
Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 27 No. 4 (2024) 

 

17 
https://internationalpubls.com 

Detection of Encroachment in Civil Structure Using Dynamic Learning 

Techniques 

 

Rahul B. Diwate1, Dr. Lalit V. Patil2 
1Research Scholar, Department of Computer Engineering, Smt. Kashibai Navale College of Engineering, Pune, M.H, 

India. Email: 1diwate.rahul@gmail.com,  

2Professor, Department of Information Technology, Smt. Kashibai Navale College of Engineering, Pune, M.H, India 

Email: 2lalitvpatil@gmail.com 

 

 

Article History: 

Received: 13-03-2024 

Revised: 17-05-2024 

Accepted: 01-06-2024 

Abstract 

Identifying cracks through visual inspection and automated surveys are both 

effective methods. While both approaches yield satisfactory distress analysis 

results, automated crack recognition technology stands out for its speed and 

cost-effectiveness compared to traditional human visual detection methods. 

This study introduces an innovative approach, namely "crack encroachment 

in concrete structures classified using DCNN" which employs a Deep 

Convolutional Neural Network. To enhance the precision of crack detection, 

the input image undergoes denoising through ADNLMF (Anisotropic 

Diffusion Non-Local Mean Filtering), preserving edges, textures, and 

features. Crack discrimination between crack and non-crack images was 

achieved using Yolo v3, and a deep convolutional neural network classifier 

was employed to identify specific crack types based on their widths, utilizing 

crack width transform. This method not only enhances accuracy but also 

reduces network complexity and processing time. A comprehensive 

performance comparison with existing crack identification techniques 

indicates that our proposed methodology for concrete structure crack 

recognition produces superior results. 

Keywords: Automatic crack recognition, Deep Convolutional Neural 

Network, Anisotropic Diffusion Non-Local Mean Filtering, Crack Width 

Transform. 

 

 

1. Introduction 

Concrete cracks serve as common indicators of structural wear and tear and are pivotal in infrastructure 

maintenance. In developed nations, routine assessments of civil engineering structures are conducted, 

focusing on cracks' presence, position, and width, crucial for developing maintenance strategies [1-3]. 

Traditionally, manual visual inspections have been the preferred method for gathering such crack data 

[4]. However, this method is labor-intensive, costly, time-consuming, and often unreliable due to its 

dependence on the inspector's expertise [5]. 

To address these challenges, digital image processing has emerged as a viable solution for crack 

monitoring. This method involves analyzing surface images of concrete buildings to detect vital 

fracture details, including the presence, location, and width of cracks [6-8]. Various techniques, 
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including image binarization, edge detection, and mathematical morphology, are employed for crack 

identification. Image binarization, for example, converts grayscale pixels into black or white, 

enhancing crack identification. In the binarized images, dark cracks appear black, while lighter 

backgrounds appear white, facilitating precise crack detection [9]. Additionally, edge detection 

methods are used to identify the edges of fracture pixels, aiding in concrete crack identification. 

Mathematical morphology serves as an additional step to modify fracture shapes, further improving 

the accuracy of crack detection. Previous studies have summarized these image processing methods 

for identifying fractures in concrete buildings [10-11]. 

However, despite the promising outcomes of previous research on image processing for crack 

identification, complete automation is hindered by a fundamental assumption. This assumption 

presupposes that provided images exclusively contain genuine cracks. For instance, images of a 

concrete structure's exterior captured manually using a digital camera or an unmanned aerial vehicle 

(UAV) for structural maintenance might encompass not only cracks but also non-crack elements such 

as dark stains, shadows, dust, irregularities, and holes. Distinguishing between these diverse features 

in image processing proves to be challenging [12]. 

Moreover, the process of image binarization can mistakenly categorize a dark stain as black, 

resembling a crack, resulting in false-positive outcomes. Therefore, achieving fully automated crack 

monitoring necessitates the ability to distinguish genuine cracks from surface images that may contain 

both actual cracks and crack-like non-cracks. In the realm of civil engineering, machine learning has 

emerged as a transformative technique [13]. Specifically, supervised learning, a subset of machine 

learning, can be seamlessly integrated with computer vision to tackle challenges associated with crack 

recognition. 

In this approach, unique characteristics of cracks and non-cracks are discerned from training images, 

which are subsequently utilized in classification algorithms like support vector machines (SVMs) and 

random forests. The trained classification model is then applied to new images to identify surface 

cracks effectively [14]. To differentiate between cracks and non-cracks and construct a classification 

model, features such as geometric patterns (such as eccentricity and the number of pixels in each pixel 

group) and statistical attributes of pixel intensities (including mean and standard deviation) have been 

selected. Despite these methods not requiring user-defined empirical thresholds, distinguishing 

between crack-like and non-cracks that share similar shapes and colors with actual cracks remains a 

challenge. Therefore, advanced features from both cracks and non-cracks need to be extracted to create 

a robust classification model for accurate and efficient classification. 

