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1. Introduction

Concrete cracks serve as common indicators of structural wear and tear and are pivotal in infrastructure
maintenance. In developed nations, routine assessments of civil engineering structures are conducted,
focusing on cracks' presence, position, and width, crucial for developing maintenance strategies [1-3].
Traditionally, manual visual inspections have been the preferred method for gathering such crack data
[4]. However, this method is labor-intensive, costly, time-consuming, and often unreliable due to its
dependence on the inspector's expertise [5].

To address these challenges, digital image processing has emerged as a viable solution for crack
monitoring. This method involves analyzing surface images of concrete buildings to detect vital
fracture details, including the presence, location, and width of cracks [6-8]. Various techniques,
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including image binarization, edge detection, and mathematical morphology, are employed for crack
identification. Image binarization, for example, converts grayscale pixels into black or white,
enhancing crack identification. In the binarized images, dark cracks appear black, while lighter
backgrounds appear white, facilitating precise crack detection [9]. Additionally, edge detection
methods are used to identify the edges of fracture pixels, aiding in concrete crack identification.
Mathematical morphology serves as an additional step to modify fracture shapes, further improving
the accuracy of crack detection. Previous studies have summarized these image processing methods
for identifying fractures in concrete buildings [10-11].

However, despite the promising outcomes of previous research on image processing for crack
identification, complete automation is hindered by a fundamental assumption. This assumption
presupposes that provided images exclusively contain genuine cracks. For instance, images of a
concrete structure's exterior captured manually using a digital camera or an unmanned aerial vehicle
(UAV) for structural maintenance might encompass not only cracks but also non-crack elements such
as dark stains, shadows, dust, irregularities, and holes. Distinguishing between these diverse features
in image processing proves to be challenging [12].

Moreover, the process of image binarization can mistakenly categorize a dark stain as black,
resembling a crack, resulting in false-positive outcomes. Therefore, achieving fully automated crack
monitoring necessitates the ability to distinguish genuine cracks from surface images that may contain
both actual cracks and crack-like non-cracks. In the realm of civil engineering, machine learning has
emerged as a transformative technique [13]. Specifically, supervised learning, a subset of machine
learning, can be seamlessly integrated with computer vision to tackle challenges associated with crack
recognition.

In this approach, unique characteristics of cracks and non-cracks are discerned from training images,
which are subsequently utilized in classification algorithms like support vector machines (SVMs) and
random forests. The trained classification model is then applied to new images to identify surface
cracks effectively [14]. To differentiate between cracks and non-cracks and construct a classification
model, features such as geometric patterns (such as eccentricity and the number of pixels in each pixel
group) and statistical attributes of pixel intensities (including mean and standard deviation) have been
selected. Despite these methods not requiring user-defined empirical thresholds, distinguishing
between crack-like and non-cracks that share similar shapes and colors with actual cracks remains a
challenge. Therefore, advanced features from both cracks and non-cracks need to be extracted to create
a robust classification model for accurate and efficient classification.

The introduction of deep learning, characterized by multiple interconnected layers, has proven to be a
potent technique for crack detection. Concrete surface images, categorized as either cracked or
undamaged, were employed to construct a classification model based on the Convolutional Neural
Network (CNN). This trained model is subsequently applied to evaluate new concrete surface images
in the validation process [15]. While previous research utilizing deep learning has successfully
identified cracked areas, the challenging task of distinguishing crack-like non-cracks, a common
occurrence in real-world scenarios, has not been thoroughly explored [16]. In concrete surface images,
it is crucial to precisely detect and filter out any non-crack objects. This paper introduces a framework
for concrete crack identification utilizing deep learning, aiming to address these complexities.
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The main contributions of this work are

. A collaborative ADNLMF has been used to denoise the input image while maintaining the
edges, textures, as well as features.

) The YOLO V3 object detector was used to detect concrete fractures in real-world images,
which is far faster than previous detection algorithms with equivalent performance.

. This work develops a less time-consuming and more accurate crack categorization based on
crack width.

The following is the layout of the paper: Section 2 contains a brief review of related works, Section 3
contains an overview of the proposed crack detection technique, Section 4 contains the proposed
method's implementation outcome, Section 5 comprises the work's conclusion, and the following
section contains this research work's references.

