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Abstract: 

Non-linear equations are a significant number of complicated issues in 

mathematics and related subjects that must be solved. The Newton method 

and its preliminary variations are among the most basic, yet insufficiently 

effective, methods for resolving non-linear equations. To solve non-linear 

equations efficiently, a method's desirable feature is to find root with fewer 

iterations, minimum error (usually less than precision limit), which is 

typically less than the precision limit. In, this work, we present two 

approaches (Proposed techniques I and II) for solving non-linear equations by 

modifying Newton Raphson's technique using first derivative's forward and 

central difference approximations. Two examples are used to compare 

performance of the suggested techniques with the existing technique (Secant 

technique). Finding roots of nonlinear equations under consideration required 

fewer iterations and a lower absolute relative approximate error while using 

proposed method II, which performed better than both existing methods (the 

Secant technique and suggested method I). The suggested approaches I and II 

were determined to be appropriate substitutes for solving nonlinear equations. 

Keywords: Secant technique, forward difference approximation, Central 

difference approximation, nonlinear equation, numerical examples. 

 

 

1. Introduction  

The majority of the things in everyday life are represented by non-linear equations. Maheshwari (2009) 

asserts that functions of a nonlinear and transcendental nature can be found in many difficult situations 

in science and engineering when they are expressed as equations of the form 𝑓(𝑥) = 0. [11]. As a 

result, their answers are crucial for addressing a wide range of issues that face us. Nonlinear equations 

have a large number of variables and their related parameters, which can lead to complex problems 

that are mostly solved numerically. Therefore, over the years, many numerical techniques have been 

developed that assist in the effective solution of these equations. The Bisection, Newton Raphson, and 

Secant Methods are some of these techniques. It is remarkable that the most common way for creating 

multipoint methods is Newton's method. (Petkovic, 2012) [12]. 
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Kaw (2009) states that the bisection approach, also known as the binary-search method, was among 

the earliest numerical techniques created to determine the root of a nonlinear equation [9]. The 

technique is based on a theorem that says, "If 𝑓(𝑥𝑚 ) 𝑓(𝑥𝑛 ) < 0, then an equation 𝑓(𝑥) = 0, where 

𝑓(𝑥) is a real valued continuous function, has at least one root between 𝑥𝑚 and 𝑥𝑛." where the first 

two initial approximations of the root of nonlinear equation 𝑓(𝑥) = 0 are 𝑥𝑚 and 𝑥𝑛. 

Kaw (2009) enumerated the following benefits of this method: the method is guaranteed to converge 

because it brackets the roots. That is, since they depend on minimising the difference between the two 

estimates in order to find the equations' roots, they are always convergent [9]. 

As iterations are carried out, the interval is also halved. Therefore, the error in the equation's solution 

can be guaranteed. 

The Bisection approach has some limitations, as noted by Chhabra (2014) and Kaw (2009) [4,9];  

1. The Bisection technique delayed convergence can be attributed to its basic halving of the interval.  

2.  The method's computational efficiency decreases if a closer approximation to the root requires more 

iterations to find the root. 

3. The Bisection technique may converge to a singularity for any function 𝑓(𝑥) in the presence of 

singularity. 

The Newton Raphson technique was developed to solve nonlinear equations, addressing the drawbacks 

of the previously described Bisection approach. 

 A method that is open is the Newton Raphson method. This shows that the iterative process of finding 

roots of the equations may be started with just one initial guess. 

In a tract, Newton described his method for approximating the fundamental causes of numerical 

equations. In 1600, Viet Nam created the perturbation technique to solve a scalar polynomial that 

provided one decimal place of an unknown answer for each step by explicit calculation of subsequent 

polynomials of sequential perturbations. Modernized terminology would say that the approach 

converged linearly. The Persian astronomer and mathematician Al-Kashi appears to have also 

published this technique in 1427. Al-Biruni's (1973–1048) considerably older work served as the 

foundation for The Key to Arithmetic; it is unclear how well known it was in Europe. In 1647, 

Oughtred, an English mathematician, simplified Vieta's approach. The Vieta technique was introduced 

to Isaac Newton (1643–1727) in 1664. He had enhanced it up until 1669 by linearizing the successively 

arising polynomials. De Analysi per Equations Numerariae Terminaraun Infinitas, a book written by 