The introduction of deep learning, characterized by multiple interconnected layers, has proven to be a 

potent technique for crack detection. Concrete surface images, categorized as either cracked or 

undamaged, were employed to construct a classification model based on the Convolutional Neural 

Network (CNN). This trained model is subsequently applied to evaluate new concrete surface images 

in the validation process [15]. While previous research utilizing deep learning has successfully 

identified cracked areas, the challenging task of distinguishing crack-like non-cracks, a common 

occurrence in real-world scenarios, has not been thoroughly explored [16]. In concrete surface images, 

it is crucial to precisely detect and filter out any non-crack objects. This paper introduces a framework 

for concrete crack identification utilizing deep learning, aiming to address these complexities. 
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The main contributions of this work are  

• A collaborative ADNLMF has been used to denoise the input image while maintaining the 

edges, textures, as well as features. 

• The YOLO V3 object detector was used to detect concrete fractures in real-world images, 

which is far faster than previous detection algorithms with equivalent performance. 

• This work develops a less time-consuming and more accurate crack categorization based on 

crack width. 

The following is the layout of the paper: Section 2 contains a brief review of related works, Section 3 

contains an overview of the proposed crack detection technique, Section 4 contains the proposed 

method's implementation outcome, Section 5 comprises the work's conclusion, and the following 

section contains this research work's references. 

2. Literature Survey 

Several research studies have been carried out to detect the crack in civil structure which is surveys 

below. 

In a study conducted by Saleem and colleagues [17], an experimental approach was explored to predict 

the fractured state of concrete surrounding steel reinforcement using ultrasonic pulse velocity testing. 

To account for the complex and nonlinear stress distribution at the steel-concrete interface, a multilayer 

feedforward backpropagation perceptron artificial neural network (ANN) was developed. This ANN 

was designed to avoid oversimplification assumptions when creating models to anticipate cracking. 

Specifically, the ANN was employed to forecast fracture width, and sensitivity analysis was conducted 

on various factors influencing bond degradation. The study achieved a high level of accuracy, indicated 

by an R^2 value of 0.97, showcasing the precision between predicted and experimental values while 

emphasizing the significance of the most relevant parameter. 

In a different approach, Rajadurai and team [18] utilized AlexNet, a pre-trained Deep Convolutional 

Neural Network (DCNN), for automated vision-based crack recognition and categorization. The 

methodology involved three key steps: first, gathering numerous images from an open-source picture 

dataset and classifying them into two categories (non-crack and crack images); second, developing a 

DCNN model and applying transfer learning and augmentation techniques; and third, automatically 

identifying and categorizing images using the trained deep learning approach. Furthermore, a cross-

dataset study was conducted to evaluate the effectiveness of the trained AlexNet model. The 

performance of the trained AlexNet model was assessed using precision, recall, accuracy, and F1 

measures, demonstrating its effectiveness in crack recognition and categorization. 

Hadinata and colleagues [19] conducted a study to assess the effectiveness of advanced encoder-

decoder structures in identifying concrete surface fractures using U-Net and DeepLabV3+ 

architectures, known for their capabilities in biomedical and sparse multiscale image classification, 

respectively. Cloud computing technology was utilized to train neural networks on a high-performance 

Graphics Processing Unit NVIDIA Tesla V100 with 27.4 GB of RAM. The study incorporated both 

internal and external data. Internal data, consisting of basic cracks, was employed for training and 

validation purposes, while more complex fractures from external sources were used for additional 
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testing. Both U-Net and DeepLabV3+ architectures were evaluated using four key metrics: accuracy, 

F1 score, precision, and recall. 

In a different study, Ali and team [20] proposed a modified CNN for detecting fractures in concrete 

structures. The algorithm was compared with four distinct deep learning approaches based on factors 

such as training data size, data diversity, system complexity, and the number of training epochs. The 

performance of the proposed convolutional neural network (CNN) model was assessed on eight 

datasets of varying sizes derived from two public datasets. These results were then compared to 

outcomes from pre-trained networks, including VGG-16, VGG-19, ResNet-50, and Inception V3 

models. Evaluation criteria included computing time, crack localization accuracy, and classification 

parameters such as accuracy, precision, recall, and F1-score for each model. Notably, on a limited 

dataset, the customized CNN and VGG-16 models outperformed other methods in terms of 

classification, localization, and computational efficiency. This indicated that these two models excel 

in crack detection and localization for concrete structures. 

In a study by Chen and colleagues [21], an automated technique for generating crack ground truths 

(GTs) within concrete images was introduced. The process involves creating initial GTs, pre-training 

a deep learning-based model, and generating second-round GTs. These second-round GTs are then 

employed to train a self-supervised crack detection model. Through this method, the pre-trained deep 

learning-based model demonstrates successful crack detection. A significant contribution of this study 

is the proposal of an automated GT generation approach, enabling the training of a crack detection 

model at the pixel level. Experimental results indicate that the second-round GTs closely resemble 

manually indicated labels. 

In another study, Kamada and team [22] developed an Adaptive Structural Deep Belief Network 

(Adaptive DBN) capable of self-organizing to determine the optimal network structure during the 

learning process. This hierarchical design incorporates the Adaptive Restricted Boltzmann Machine in 

each tier (Adaptive RBM). The Adaptive RBM adapts the number of hidden neurons during learning. 