2. Literature Survey

Several research studies have been carried out to detect the crack in civil structure which is surveys
below.

In a study conducted by Saleem and colleagues [17], an experimental approach was explored to predict
the fractured state of concrete surrounding steel reinforcement using ultrasonic pulse velocity testing.
To account for the complex and nonlinear stress distribution at the steel-concrete interface, a multilayer
feedforward backpropagation perceptron artificial neural network (ANN) was developed. This ANN
was designed to avoid oversimplification assumptions when creating models to anticipate cracking.
Specifically, the ANN was employed to forecast fracture width, and sensitivity analysis was conducted
on various factors influencing bond degradation. The study achieved a high level of accuracy, indicated
by an R"2 value of 0.97, showcasing the precision between predicted and experimental values while
emphasizing the significance of the most relevant parameter.

In a different approach, Rajadurai and team [18] utilized AlexNet, a pre-trained Deep Convolutional
Neural Network (DCNN), for automated vision-based crack recognition and categorization. The
methodology involved three key steps: first, gathering numerous images from an open-source picture
dataset and classifying them into two categories (non-crack and crack images); second, developing a
DCNN model and applying transfer learning and augmentation techniques; and third, automatically
identifying and categorizing images using the trained deep learning approach. Furthermore, a cross-
dataset study was conducted to evaluate the effectiveness of the trained AlexNet model. The
performance of the trained AlexNet model was assessed using precision, recall, accuracy, and F1
measures, demonstrating its effectiveness in crack recognition and categorization.

Hadinata and colleagues [19] conducted a study to assess the effectiveness of advanced encoder-
decoder structures in identifying concrete surface fractures using U-Net and DeeplLabV3+
architectures, known for their capabilities in biomedical and sparse multiscale image classification,
respectively. Cloud computing technology was utilized to train neural networks on a high-performance
Graphics Processing Unit NVIDIA Tesla V100 with 27.4 GB of RAM. The study incorporated both
internal and external data. Internal data, consisting of basic cracks, was employed for training and
validation purposes, while more complex fractures from external sources were used for additional
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testing. Both U-Net and DeepLabV3+ architectures were evaluated using four key metrics: accuracy,
F1 score, precision, and recall.

In a different study, Ali and team [20] proposed a modified CNN for detecting fractures in concrete
structures. The algorithm was compared with four distinct deep learning approaches based on factors
such as training data size, data diversity, system complexity, and the number of training epochs. The
performance of the proposed convolutional neural network (CNN) model was assessed on eight
datasets of varying sizes derived from two public datasets. These results were then compared to
outcomes from pre-trained networks, including VGG-16, VGG-19, ResNet-50, and Inception V3
models. Evaluation criteria included computing time, crack localization accuracy, and classification
parameters such as accuracy, precision, recall, and F1-score for each model. Notably, on a limited
dataset, the customized CNN and VGG-16 models outperformed other methods in terms of
classification, localization, and computational efficiency. This indicated that these two models excel
in crack detection and localization for concrete structures.

In a study by Chen and colleagues [21], an automated technique for generating crack ground truths
(GTs) within concrete images was introduced. The process involves creating initial GTs, pre-training
a deep learning-based model, and generating second-round GTs. These second-round GTs are then
employed to train a self-supervised crack detection model. Through this method, the pre-trained deep
learning-based model demonstrates successful crack detection. A significant contribution of this study
is the proposal of an automated GT generation approach, enabling the training of a crack detection
model at the pixel level. Experimental results indicate that the second-round GTs closely resemble
manually indicated labels.

In another study, Kamada and team [22] developed an Adaptive Structural Deep Belief Network
(Adaptive DBN) capable of self-organizing to determine the optimal network structure during the
learning process. This hierarchical design incorporates the Adaptive Restricted Boltzmann Machine in
each tier (Adaptive RBM). The Adaptive RBM adapts the number of hidden neurons during learning.
The proposed technique was applied to the SDNET2018 concrete image dataset, containing
approximately 56,000 crack photos from various concrete constructions like bridge decks, walls, and
paved roadways. The Adaptive DBN's fine-tuning approach achieved impressive classification
accuracies of 99.7%, 99.7%, and 99.4% for three different types of structures. It's worth noting,
however, that the database contained some incorrectly labeled data, challenging to assess even for
human experts based on photographs.