Newton, explains his approach to approximating the fundamental causes of numerical equations. This 

is how the binomial theorem and the fluxions principle were first announced. Newton gave it to his 

tutor, Isaac Barrow, in 1669, who then gave it to J. Collins, who had a strong ambition to gather and 

disseminate experimental knowledge. The Royal Society included John Collin. The Wallis Algebra, 

published in London in 1685, chapter 94, represents the oldest attempt at using Newton's method of 

approximation. Wallis describes Newton's approach to resolving the equation. Newton's friends and 

some of Collins's correspondents were aware of the tract, although it wasn't printed until 1704 and 

1711. In his second section, "The Methodus fluxionum et serierum infinitarum," Newton essentially 
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explained his approximation approach in the same way. This was intended for publication in 1671, but 

it wasn't printed until 1736. 

  Finding the zero of 𝑓(𝑥) = 0 is known as the "root finding problem," 𝑓 being a single-variable 

function in this case. We want to find an 𝑥 =  𝜔 such that  𝑓( 𝜔)  = 0    for some function 𝑓. The root, 

or zero, of 𝑓 is the number. The function 𝑓 can be algebraic, transcendental, or exponential. One of the 

most important computational issues is the root determination issue. It appears in a range of real-world 

applications in the sciences, including physics, chemistry, biology, engineering, etc. Actually, 

determining any implicit unknown in mathematical or scientific formulas creates a problem known as 

root discovery [3]. Finding an object's equilibrium position, a field's potential surface, and the 

quantized energy level of a restricted structure are a few pertinent examples of circumstances in 

physics when solving such problems is necessary [6]. Bisection, Newton-Raphson, and other 

techniques are frequently used to discover roots. Various techniques converge on the root at various 

rates. In other words, some methodologies converge on the root more quickly than others. Convergence 

could occur at a linear, quadratic, or other rate. The faster the algorithm converges, the higher the order 

[2]. 

Material and Methods  

Derivation of Newton Raphson technique from Taylor Series:  

Cirnu (2012) states that the Taylor expansion's first order yields the Newton Raphson technique.  

Assuming that initial guess for the root of 𝑓(𝑥) = 0 is at 𝑥𝑘, an improved approximation of the root 

of the function 𝑓(𝑥𝑘),   is 𝑥𝑘+1 when tangent of the curve is drawn at 𝑓(𝑥𝑘), the point at which tangent 

line crosses 𝑥-axis. 

For a nonlinear equation 𝑓(𝑥) = 0,  let, 𝑥𝑘, 𝑘 = 1,2,3 . . . be an initial guess for the root. Then, define 

𝑥𝑘+1 =  𝑥𝑘  +  𝛿𝑥, where 𝛿𝑥 is a small change in the solution. Now the Taylor series expansion of a 

function 𝑓(𝑥) is given by  

𝑓(𝑥𝑘+1)  =  ∑ 𝑓𝑘(𝑥𝑘
∞
𝑘=0 )(

𝑥𝑘+1−𝑥𝑘

𝑘!

𝑘
) . . . (1) 

Where 𝑓0(𝑥𝑘)  = 𝑓(𝑥𝑘), 𝑓1(𝑥𝑘)  = 𝑓ʹ(𝑥𝑘) and 𝑓2(𝑥𝑘)  = 𝑓ʹʹ(𝑥𝑘) and so on.  

Where 𝑓ʹ(𝑥𝑘) and 𝑓ʹʹ(𝑥𝑘)  represent the first and second order derivatives with respect to 𝑥 of the 

function 𝑓 respectively. 

𝑓(𝑥𝑘+1)  =  𝑓(𝑥𝑘) + 𝑓ʹ(𝑥𝑘) 
(𝑥𝑘+1−𝑥𝑘)

1!
 + 𝑓ʹʹ(𝑥𝑘) 

(𝑥𝑘+1−𝑥𝑘)2

2!
 + .  .  . + . . . (2) 

𝑓(𝑥𝑘+1)  =  𝑓(𝑥𝑘) + 𝑓ʹ(𝑥𝑘) 
(𝑥𝑘+1−𝑥𝑘)

1!
 + 𝑜(𝛿𝑥) 

where 𝑜(𝛿𝑥)  represents the error caused on by the Taylor series' truncation at the second term. 