The proposed technique was applied to the SDNET2018 concrete image dataset, containing 

approximately 56,000 crack photos from various concrete constructions like bridge decks, walls, and 

paved roadways. The Adaptive DBN's fine-tuning approach achieved impressive classification 

accuracies of 99.7%, 99.7%, and 99.4% for three different types of structures. It's worth noting, 

however, that the database contained some incorrectly labeled data, challenging to assess even for 

human experts based on photographs. 

Chow and colleagues [23] explored the application of deep learning algorithms in civil infrastructure 

inspection programs. They introduced an AI-powered inspection pipeline that includes anomaly 

identification, extraction, and fault categorization, replacing the error-prone and time-consuming 

manual evaluation process. This pipeline generates an anomaly map to extract potential faults, which 

are then categorized into relevant classes. Utilizing consistent parameters for both anomaly detection 

and defect categorization in deep learning models ensures unbiased decision-making, eliminating the 

subjective judgment often associated with human inspectors. Moreover, this approach enhances 

automation by eliminating the need for multiple time-consuming image processing steps, feature 

extraction, and selection. The processing time for the image dataset is remarkably quick, 

approximately 15 minutes. 
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In a separate study, Shim and team [24] introduced an innovative approach for concrete crack 

identification based on multiscale and adversarial learning. They constructed a segmentation neural 

network for precise recognition, incorporating a deep neural network with layer connections to 

generate additional training data from unlabeled images, thereby enhancing training performance. To 

minimize the required training data, they devised a novel adversarial learning structure for training 

multiscale segmentation neural networks, introducing a new loss function to update the weights of 

these networks. 

Additionally, Kumar and colleagues [25] developed a modified LeNet 5 model for identifying fractures 

in bridges and roads. They employed three distinct datasets: the Automated Bridge Crack Recognition 

Dataset, the Concrete Crack Imaging for Categorization Dataset, and the Asphalt Crack Dataset. Their 

proposed approach was evaluated and compared with and without the use of Principal Component 

Analysis. The model marked crack and non-crack regions in green and red, respectively, considering 

both time and accuracy elements in the results generation process. 

Manual inspection primarily relies on manual inspection, involving the manual depiction of fractures 

and documentation of their characteristics. However, this method is subjective, dependent on the 

expertise of the specialist, and lacks objectivity in quantitative analysis. Moreover, existing approaches 

often have limitations in terms of accuracy, training time, and the incorporation of photographs. In 

response to these constraints, our research has introduced an innovative model. The following section 

of this paper offers a detailed overview of our proposed methodology.  

3. CRACK CATEGORIZATION TECHNIQUES 

The identification and categorization of cracks play a vital role in assessing their severity. Crack 

detection involves the process of identifying the presence of a crack, while crack classification entails 

categorizing the crack based on features extracted from the crack region. Therefore, the field of civil 

infrastructure necessitates automated techniques for both crack detection and classification. Our 

proposed method, known as "Novel Crack Encroachment in Concrete Structures," is classified using 

Deep Convolutional Neural Networks (DCNN). 

Initially, we preprocess the input image using an innovative approach called Anisotropic Diffusion 

Non-Local Mean Filtering (ADNLMF). These filters are designed to reduce noise in the input images. 

Anisotropic Diffusion is employed to maintain the sharpness of edges, while Non-Local Mean 

denoises the images while preserving textures and other features. The collaborative application of 

ADNLMF enhances the denoising process, ensuring the preservation of edges, textures, and features. 

The preprocessed image is then subjected to a feature extraction step, where we utilize DCNN based 

on YOLOv3 architecture to detect whether the structure contains cracks or not. YOLOv3 combines 

elements from YOLOv2, Darknet-53, and Residual networks to extract these features. If a crack is 

detected, our research further classifies it into categories such as minor crack, major crack, attention 

crack, or severe crack based on crack depth. The calculation of crack depth is performed using the 

crack width transform technique. Subsequently, a DCNN-based classifier is utilized to identify the 

specific type of crack. 
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In summary, our novel approach enhances accuracy, reduces network complexity, and minimizes 

processing time in the detection and classification of cracks in civil infrastructure. Figure 1 shows a 

block diagram of the proposed crack recognition and categorization approach. 

 
Figure 1: Block diagram of the proposed crack categorization technique 

The preprocessing module was given both cracks as well as non-crack pictures to work with. The new 

Anisotropic diffusion non-local mean filter is used in this module to eliminate noise from pictures. 

This proposed filtering technique's complete method has been described below. 

3.1. Pre-processing 

The dataset for implementation is Concrete Crack Images for Classification from Mendeley data, 

which contains 40000 images with 227 x 227 pixels with RGB channels. 