Chow and colleagues [23] explored the application of deep learning algorithms in civil infrastructure
inspection programs. They introduced an Al-powered inspection pipeline that includes anomaly
identification, extraction, and fault categorization, replacing the error-prone and time-consuming
manual evaluation process. This pipeline generates an anomaly map to extract potential faults, which
are then categorized into relevant classes. Utilizing consistent parameters for both anomaly detection
and defect categorization in deep learning models ensures unbiased decision-making, eliminating the
subjective judgment often associated with human inspectors. Moreover, this approach enhances
automation by eliminating the need for multiple time-consuming image processing steps, feature
extraction, and selection. The processing time for the image dataset is remarkably quick,
approximately 15 minutes.
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In a separate study, Shim and team [24] introduced an innovative approach for concrete crack
identification based on multiscale and adversarial learning. They constructed a segmentation neural
network for precise recognition, incorporating a deep neural network with layer connections to
generate additional training data from unlabeled images, thereby enhancing training performance. To
minimize the required training data, they devised a novel adversarial learning structure for training
multiscale segmentation neural networks, introducing a new loss function to update the weights of
these networks.

Additionally, Kumar and colleagues [25] developed a modified LeNet 5 model for identifying fractures
in bridges and roads. They employed three distinct datasets: the Automated Bridge Crack Recognition
Dataset, the Concrete Crack Imaging for Categorization Dataset, and the Asphalt Crack Dataset. Their
proposed approach was evaluated and compared with and without the use of Principal Component
Analysis. The model marked crack and non-crack regions in green and red, respectively, considering
both time and accuracy elements in the results generation process.

Manual inspection primarily relies on manual inspection, involving the manual depiction of fractures
and documentation of their characteristics. However, this method is subjective, dependent on the
expertise of the specialist, and lacks objectivity in quantitative analysis. Moreover, existing approaches
often have limitations in terms of accuracy, training time, and the incorporation of photographs. In
response to these constraints, our research has introduced an innovative model. The following section
of this paper offers a detailed overview of our proposed methodology.

3. CRACK CATEGORIZATION TECHNIQUES

The identification and categorization of cracks play a vital role in assessing their severity. Crack
detection involves the process of identifying the presence of a crack, while crack classification entails
categorizing the crack based on features extracted from the crack region. Therefore, the field of civil
infrastructure necessitates automated techniques for both crack detection and classification. Our
proposed method, known as "Novel Crack Encroachment in Concrete Structures,” is classified using
Deep Convolutional Neural Networks (DCNN).

Initially, we preprocess the input image using an innovative approach called Anisotropic Diffusion
Non-Local Mean Filtering (ADNLMF). These filters are designed to reduce noise in the input images.
Anisotropic Diffusion is employed to maintain the sharpness of edges, while Non-Local Mean
denoises the images while preserving textures and other features. The collaborative application of
ADNLMF enhances the denoising process, ensuring the preservation of edges, textures, and features.

The preprocessed image is then subjected to a feature extraction step, where we utilize DCNN based
on YOLOv3 architecture to detect whether the structure contains cracks or not. YOLOv3 combines
elements from YOLOv2, Darknet-53, and Residual networks to extract these features. If a crack is
detected, our research further classifies it into categories such as minor crack, major crack, attention
crack, or severe crack based on crack depth. The calculation of crack depth is performed using the
crack width transform technique. Subsequently, a DCNN-based classifier is utilized to identify the
specific type of crack.
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In summary, our novel approach enhances accuracy, reduces network complexity, and minimizes
processing time in the detection and classification of cracks in civil infrastructure. Figure 1 shows a
block diagram of the proposed crack recognition and categorization approach.
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Figure 1: Block diagram of the proposed crack categorization technique

The preprocessing module was given both cracks as well as non-crack pictures to work with. The new
Anisotropic diffusion non-local mean filter is used in this module to eliminate noise from pictures.
This proposed filtering technique's complete method has been described below.