𝑓(𝑥𝑘+1)  ≈  𝑓(𝑥𝑘) + 𝑓ʹ(𝑥𝑘) 
(𝑥𝑘+1−𝑥𝑘)

1!
 . . . (3) 

Assume that, 𝑥𝑘+1 is root of the equation, then 𝑓(𝑥𝑘+1)  = 0 

After solving (3), we obtained 
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𝑥𝑘+1 =  𝑥𝑘  −  
𝑓(𝑥𝑘)

𝑓ʹ(𝑥𝑘)
 . . . (4) which is Newton Raphson formula. 

First derivative Forward difference approximation: 

First derivative forward difference approximation of the function 𝑓 first can be obtained from equation 

(3) as follows: 

𝑓ʹ(𝑥𝑘)  ≈  
𝑓(𝑥𝑘+1)−𝑓(𝑥𝑘)

𝑥𝑘+1−𝑥𝑘
  

𝑓ʹ(𝑥𝑘)  ≈  
𝑓(𝑥𝑘+𝛿𝑥)−𝑓(𝑥𝑘)

𝛿𝑥
 . . . (5) 

First derivative Backward difference approximation: 

For each 𝑘 = 1,2, …  Let 𝑥𝑘−1  =  𝑥𝑘  − 𝛿𝑥, where 𝛿𝑥 represent small change in the solution, then 

Taylor series expansion of a function is given as 

𝑓(𝑥𝑘−1)  = 𝑓(𝑥𝑘)  − 𝑓ʹ(𝑥𝑘)
(𝑥𝑘−𝑥𝑘−1)

1!
 + 𝑓ʹʹ(𝑥𝑘) 

(𝑥𝑘−𝑥𝑘−1)2

2!
 + .  .  . (6) 

 𝑓(𝑥𝑘−1)  = 𝑓(𝑥𝑘)  − 𝑓ʹ(𝑥𝑘)
(𝑥𝑘−𝑥𝑘−1)

1!
 +  𝑜(𝛿𝑥) 

 𝑓(𝑥𝑘−1)  ≈ 𝑓(𝑥𝑘)  − 𝑓ʹ(𝑥𝑘)
(𝑥𝑘−𝑥𝑘−1)

1!
  . . . (7) 

Equation (7) yields first derivative backward difference approximation of the function 𝑓, which is 

given by  

𝑓ʹ(𝑥𝑘)  ≈
𝑓(𝑥𝑘)−𝑓(𝑥𝑘−1)

𝑥𝑘−𝑥𝑘−1
 . . . (8) 

𝑓ʹ(𝑥𝑘)  ≈
𝑓(𝑥𝑘)−𝑓(𝑥𝑘−𝛿𝑥)

𝛿𝑥
 . . . (9) 

First derivative Central difference approximation: 

Since 𝛿𝑥 =  𝑥𝑘−1 − 𝑥𝑘 we can rewrite equation (2) as 

𝑓(𝑥𝑘+1)  =  𝑓(𝑥𝑘) + 𝑓ʹ(𝑥𝑘) 
𝛿𝑥

1!
 + 𝑓ʹʹ(𝑥𝑘) 

(𝛿𝑥)2

2!
 + .  .  . + . . . (10) 

and also 𝛿𝑥 =  𝑥𝑘 −𝑥𝑘−1 then equation (6) can be written as  

𝑓(𝑥𝑘−1)  = 𝑓(𝑥𝑘)  − 𝑓ʹ(𝑥𝑘)
(𝛿𝑥)

1!
 + 𝑓ʹʹ(𝑥𝑘) 

(𝛿𝑥)2

2!
 +. . . (11) 

Subtracting equation (11) from equation (10), we get 

𝑓(𝑥𝑘+1)  −  𝑓(𝑥𝑘−1)  = 2𝑓ʹ(𝑥𝑘) 𝛿𝑥 + 2𝑓ʹʹʹ(𝑥𝑘) 
(𝛿𝑥)3

3!
 + .  .  .  

𝑓(𝑥𝑘+1)  −  𝑓(𝑥𝑘−1)  = 2𝑓ʹ(𝑥𝑘) 𝛿𝑥 +𝑜(𝛿𝑥)2 

Where 𝑜(𝛿𝑥)2 represents the error caused on by the Taylor series' truncation at third term. 