 
Figure 2. Database of Images 

 
Figure 3. Non-craking and Crack  

Images shot fetched from concrete structures are indeed a bit noisy, wherein the concrete structures 

often suffer from noise, making it necessary to improve the quality of the input images. Various noise-
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reduction methods were employed to eliminate unwanted disturbances. While the primary goal of these 

filters is noise reduction, they must also highlight specific aspects of the input image. Noises in 

concrete structures typically result from shadows and variations in lighting conditions. Commonly 

used denoising techniques involve mean filters, median filters, Gaussian filters, and their variations. 

The Gaussian filter, in particular, is widely used for noise reduction. However, some methods tend to 

blur the edges of the input images, potentially leading to the loss of crucial information, especially 

concerning cracked pixels. To address this issue, the proposed approach employs non-linear filtering 

to remove noise from photographs of concrete buildings, ensuring that the sharpness of the edges is 

preserved. 

3.2. ADNLMF (Anisotropic Diffusion Non-Local Mean Filtering)  

The diffusion method is being used to smooth out the input pictures. The diffusion of pixel values 

influences the approaches and filters offered. Isotropic or anisotropic diffusion processes exist. The 

diffusion method was applied regardless of any edges in isotropic diffusion. Images get blurry due to 

the diffusion of pixel values. Isotropic diffusion filters, as a result, average the picture pixels across 

the entire image. As a result, picture diffusion happens in all directions. Also, the Algorithm for 

Anisotropic Diffusion Non-Local Mean Filtering has been given below 

Algorithm for Anisotropic Diffusion Non-Local Mean Filtering: 

Step 1: Input image 

Step 2: Give input to the Anisotropic Diffusion filtering (ADF) 

Step 3: Apply strong Gaussian noise 

Step 4: Develop the noisy image. 

Step 5: Compute the structural similarity index (SSIM)  

Step 6: if SSIM = 1 

Step 7: Get the Edge preserving image 

Step 8: else 

Step 9: Generate Non-Local Mean Filtering (NLMF) 

Step 10: Add white Gaussian noise with zero mean and variance 

Step 11: Develop the noisy RGB image 

Step 12: Convert the noisy RGB image to the L*a*b color space 

Step 13: Extract a homogeneous L*a*b patch from the noisy background  

Step 14: Compute the noise standard deviation 

Step 15: Compute the Euclidean distance (edist) from the origin 

 Step 16: Calculate the standard deviation of edist to estimate the noise 

Step 17: Degree of Smoothing value to be higher than the standard deviation of the patch 
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Step 18: Filter the noisy L*a*b* image using NLMF 

Step 19: Convert the filtered L*a*b image to the RGB color space. 

Step 20: Display the filtered RGB image. 

The edge and other pixels are messed together in this scenario. Diffusion varies with direction in 

anisotropic filters. It's achieved by using an image's gradient. Anisotropic diffusion takes the following 

general form: 

𝜕(𝑀(𝑥,𝑦,𝑧))

𝜕(𝑧)
= 𝑑𝑖𝑣[𝑠(‖∇𝑀(𝑥, 𝑦, 𝑧)‖|∇(𝑀(𝑥, 𝑦, 𝑧)))]              (1) 

where 𝑀(𝑥, 𝑦, 𝑧)  represents the original picture, whereas ∇𝑀(𝑥, 𝑦, 𝑧) indicates the gradient of input 

data at time z. 

In Equation (1), 𝑠 (. ) seems to be the conductance function that regulates the gradient operation (1). It 

is quite important in the diffusion process. In general, 𝑠 (. ) is not negative. It is chosen depending on 

the two criteria. If lim
𝑠→0

𝑠(𝑥) = 1, then pixel diffusion is greatest in homogeneous areas. The diffusion 

pixel values are halted across the edges if lim
𝑠→0

𝑠(𝑥) = 0. It's being used to adjust the diffusion speed 

and also to assist in differentiating the edges of the input picture. Figure 4 depicts the flowchart for the 

proposed Anisotropic Diffusion Non-Local Mean Filtering. 

 

Figure 4: Flowchart for the proposed Anisotropic Diffusion Non-Local Mean Filtering. 

The gradient of four 𝑖 = {1, 2, … , 4} closest neighbor pixels are utilized to compute the anisotropic 

diffusion in Equation (1) and also is provided in Equation (2). At iteration z, the anisotropic diffusion 

filtering of the input may be expressed in terms of diffused image 𝑀𝑑(𝑥, 𝑦, 𝑧). 

𝑀𝑑(𝑥, 𝑦, 𝑧) = 𝑀𝑑(𝑥, 𝑦, 𝑧 − 1) +
1

4
∑ 𝑚(|∇𝑀𝑑

𝑖 |∇𝑀𝑑
𝑖 )4

𝑖=1 , 𝑧 > 0,              (2) 

where 𝑚 represents the diffusion coefficient and ∇ would be the gradient 
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In general, the Perona-Malik Diffusion (PMD) approach has been widely employed in diffusion. 