3.1. Pre-processing

The dataset for implementation is Concrete Crack Images for Classification from Mendeley data,
which contains 40000 images with 227 x 227 pixels with RGB channels.
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Images shot fetched from concrete structures are indeed a bit noisy, wherein the concrete structures
often suffer from noise, making it necessary to improve the quality of the input images. VVarious noise-
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reduction methods were employed to eliminate unwanted disturbances. While the primary goal of these
filters is noise reduction, they must also highlight specific aspects of the input image. Noises in
concrete structures typically result from shadows and variations in lighting conditions. Commonly
used denoising techniques involve mean filters, median filters, Gaussian filters, and their variations.
The Gaussian filter, in particular, is widely used for noise reduction. However, some methods tend to
blur the edges of the input images, potentially leading to the loss of crucial information, especially
concerning cracked pixels. To address this issue, the proposed approach employs non-linear filtering
to remove noise from photographs of concrete buildings, ensuring that the sharpness of the edges is
preserved.

3.2. ADNLMF (Anisotropic Diffusion Non-Local Mean Filtering)

The diffusion method is being used to smooth out the input pictures. The diffusion of pixel values
influences the approaches and filters offered. Isotropic or anisotropic diffusion processes exist. The
diffusion method was applied regardless of any edges in isotropic diffusion. Images get blurry due to
the diffusion of pixel values. Isotropic diffusion filters, as a result, average the picture pixels across
the entire image. As a result, picture diffusion happens in all directions. Also, the Algorithm for
Anisotropic Diffusion Non-Local Mean Filtering has been given below

Algorithm for Anisotropic Diffusion Non-Local Mean Filtering:
Step 1: Input image

Step 2: Give input to the Anisotropic Diffusion filtering (ADF)
Step 3: Apply strong Gaussian noise

Step 4: Develop the noisy image.

Step 5: Compute the structural similarity index (SSIM)

Step 6: if SSIM =1

Step 7: Get the Edge preserving image

Step 8: else

Step 9: Generate Non-Local Mean Filtering (NLMF)

Step 10: Add white Gaussian noise with zero mean and variance
Step 11: Develop the noisy RGB image

Step 12: Convert the noisy RGB image to the L*a*b color space
Step 13: Extract a homogeneous L*a*b patch from the noisy background
Step 14: Compute the noise standard deviation

Step 15: Compute the Euclidean distance (egist) from the origin

Step 16: Calculate the standard deviation of egist to estimate the noise

Step 17: Degree of Smoothing value to be higher than the standard deviation of the patch
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Step 18: Filter the noisy L*a*b* image using NLMF
Step 19: Convert the filtered L*a*b image to the RGB color space.
Step 20: Display the filtered RGB image.

The edge and other pixels are messed together in this scenario. Diffusion varies with direction in
anisotropic filters. It's achieved by using an image's gradient. Anisotropic diffusion takes the following
general form:

a(M(x,y,z) ,

WD) — aiv[s(VMG v, AT (M. D) (@)
where M (x,y, z) represents the original picture, whereas VM (x, y, z) indicates the gradient of input
data at time z.

In Equation (1), s (.) seems to be the conductance function that regulates the gradient operation (1). It

is quite important in the diffusion process. In general, s (.) is not negative. It is chosen depending on

the two criteria. If lin(} s(x) = 1, then pixel diffusion is greatest in homogeneous areas. The diffusion
S—

pixel values are halted across the edges if lina s(x) = 0. It's being used to adjust the diffusion speed
S—

and also to assist in differentiating the edges of the input picture. Figure 4 depicts the flowchart for the
proposed Anisotropic Diffusion Non-Local Mean Filtering.

Input Image

Anisotropic Diffusion
filtering (ADF)

!

Compute the structural
similarity index (SSIM)

Edge preserving image

A
Generate Non-Local
Mean Filtering (NLMF)

!

Preprocessed image

Figure 4: Flowchart for the proposed Anisotropic Diffusion Non-Local Mean Filtering.

The gradient of four i = {1, 2, ..., 4} closest neighbor pixels are utilized to compute the anisotropic
diffusion in Equation (1) and also is provided in Equation (2). At iteration z, the anisotropic diffusion
filtering of the input may be expressed in terms of diffused image M, (x, y, z).