𝑓(𝑥𝑘+1)  −  𝑓(𝑥𝑘−1)  ≈  2𝑓ʹ(𝑥𝑘) 𝛿𝑥 . . . (12) 

Equation (12) gives the first derivative central difference approximation of the function 𝑓, which is  
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 𝑓ʹ(𝑥𝑘)  ≈  
𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘−1)

2𝛿𝑥
 

 𝑓ʹ(𝑥𝑘)  ≈  
𝑓(𝑥𝑘+𝛿𝑥) − 𝑓(𝑥𝑘 +𝛿𝑥)

2𝛿𝑥
 . . . (13) 

Secant technique of solving nonlinear equations: 

Substituting equation (8) in equation (4), we get 

𝑥𝑘+1 =  𝑥𝑘  −  𝑓(𝑥𝑘)[
𝑥𝑘−𝑥𝑘−1

𝑓(𝑥𝑘) −𝑓(𝑥𝑘−1) 
] 

This is Secant technique for solving nonlinear equations. 

Proposed Methodology I: Substituting equation (5) in equation (4), we get 

𝑥𝑘+1 =  𝑥𝑘  −  𝑓(𝑥𝑘)[
𝛿𝑥

𝑓(𝑥𝑘+𝛿𝑥)− 𝑓(𝑥𝑘) 
] 

𝑥𝑘+1 =  𝑥𝑘  −  𝑓(𝑥𝑘)[
𝑥𝑘−𝑥𝑘−1

𝑓(2𝑥𝑘−𝑥𝑘−1)− 𝑓(𝑥𝑘) 
], . . . (15) where 𝛿𝑥 = 𝑥𝑘  − 𝑥𝑘−1 

Proposed Methodology II: Substituting equation (13) in equation (4), we get 

𝑥𝑘+1 =  𝑥𝑘  −  𝑓(𝑥𝑘)[
2𝛿𝑥

𝑓(𝑥𝑘+𝛿𝑥)− 𝑓(𝑥𝑘−𝛿𝑥 ) 
] 

𝑥𝑘+1 =  𝑥𝑘  −  𝑓(𝑥𝑘)[
2(𝑥𝑘 − 𝑥𝑘−1)

𝑓(𝑥𝑘 − 𝑥𝑘−1)− 𝑓(𝑥𝑘−1 ) 
], . . . (16) where 𝛿𝑥 = 𝑥𝑘  − 𝑥𝑘−1 

Numerical Examples: 

The primary performance metrics in this study implemented to access the numerical approaches are 

the absolute relative approximate error |𝜖𝑎|, the number of significant digits that constitute the 

solution is 𝑚, and the number of numerical iterations required is 𝑛. 

Starting with an initial guess 𝑥0, stopping criterion may be given by 

 |𝜖𝑎| ≤ 0.5 ×  102−𝑚 

 𝑚 ≤ 2 − log10 2|𝜖𝑎| 

Illustration 1: Let 𝑓(𝑥)  =  cos 𝑥 − 𝑥𝑒𝑥  

Solve above equation by Secant technique, Proposed methodology I and II by setting the initial 

approximations 𝑥0  = 1 and 𝑥1  = 2. Take the maximum number of iterations 10 and error tolerance 

is 10−3. 

Table 1: Solution from Secant technique 

Iterations  Root |𝜖𝑎| 𝑓(𝑥) 𝑚 

1 314665× 10−6 217797952× 10−6    519871174× 10−9 −5 

2 446728× 10−6 29562231× 10−6    203544778× 10−9 −3 

3 531706× 10−6 15982091× 10−6 −42931093× 10−9 −2 

4 516904× 10−6 2863468× 10−6    2592763× 10−9 0 

5 517747× 10−6 162820× 10−6    30112× 10−9 3 

6 517757× 10−6 1913× 10−6 −22× 10−9 7 
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7 517757× 10−6  1× 10−6    0 14 

Table 2: Solution from Proposed methodology I 

Iterations  Root |𝜖𝑎| 𝑓(𝑥) 𝑚 

1 832673× 10−6 2009521× 10−5 −1241793162× 10−9 −2 

2 549698× 10−6 5147814× 10−5 −99796443× 10−9 −3 

3 510267× 10−6 7727561× 10−6    22643969× 10−9 −1 

4 518060× 10−6 1504182× 10−6 −919664× 10−9 0 

5 517759× 10−6 57979× 10−6 −6207× 10−9 4 

6 517757× 10−6 394× 10−6    2× 10−9 9 

Table 3: Solution from Proposed methodology II 

Iterations  Root |𝜖𝑎| 𝑓(𝑥) 𝑚 

1 731018× 10−6 36795478× 10−6 −773972497× 10−9 −3 

2 553063× 10−6 32176402× 10−6 −110618158× 10−9 −3 

3 519082× 10−6 6546315× 10−6 −4033931× 10−9 −1 

4 517759× 10−6 255454× 10−6 −5839× 10−9 2 

5 517757× 10−6 371× 10−6    0 9 

From table 1, 2, and 3 we observed that the secant technique, proposed methodology I, II gives root in 