Perona and Malik (1990) presented the diffusion coefficients shown below for anisotropic diffusion 

filtering: 

𝑚1(𝑥) = 𝑒𝑥𝑝 [− (
𝑥

𝑛
)

2

]                                                                                  (3) 

𝑚2(𝑥) =
1

1+(𝑥 𝑛⁄ )2                                                                                           (4) 

The fixed threshold number n governs the degree of input denoising. After every iteration of the PMD 

technique, the adaptive allocation of the diffusion coefficient 𝑚(𝑥) was performed. It isolates the edges 

in the input picture by lowering the diffusion all along the edge direction. Because the PMD approach 

employs an unstable diffusion mechanism, artifacts remain in the input image. The threshold n 

choosing procedure is a difficult assignment. If n is large, the diffusion process generates a smoother 

picture and blurs the total input image. If n is too little, the diffusion technique yields a smoother 

image, as well as the abnormalities in the input image, really aren't eliminated. In this case, 𝑀𝑑(𝑥, 𝑦, 𝑧) 

is virtually similar to 𝑀𝑑(𝑥, 𝑦, 0). The PMD method can successfully smooth parts of a picture having 

defect-free backdrops. The diffusion coefficients are typically modified in the following steps. Take 

(𝑥, 𝑦) be an image pixel position; at iteration ‘i’ the grey level probability is determined from the 3×3 

neighboring region 𝑁𝑥𝑦 as follows: 

𝐽
𝑖

𝑁𝑥𝑦(𝑥, 𝑦) =
𝑀𝑖(𝑥,𝑦)

𝑀𝑖̅̅̅̅ (𝑥,𝑦)
                                                                                     (5) 

where 𝑀𝑖
̅̅ ̅(𝑥, 𝑦)denotes the total grey level in the 3 × 3 neighboring region 𝑁𝑥𝑦. Equation (5) may be 

recast as a diffusion function, as seen in the equation below: 

𝑚 (𝑀𝑖(𝑥, 𝑦), 𝐽
𝑖

𝑁𝑥𝑦(𝑥, 𝑦)) =
1

1+(𝑀𝑖(𝑥,𝑦),𝐽
𝑖

𝑁𝑥𝑦(𝑥,𝑦) 𝑛⁄ )
2                                        (6) 

where n is indeed a positive threshold employed as a catalyst for the denoising operation and also to 

boost the strength of edges. By using the updated diffusion function, Equation (2) may be expressed 

as Equation (7): 

𝑀𝑑+1(𝑥, 𝑦) = 𝑀𝑑(𝑥, 𝑦) +
1

4
∑ [𝑚 (𝑀𝑖(𝑥, 𝑦), 𝐽𝑖

𝑥𝑦(𝑥, 𝑦)) . 𝑀𝑖(𝑥, 𝑦)]4
𝑖=1           (7) 

The improved diffusion function in Equation (6) assists in maintaining the fine features as well as 

edges of such smoothing operation, preserving the problematic areas. If both 𝐽𝑖
𝑥𝑦

as well as 𝑀𝑖(𝑥, 𝑦) 

become too big, the diffusion coefficient approaches zero. As a result, the diffusion operation is halted 

and the associated pixel values were recorded. The picture affects the parameters n but also i. 

Cracks can be seen in concrete photos against chaotic backgrounds. Cracks of varying diameters and 

modest slopes are common. The lack of gradients in noisy background photos will have an impact on 

the accuracy of crack feature recognition. The fractures are kept without damage during the smoothing 

process using this procedure. 𝐽𝑖
𝑥𝑦(𝑥, 𝑦) is being used to increase the gradient value while also denoising 

the input. 



Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 27 No. 4 (2024) 

 

26 
https://internationalpubls.com 

The non-local means filtering has been given the picture output from the anisotropic filtering. Non-

local means (NLM) denoising seems to be a method for dealing with Gaussian white noise in natural 

photographs. The essential principle of NLM is to generate the weighting of mean value by assessing 

the similarities of picture patch pixels, that differ from existing approaches that use single-pixel 

similarity. As a result, picture denoising with patch information can better preserve image borders, 

textures, and other properties. Assume there is a noisy image defined by 𝑣 = {𝑣(𝑎)|𝑎 ∈ 𝐴}, where A 

specifies the image's coordinate domain. The estimated value of any pixel ‘a’ in the picture may be 

determined using NLM by: 

𝑁𝐿𝑀[𝑣](𝑖) = ∑ 𝑤𝑏∈𝐴 𝑓(𝑎, 𝑏)𝑣(𝑏)                                                    (8) 

Where the weighting function wf(a, b) primarily related to the degree of similarity between pixels a, 

b and fulfills the requirements 0 ≤ wf(a, b) ≤ 1 and ∑ wf(a, b) = 1b  

The grey matrices Na as well as Nb, which describe the picture areas centered on pixels a and b, 

correspondingly, define the degree of similarity between pixels a and b. The Gaussian weighted 

Euclidean distance 𝑑𝑔(𝑎, 𝑏), may be used to measure the correlation between two areas Na and Nb, 

which is shown as 

dg(a, b) = ‖v(Na) − v(Nb)‖2,ϑ
2                                                         (9) 

where ϑ represents the Gaussian kernel's standard deviation. The weighting of comparable pixels in 

the weighted average increases as the grey matrices of neighboring areas become increasingly similar. 