My(x,y,2) = Ma(x,y,z — 1) + 5 Zie, m([VME| VM) z > 0, )

where m represents the diffusion coefficient and V would be the gradient
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In general, the Perona-Malik Diffusion (PMD) approach has been widely employed in diffusion.
Perona and Malik (1990) presented the diffusion coefficients shown below for anisotropic diffusion
filtering:

x 2
m @) = e |- (2) | ©
m, (%) = 1o ()
The fixed threshold number n governs the degree of input denoising. After every iteration of the PMD
technique, the adaptive allocation of the diffusion coefficient m(x) was performed. It isolates the edges
in the input picture by lowering the diffusion all along the edge direction. Because the PMD approach
employs an unstable diffusion mechanism, artifacts remain in the input image. The threshold n
choosing procedure is a difficult assignment. If n is large, the diffusion process generates a smoother
picture and blurs the total input image. If n is too little, the diffusion technique yields a smoother
image, as well as the abnormalities in the input image, really aren't eliminated. In this case, M, (x, y, z)
is virtually similar to My (x, y, 0). The PMD method can successfully smooth parts of a picture having
defect-free backdrops. The diffusion coefficients are typically modified in the following steps. Take
(x,y) be an image pixel position; at iteration ‘i’ the grey level probability is determined from the 3x3
neighboring region N, as follows:

Ny M;(x,
J; e y) = 22 (5)

where M, (x, y)denotes the total grey level in the 3 x 3 neighboring region N,,,. Equation (5) may be
recast as a diffusion function, as seen in the equation below:

Ny
m (Mi(x, v, J; 7 (x, y)) = - 2 (6)
1+(Mi(x.y),]i Y (x,y)/n)
where n is indeed a positive threshold employed as a catalyst for the denoising operation and also to
boost the strength of edges. By using the updated diffusion function, Equation (2) may be expressed
as Equation (7):

Mair(6,y) = Ma(6,y) + 5138, [m (Mo 9). 027 o)) Mo y)| (@)

The improved diffusion function in Equation (6) assists in maintaining the fine features as well as
edges of such smoothing operation, preserving the problematic areas. If both ]ixyas well as M;(x,y)
become too big, the diffusion coefficient approaches zero. As a result, the diffusion operation is halted
and the associated pixel values were recorded. The picture affects the parameters n but also i.

Cracks can be seen in concrete photos against chaotic backgrounds. Cracks of varying diameters and
modest slopes are common. The lack of gradients in noisy background photos will have an impact on
the accuracy of crack feature recognition. The fractures are kept without damage during the smoothing
process using this procedure. ]ixy (x,y) is being used to increase the gradient value while also denoising
the input.
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The non-local means filtering has been given the picture output from the anisotropic filtering. Non-
local means (NLM) denoising seems to be a method for dealing with Gaussian white noise in natural
photographs. The essential principle of NLM is to generate the weighting of mean value by assessing
the similarities of picture patch pixels, that differ from existing approaches that use single-pixel
similarity. As a result, picture denoising with patch information can better preserve image borders,
textures, and other properties. Assume there is a noisy image defined by v = {v(a)|a € A}, where A
specifies the image's coordinate domain. The estimated value of any pixel ‘a’ in the picture may be
determined using NLM by:

NLM[v](i) = Xpeaw f(a, b)v(b) (8)

Where the weighting function wf(a, b) primarily related to the degree of similarity between pixels a,
b and fulfills the requirements 0 < wf(a,b) < 1 and }, wf(a,b) =1

The grey matrices N, as well as Ny, which describe the picture areas centered on pixels a and b,
correspondingly, define the degree of similarity between pixels a and b. The Gaussian weighted
Euclidean distance dg(a, b), may be used to measure the correlation between two areas N, and Ny,
which is shown as

dg(a b) = [Iv(Na) — v(Ny)IIZ 6 9)

where 9 represents the Gaussian kernel's standard deviation. The weighting of comparable pixels in
the weighted average increases as the grey matrices of neighboring areas become increasingly similar.
The following is the definition of the weighting function wf (a, b):

1 _ds@b)
Wf(a, b) = ﬁe r2
_dg(ab)
Z(a) = Z e r?

