- | 0.250(- | 0.496(-

8. Conclusion

In this paper, a fourth order accurate difference scheme has been discussed using an adaptive spline
for the numerical solution of singularly perturbed two-point singular boundary-value problems. For
non-singular problems also the proposed method is applicable. The convergence analysis of the method
has been discussed. Numerical results are provided to demonstrate the efficiency of the proposed
method. In the tables 1-2, the root mean square (RMS) errors in the solution are tabulated in
comparison to the results given in [3]. From the numerical results, it observes that the proposed method
works for smaller values of ¢ also.
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