The following is the definition of the weighting function 𝑤𝑓(𝑎, 𝑏): 

𝑤𝑓(𝑎, 𝑏) =
1

Z(a)
e

−
dg(a,b)

r2  

Z(a) = ∑ e
−

dg(a,b)
r2

b

 

where Z(a) is a normalized parameter and r specifies the smoothing parameters, which are connected 

to the picture noise standard deviation. This collaborative ADNLMF denoises the input picture to 

appropriately maintain edges, textures, and features, which aids in feature extraction. Figures 5A to 

5C display a series of images representing the testing input image, the grayscale version, and the 

filtered image derived from the images of the civil structure. This set of features comprises training 

dataset features, testing dataset features, and a validation dataset for these images. The pre-processing 

of the image involves techniques such as de-noising, sharpening, normalizing, cropping, cleaning, 

transformation, reduction, quality assessment, and various combinations thereof. 
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Figure 5A - Figure 5C illustrates a testing input image, testing grayscale image, and a testing filtered 

image of the images of the civil structure. 

The Figure 6A and Figure 6B illustrate a processed image including the input image, and filtered 

image. The enhanced pre-processed image by means of machine learning, artificial intelligence, deep 

learning, convolution neural network, deep convolution neural network, and any combination thereof 

  

Figure 6A and Figure 6B illustrate a processed image including the input image, and filtered image. 

3.3. Feature extraction 

The preprocessed image output is passed through the feature extraction process. In this study, YOLO 

v3 was employed to extract features, determining whether the image contains cracks or is crack-free. 

YOLO v3 represents an enhancement of the YOLO target identification system. This detection 

approach integrates candidate feature extraction, target categorization, and target localization within a 

neural network. YOLOv3 treats object identification as a regression problem, predicting class 

probabilities and bounding box offsets using a single feed-forward convolutional neural network on 

entire images. Notably, it eliminates area proposal generation and feature resampling, integrating all 

steps into a single network to establish an end-to-end detection approach. The feature extraction 

algorithm for YOLO V3 is outlined below. 

YOLO-v3 Feature Extraction Algorithm: 

Start 

Step 1: input image (Output from the preprocessing stage) 

Step 2: Ignore the confidence threshold 
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Step 3: Remaining boxes are undergoing non-maximum suppression 

Step 4: Generate default input width and height 

Step 5: Read the input image 

Step 6: Generate bounding boxes 

Step 7: Bounding box confidence level score ≥ confidence threshold  

Step 8: Boxes are filtered by Non-Maximum suppression 

Step 9: Assign class label and confidence score 

Step 10: if a bounding box is generated 

Step 11: Extract the crack features  

Step 12: else 

Step 13: Non-crack 

Stop 

The input image is divided into 𝑆 ×  𝑆 tiny grid cells via the YOLOv3 algorithm. When the center of 

an item falls within a grid cell, the grid cell is in charge of identifying the object. Every grid cell 

forecasts the location information of B bounding boxes and then computes the objectness scores 

associated with these bounding boxes. Each objectivity score could be calculated as follows: 

𝐶𝑖
𝑗

= 𝑃𝑖,𝑗(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ                                               (10) 

where 𝐶𝑖
𝑗
 seems to be the objectness score of the jth bounding box inside this ith grid cell. 𝑃𝑖,𝑗(𝑂𝑏𝑗𝑒𝑐𝑡) 

is just a function of the object. The  𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ depicts the intersection over union (IOU) between the 

predicted box as well as the ground truth box. As one component of the loss function, the YOLOv3 

technique employs binary cross-entropy of anticipated objectness scores as well as true objectness 

scores. This can be represented as follows: 

𝐸1 = ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[𝐶̂𝑖
𝑗
 𝑙𝑜𝑔(𝐶𝑖

𝑗
) − (1 − 𝐶̂𝑖

𝑗
)𝑙𝑜𝑔(1 − 𝐶𝑖

𝑗
)]𝐵

𝑗=0
𝑆2

𝑖=0              (11) 

𝑆2 denotes the count of grid cells in the picture, whereas B denotes the count of bounding boxes. The 

projected abjectness score, as well as the truth abjectness score, were represented by 𝐶𝑖
𝑗
 and 𝐶̂𝑖

𝑗
, 

accordingly. Each bounding box's location was predicated on four forecasts: 𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ, with the 

premise that (𝑐𝑥, 𝑐𝑦) is indeed the grid cell's offset from the top left corner of the picture. The center 

point of the final predicted bounding boxes being displaced from the image's top-left corner 

by (𝑏𝑥, 𝑏𝑦). These are calculated in the following manner: 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 

                                                        𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑦                                                   (12) 

In this case, () is indeed a sigmoid function. The estimated bounding box's width and height were 

determined as follows: 
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𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤 

                                                          𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ                                                     (13) 

where 𝑝𝑤, 𝑝ℎ are indeed the preceding width as well as the height of the enclosing box Dimensional 

clustering is used to obtain them. 