b

where Z(a) is a normalized parameter and r specifies the smoothing parameters, which are connected
to the picture noise standard deviation. This collaborative ADNLMF denoises the input picture to
appropriately maintain edges, textures, and features, which aids in feature extraction. Figures 5A to
5C display a series of images representing the testing input image, the grayscale version, and the
filtered image derived from the images of the civil structure. This set of features comprises training
dataset features, testing dataset features, and a validation dataset for these images. The pre-processing
of the image involves techniques such as de-noising, sharpening, normalizing, cropping, cleaning,
transformation, reduction, quality assessment, and various combinations thereof.
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Testing Input Image Testing GrayScale image

:

Figure 5A - Figure 5C illustrates a testing input image, testing grayscale image, and a testing filtered
image of the images of the civil structure.

The Figure 6A and Figure 6B illustrate a processed image including the input image, and filtered
image. The enhanced pre-processed image by means of machine learning, artificial intelligence, deep
learning, convolution neural network, deep convolution neural network, and any combination thereof

Filtered Image

Figure 6A and Figure 6B illustrate a processed image including the input image, and filtered image.
3.3. Feature extraction

The preprocessed image output is passed through the feature extraction process. In this study, YOLO
v3 was employed to extract features, determining whether the image contains cracks or is crack-free.

YOLO v3 represents an enhancement of the YOLO target identification system. This detection
approach integrates candidate feature extraction, target categorization, and target localization within a
neural network. YOLOV3 treats object identification as a regression problem, predicting class
probabilities and bounding box offsets using a single feed-forward convolutional neural network on
entire images. Notably, it eliminates area proposal generation and feature resampling, integrating all
steps into a single network to establish an end-to-end detection approach. The feature extraction
algorithm for YOLO V3 is outlined below.

YOLO-v3 Feature Extraction Algorithm:

Start

Step 1: input image (Output from the preprocessing stage)
Step 2: Ignore the confidence threshold

https://internationalpubls.com 27



Advances in Nonlinear Variational Inequalities

ISSN: 1092-910X

Vol 27 No. 4 (2024)

Step 3: Remaining boxes are undergoing non-maximum suppression
Step 4: Generate default input width and height

Step 5: Read the input image

Step 6: Generate bounding boxes

Step 7: Bounding box confidence level score > confidence threshold
Step 8: Boxes are filtered by Non-Maximum suppression

Step 9: Assign class label and confidence score

Step 10: if a bounding box is generated

Step 11: Extract the crack features

Step 12: else

Step 13: Non-crack

Stop

The input image is divided into S x S tiny grid cells via the YOLOv3 algorithm. When the center of
an item falls within a grid cell, the grid cell is in charge of identifying the object. Every grid cell
forecasts the location information of B bounding boxes and then computes the objectness scores
associated with these bounding boxes. Each objectivity score could be calculated as follows:

¢} = P,;(Object) » IOUGYH (10)

where Cij seems to be the objectness score of the jth bounding box inside this ith grid cell. P; ;(Object)
is just a function of the object. The IOU;;Z%" depicts the intersection over union (IOU) between the

predicted box as well as the ground truth box. As one component of the loss function, the YOLOv3
technique employs binary cross-entropy of anticipated objectness scores as well as true objectness
scores. This can be represented as follows:

Ey = X0 N W [¢] log(c]) - (1= ¢])log(1 - ¢])] (11)

S2 denotes the count of grid cells in the picture, whereas B denotes the count of bounding boxes. The

projected abjectness score, as well as the truth abjectness score, were represented by Cij and Cij :
accordingly. Each bounding box's location was predicated on four forecasts: t,, t,, t,,, t,, with the
premise that (c,, cy) is indeed the grid cell's offset from the top left corner of the picture. The center
point of the final predicted bounding boxes being displaced from the image's top-left corner
by (by, by). These are calculated in the following manner:

b, = a(ty) + ¢,
b, =0(t,)+y (12)

In this case, () is indeed a sigmoid function. The estimated bounding box’s width and height were
determined as follows:
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by, = pyev
by, = ppetr (13)

where p,,, py, are indeed the preceding width as well as the height of the enclosing box Dimensional
clustering is used to obtain them.