7, 6 and 5 iterations respectively. This was achieved at an absolute relative approximate error, |𝜖𝑎| less 

than precision limit 10−3. 

Illustration 2:  Let 𝑓(𝑥)  =  𝑥3  −  𝑒−𝑥  

Solve above equation by Secant technique, Proposed methodology I and II by setting initial 

approximations 𝑥0  = 0 and 𝑥1  = 2. Take the maximum number of iterations 10 and error tolerance 

is 10−3. 

Table 4: Solution from Secant technique 

Iterations  Root |𝜖𝑎| 𝑓(𝑥) 𝑚 

1 225615× 10−6 786466472× 10−6 −786541141× 10−9 −6 

2 386937× 10−6 41692024× 10−6 −621202127× 10−9 −3 

3 993045× 10−6 61035345× 10−6    608832428× 10−9 −3 

4 693038× 10−6 43288595× 10−6 −16718665× 10−8 −3 

5 757672× 10−6 8530581× 10−6 −33801676× 10−9 −1 

6 774051× 10−6 2116029× 10−6    2635996× 10−9    0 

7 772866× 10−6 153314× 10−6 −37316× 10−9    3 

8 772883× 10−6 214× 10−5 −4× 10−8    7 

9 772883× 10−6 2× 10−6    0   14 

Table 5: Solution from Proposed methodology I 

Iterations  Root |𝜖𝑎| 𝑓(𝑥) 𝑚 

1 1719705× 10−6 16299028× 10−6    4906709767× 10−9 −2 

2 1083411× 10−6 58730648× 10−6    933245222× 10−9 −3 
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3 683083× 10−6 58606065× 10−6 −186329777× 10−9 −3 

4 820009× 10−6 16698124× 10−6    110958135× 10−9 −2 

5 78016× 10−5 5107848× 10−6    16510283× 10−9 −1 

6 772661× 10−6 970458× 10−6 −499788× 10−9    1 

7 772885× 10−6 28904× 10−6    3587× 10−9    4 

8 772883× 10−6 206× 10−6    1× 10−9    9 

Table 6: Solution from Proposed methodology II 

Iterations  Root |𝜖𝑎| 𝑓(𝑥) 𝑚 

1 1515884× 10−6 31936198× 10−6 3263743963× 10−9 −3 

2 1072222× 10−6 41377791× 10−6 890444758× 10−9 −3 

3 849578× 10−6 26206468× 10−6 185615279× 10−9 −2 

4 77943× 10−5 89999× 10−4 1484507× 10−8 −1 

5 772938× 10−6 839976× 10−6 122994× 10−9    1 

6 772883× 10−6 706× 10−5 9× 10−9    6 

7 772883× 10−6 0 0    15 

From table 4, 5, and 6 we observed that secant technique, proposed methodology I, II gives the root in 

9, 8 and 7 iterations respectively. This was achieved at an absolute relative approximate error, |𝜖𝑎| less 

than precision limit 10−3. 

Result discussion and conclusions  

The study proposed a variation of the Newton Raphson technique using forward and central difference 

approximations of the first derivative. Proposed Method II outperformed Proposed Technique I and 

Secant method. It was developed from the improved Newton Raphson method of solving nonlinear 

equations using the first derivative's central difference approximation. 

Therefore, the proposed method II had the lowest absolute relative approximation error and needed 

fewer iterations to discover the root of the nonlinear equations under consideration. This is explained 

by the fact that the central difference approximation produces a superior approximation than the 

forward and backward difference approximations of the first derivative. By comparing the Secant 

method with the suggested approach, I was also able to acquire the nonlinear equations' roots with 

fewer iterations within a predefined precision limit. 

Therefore, it recommended that the suggested methods I and II be used as suitable alternatives for 

solving nonlinear equations. 
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