This same ground truth box is typically made up of four parameters: 𝑔𝑥, 𝑔𝑦, 𝑔𝑤and 𝑔ℎ, which 

correspond to the anticipated parameters 𝑏𝑥, 𝑏𝑦, 𝑏𝑤𝑎𝑛𝑑 𝑏ℎ. Depending on (12) as well as (13), the truth 

values of 𝑡̂𝑥, 𝑡̂𝑦, 𝑡̂𝑤and 𝑡̂ℎ are as follows: 

𝜎(𝑡̂𝑥) = 𝑔𝑥 − 𝑐𝑥 

𝜎(𝑡̂𝑦) = 𝑔𝑦 − 𝑐𝑦 

                                          𝑡̂𝑤 = 𝑙𝑜𝑔(𝑔𝑤 𝑝𝑤⁄ )                                   (14) 

𝑡̂ℎ = 𝑙𝑜𝑔(𝑔ℎ 𝑝ℎ⁄ ) 

The square error of coordinate forecasting was being used as one component of the loss function in 

the Yolo v3 approach. It may be stated as follows: 

𝐸2 = ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[(𝜎(𝑡𝑥)𝑖
𝑗

− 𝜎(𝑡̂𝑥)𝑖
𝑗
)

2
+ (𝜎(𝑡𝑦)

𝑖

𝑗
− 𝜎(𝑡̂𝑦)

𝑖

𝑗
)

2

 ]𝐵
𝑗=0

𝑆2

𝑖=0 +

                       ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[((𝑡𝑤)𝑖
𝑗

− (𝑡̂𝑤)𝑖
𝑗
)

2
+ ((𝑡ℎ)𝑖

𝑗
− (𝑡̂ℎ)𝑖

𝑗
)

2
 ]𝐵

𝑗=0
𝑆2

𝑖=0                     (15) 

Yolo v3's fundamental categorization network is darknet-53. It makes use of yolov2, Darknet-19, as 

well as ResNet. This network structure incorporates numerous well-structured 33 and 11 convolution 

layers, with added shortcut connections in subsequent layers. Consequently, it exhibits outstanding 

classification performance on ImageNet. Notably, darknet-53 not only delivers similar classification 

accuracy to ResNet-152 and ResNet-101 but also boasts significantly faster computation speed and 

fewer network layers. YOLO v3 is a fully convolutional network employing a substantial number of 

residual layer connections, ensuring the network topology's convergence in deep scenarios and 

facilitating effective training. 

The depth of a network corresponds to the granularity of its expression features and impacts 

categorization and identification accuracy. Simultaneously, the 1*1 convolution within the residual 

structure significantly reduces the channel count for each convolution, decreasing the number of 

features and computational load. 

In the context of crack detection, images without cracks lack bounding boxes and need to be 

segregated, while images containing cracks must be labeled. The classification of crack depth is 

determined using the Crack Width Transform technique, which is elaborated upon in the subsequent 

description. 

Figures 7A to 7C depict a modified image showcasing the input image, the filtered version, and the 

identified crack. Figure 7A and Figure 7B are the images considered from Figure 6A and Figure 6 B. 

This refined pre-processed image is achieved through the utilization of machine learning, artificial 

intelligence, deep learning, convolutional neural networks, deep convolutional neural networks, and 
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their various combinations. The processed image is optimized for computational analysis, advantage 

of the application of these advanced techniques. 

   

Figure 7A - Figure 7C illustrates a processed image including the input image, filtered image, and 

crack detected. 

3.4. Crack Width Transform  

The detected crack images have been sent to the Crack width transform to detect the width of those 

cracks. 

We utilized an edge-based crack width transform(CWT) approach to achieve consistent crack width 

assessment. The Stroke Width Transform (SWT) is indeed a popular edge-based object extraction 

approach for character recognition. SWT was composed of three steps: looking for opposing edges, 

assigning width between opposing edges, and categorizing letters depending on width uniformity. 

Crack allocation requirements are added to the opposite edge pixel searching method used in the SWT 

in the CWT. FIGURE 3 depicts the process of looking for an opposite edge pixel (𝑞𝑗) of any given 

pixel (𝑞𝑖) in the normal to the edge direction. As defined by Equation (16), crack width (w) is the 

number of pixels positioned between the parallel opposing edges. 

w = card(qij)                                    (16) 

(𝑞𝑖𝑗) denotes the collection of all pixels across but also (𝑞𝑖) and (𝑞𝑗), also 𝑐𝑎𝑟𝑑 (𝑞𝑖𝑗) denotes the 

count of (𝑞𝑖𝑗) (card = cardinality). Iterating the opposite edge pixel lookup till the specified width 

drops below a maximum threshold value. Considering the restricted crack width permitting 

measurement, setting the maximum threshold value prevents a non-crack location from being 

classified as a crack candidate. If the collection of pixels positioned between the opposing pixels (𝑞𝑖𝑗) 

meets the following characteristics, the extracted opposing edge pixels were classed as potential crack 

pixels. 