This same ground truth box is typically made up of four parameters: g,, g, gwand g, which
correspond to the anticipated parameters b,, b, b,,and by,. Depending on (12) as well as (13), the truth
values of £,,t,, t,,and £, are as follows:

O'(fx) =9x — Cx
U(fy) =9y —C
fw = log(gw/pw) (14)

fh = log(gn/pn)

The square error of coordinate forecasting was being used as one component of the loss function in
the Yolo v3 approach. It may be stated as follows:

By = S0 28 W (o] - @) + (o(2,)] - o(2,); ) |+
S8, S W ()] = @D) + (@] = @) | (15)

Yolo v3's fundamental categorization network is darknet-53. It makes use of yolov2, Darknet-19, as
well as ResNet. This network structure incorporates numerous well-structured 33 and 11 convolution
layers, with added shortcut connections in subsequent layers. Consequently, it exhibits outstanding
classification performance on ImageNet. Notably, darknet-53 not only delivers similar classification
accuracy to ResNet-152 and ResNet-101 but also boasts significantly faster computation speed and
fewer network layers. YOLO v3 is a fully convolutional network employing a substantial number of
residual layer connections, ensuring the network topology's convergence in deep scenarios and
facilitating effective training.

The depth of a network corresponds to the granularity of its expression features and impacts
categorization and identification accuracy. Simultaneously, the 1*1 convolution within the residual
structure significantly reduces the channel count for each convolution, decreasing the number of
features and computational load.

In the context of crack detection, images without cracks lack bounding boxes and need to be
segregated, while images containing cracks must be labeled. The classification of crack depth is
determined using the Crack Width Transform technique, which is elaborated upon in the subsequent
description.

Figures 7A to 7C depict a modified image showcasing the input image, the filtered version, and the
identified crack. Figure 7A and Figure 7B are the images considered from Figure 6A and Figure 6 B.
This refined pre-processed image is achieved through the utilization of machine learning, artificial
intelligence, deep learning, convolutional neural networks, deep convolutional neural networks, and
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their various combinations. The processed image is optimized for computational analysis, advantage
of the application of these advanced techniques.

Input Image

150

Figure 7A - Figure 7C illustrates a processed image including the input image, filtered image, and
crack detected.

3.4. Crack Width Transform

The detected crack images have been sent to the Crack width transform to detect the width of those
cracks.

We utilized an edge-based crack width transform(CWT) approach to achieve consistent crack width
assessment. The Stroke Width Transform (SWT) is indeed a popular edge-based object extraction
approach for character recognition. SWT was composed of three steps: looking for opposing edges,
assigning width between opposing edges, and categorizing letters depending on width uniformity.
Crack allocation requirements are added to the opposite edge pixel searching method used in the SWT
in the CWT. FIGURE 3 depicts the process of looking for an opposite edge pixel (q;) of any given
pixel (g;) in the normal to the edge direction. As defined by Equation (16), crack width (w) is the
number of pixels positioned between the parallel opposing edges.

w = card(qy;) (16)

(qi;) denotes the collection of all pixels across but also (q;) and (q;), also card (qij) denotes the
count of (qij) (card = cardinality). Iterating the opposite edge pixel lookup till the specified width
drops below a maximum threshold value. Considering the restricted crack width permitting
measurement, setting the maximum threshold value prevents a non-crack location from being
classified as a crack candidate. If the collection of pixels positioned between the opposing pixels (g;;)
meets the following characteristics, the extracted opposing edge pixels were classed as potential crack
pixels.

1. As defined by Equation (17), the crack width (w) should be less than the maximum threshold
value (wy,).

w < W a7
2. If the crack width (w) is larger than or equal to the maximum threshold value (w,,), the average
Frangi value (fgavg) ought to be higher than that threshold value (fgt), according to Equation (18).
fgavg > fgt (18)
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Condition 2 improves the categorization of crack candidate regions by taking the Frangi filtering value
into account for crack region enhancement. As described in Equation, the average Frangi filtering
value may be determined as the sum of the opposing edge pixels (19).

fGavg = = Xonei f(m) (19)

The procedure of categorizing the opposing edge pixels as the crack candidate region (C) is expressed
in Equation (20).

Narrow-width crack segments have a low intensity, which reduces their Frangi filtering values. To
avoid such segments being labeled as non-crack zones, we just applied Condition 1 to narrow-width
segments without taking their Frangi filtering values into account. In addition, we created a width map
(WM) of the CWT-based crack width measured for aspect ratio filtering. A width map is the alignment
of the crack width's midpoints, as stated by Equation (21). When requirements for a candidate crack
were met, the width map was initialized as 0, and the crack width was allocated to it.

WM (1£8)  w (21)

The extraction of an edge from a crack picture and calculation of its gradient information is referred
to as the method of getting crack edge information. To create the crack candidate picture and width
map, the CWT is applied to every extracted edge pixel.

3.5. Classification:

Crack classification involves utilizing machine learning algorithms to precisely determine the type of
crack. While crack detection identifies the presence of a crack, crack classification categorizes it based
on its width. Machine learning, a subset of Artificial Intelligence (Al), enables tasks such as
categorization, prediction, and dataset grouping based on specific applications. In this study, Deep
Convolutional Neural Network (DCNN) was employed to classify the cracks.

DCNN s replicate the neural connection patterns found in the visual cortex of animals. They comprise
at least one convolutional layer, a pooling layer, and a fully connected layer. Each convolutional layer
responds to stimuli within a specific part of the visual field, known as its receptive field. This design
distinguishes CNNSs from traditional image categorization methods and other deep learning techniques,
as CNNs can learn filters that are typically hand-crafted in traditional methods. This work utilized 16
convolutional layers and 3 fully connected dense layers. Refer to Figure 8 for the diagram illustrating
the DCNN network structure.
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Feature extraction Fully connected dense layers+ Softmax
drop out classification

Figure 8: The network model of DCNN

Each convolutional layer was configured with a consistent kernel size of 3x3 pixels, accompanied by
padding and a rectified linear unit activation function. Max-pooling layers with strides of 2x2 pixels
were employed after the convolutional layers to mitigate position sensitivity issues and enhance the
network’'s general recognition capabilities by extracting feature information from the images.
Subsequently, three fully connected hidden layers were established, comprising 1,024, 1,024, and 512
nodes respectively, to capture spatial features and empirically identify the fundamental characteristics
of cracks.

A dropout rate of 0.5, a widely used regularization technique for rescaling deep CNN weights to a
more effective range, was applied. The final output layer utilized a Softmax classifier to categorize
cracks. The training process encompassed 500 epochs, utilizing the Adam algorithm with a learning
rate of 0.0001, a stochastic gradient descent approach, to optimize the network weights. After an initial
20 epochs of training, a fine-tuning phase was initiated, adjusting the weights and refining the
hyperparameters of the layers to enhance crack classification outcomes.

Advantages:

The proposed system disclosure described herein above has several technical advantages including,
but not limited to, the method for detection of encroachment in civil structure using dynamic learning
techniques that:

. provides automatic classification of irregularity;

. reduce human intervention;

. reduce error possibility;

. provide high accuracy;

. prevent hazardous conditions occurring by irregularity; and
. provide high-accuracy detection of irregularity.
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Conclusion

Surface crack detection is indeed a crucial task in monitoring the structural health of concrete
constructions. If cracks form and spread, they limit the effective load-bearing surface area and, in time,
can lead to structural failure. The manual crack identification procedure is time-consuming and
sensitive to inspectors' subjective opinions. The manual inspection might also be challenging in the
case of high-rise structures and bridges. This paper proposes an automated crack identification
approach called crack encroachment in concrete structures identified with DCNN (Deep Convolutional
Neural Network). It denoises the input image using ADNLMF (Anisotropic Diffusion Non-Local
Mean Filtering) to better preserve the edges, textures, and features. Yolo v3 was used to discriminate
between crack and non-crack images, and a deep convolutional neural network classifier was used to
detect the crack type. The crack kinds are recognized here based on the width of the cracks by utilizing
crack width transform. This method not only improves accuracy but also decreases network
complexity as well as time. When the overall performance of our proposed method is compared to that
of existing crack identification techniques, it is clear that our proposed concrete structure crack
recognition methodology produces better results.
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