1. As defined by Equation (17), the crack width (w) should be less than the maximum threshold 

value (wm). 

             w < wm                                       (17) 

2. If the crack width (w) is larger than or equal to the maximum threshold value (wm), the average 

Frangi value (fgavg) ought to be higher than that threshold value (fgt), according to Equation (18). 

                               fgavg > fgt                                        (18) 
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Condition 2 improves the categorization of crack candidate regions by taking the Frangi filtering value 

into account for crack region enhancement. As described in Equation, the average Frangi filtering 

value may be determined as the sum of the opposing edge pixels (19). 

                             𝑓𝑔𝑎𝑣𝑔 =
1

𝑤
∑ 𝑓𝑔(𝑚)

𝑗
𝑚=𝑖                                    (19) 

The procedure of categorizing the opposing edge pixels as the crack candidate region (C) is expressed 

in Equation (20). 

                                  C = C ∪ {qij}                                                  (20) 

Narrow-width crack segments have a low intensity, which reduces their Frangi filtering values. To 

avoid such segments being labeled as non-crack zones, we just applied Condition 1 to narrow-width 

segments without taking their Frangi filtering values into account. In addition, we created a width map 

(WM) of the CWT-based crack width measured for aspect ratio filtering. A width map is the alignment 

of the crack width's midpoints, as stated by Equation (21). When requirements for a candidate crack 

were met, the width map was initialized as 0, and the crack width was allocated to it. 

                                 WM (
qi+qj

2
) ← w                                                 (21) 

The extraction of an edge from a crack picture and calculation of its gradient information is referred 

to as the method of getting crack edge information. To create the crack candidate picture and width 

map, the CWT is applied to every extracted edge pixel. 

3.5. Classification: 

Crack classification involves utilizing machine learning algorithms to precisely determine the type of 

crack. While crack detection identifies the presence of a crack, crack classification categorizes it based 

on its width. Machine learning, a subset of Artificial Intelligence (AI), enables tasks such as 

categorization, prediction, and dataset grouping based on specific applications. In this study, Deep 

Convolutional Neural Network (DCNN) was employed to classify the cracks. 

DCNNs replicate the neural connection patterns found in the visual cortex of animals. They comprise 

at least one convolutional layer, a pooling layer, and a fully connected layer. Each convolutional layer 

responds to stimuli within a specific part of the visual field, known as its receptive field. This design 

distinguishes CNNs from traditional image categorization methods and other deep learning techniques, 

as CNNs can learn filters that are typically hand-crafted in traditional methods. This work utilized 16 

convolutional layers and 3 fully connected dense layers. Refer to Figure 8 for the diagram illustrating 

the DCNN network structure. 
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Figure 8: The network model of DCNN 

Each convolutional layer was configured with a consistent kernel size of 3×3 pixels, accompanied by 

padding and a rectified linear unit activation function. Max-pooling layers with strides of 2×2 pixels 

were employed after the convolutional layers to mitigate position sensitivity issues and enhance the 

network's general recognition capabilities by extracting feature information from the images. 

Subsequently, three fully connected hidden layers were established, comprising 1,024, 1,024, and 512 

nodes respectively, to capture spatial features and empirically identify the fundamental characteristics 

of cracks. 

A dropout rate of 0.5, a widely used regularization technique for rescaling deep CNN weights to a 

more effective range, was applied. The final output layer utilized a Softmax classifier to categorize 

cracks. The training process encompassed 500 epochs, utilizing the Adam algorithm with a learning 

rate of 0.0001, a stochastic gradient descent approach, to optimize the network weights. After an initial 

20 epochs of training, a fine-tuning phase was initiated, adjusting the weights and refining the 

hyperparameters of the layers to enhance crack classification outcomes. 

Advantages: 

The proposed system disclosure described herein above has several technical advantages including, 

but not limited to, the method for detection of encroachment in civil structure using dynamic learning 

techniques that: 

• provides automatic classification of irregularity; 

• reduce human intervention;  

• reduce error possibility;  

• provide high accuracy; 

• prevent hazardous conditions occurring by irregularity; and 

• provide high-accuracy detection of irregularity. 
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Conclusion 

Surface crack detection is indeed a crucial task in monitoring the structural health of concrete 

constructions. If cracks form and spread, they limit the effective load-bearing surface area and, in time, 

can lead to structural failure. The manual crack identification procedure is time-consuming and 

sensitive to inspectors' subjective opinions. The manual inspection might also be challenging in the 

case of high-rise structures and bridges. This paper proposes an automated crack identification 

approach called crack encroachment in concrete structures identified with DCNN (Deep Convolutional 

Neural Network). It denoises the input image using ADNLMF (Anisotropic Diffusion Non-Local 

Mean Filtering) to better preserve the edges, textures, and features. Yolo v3 was used to discriminate 

between crack and non-crack images, and a deep convolutional neural network classifier was used to 

detect the crack type. The crack kinds are recognized here based on the width of the cracks by utilizing 

crack width transform. This method not only improves accuracy but also decreases network 

complexity as well as time. When the overall performance of our proposed method is compared to that 

of existing crack identification techniques, it is clear that our proposed concrete structure crack 

recognition methodology produces better results. 
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